Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = middle Permian

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8911 KB  
Article
Heterogeneity and Cause Analysis of Organic Pore in Upper Permian Shale from Western Hubei, South China
by Yang Liu, Yuying Zhang, Zhiliang He, Shuangfang Lu, Rui Yang and Yifei Li
Fractal Fract. 2025, 9(11), 731; https://doi.org/10.3390/fractalfract9110731 - 12 Nov 2025
Abstract
Organic pores serve as crucial storage spaces for shale gas, whose morphology and structure vary significantly among different types of organic matter, directly influencing the storage and seepage capacity of shale gas. The Upper Permian shale in the Western Hubei Trough formed in [...] Read more.
Organic pores serve as crucial storage spaces for shale gas, whose morphology and structure vary significantly among different types of organic matter, directly influencing the storage and seepage capacity of shale gas. The Upper Permian shale in the Western Hubei Trough formed in diverse sedimentary facies and has undergone multiple geological activities, resulting in strong heterogeneity of organic pores across different strata and regions. To figure out the heterogeneous characteristics of organic pores and the forming reason, the occurrence state of organic matter, pore morphology, and structural parameters (pore size, specific surface area, pore volume, and fractal dimension) of the Upper Permian shale in Western Hubei, have been discussed in detail, based on the data of field emission scanning electron microscopy and low-temperature nitrogen adsorption experiments conducted on the extracted organic matter. On this basis, fractal dimension theory was applied to discuss the heterogeneity of organic pores in different layers, and the reason for heterogeneity has been analyzed in detail. The results indicate that the occurrence mode of organic matter in different layers presents various characteristics: in the Gufeng Formation, the organic matters distribute primarily dispersed in flocculent state; at the bottom of Wujiaping Formation, they occur as isolated individuals, while the organic matters turn into discontinuous laminated distribution in the middle and upper Wujiaping Formation; in the Dalong Formation, the organic matters show continuous parallel banded distribution. Moreover, the morphology and structural parameters of organic pores exhibit obvious changes from the Gufeng Formation to the Dalong Formation: (a) the pore morphology shows the changed trend as extremely complex-simple-complex; (b) the specific surface area and pore volume follow the trend as large-small-large; (c) the pore size distribution displays in the pattern of bimodal-unimodal-bimodal; (d) the data of fractal dimension show the variation of high–low–high. Overall, the various sedimentary environments during the Upper Permian shale depositional period determined the differences in organic sources, which dominated the heterogeneity of organic pores in shale. These data clarify the development and variation characteristics of organic matter pores under different depositional environments, providing a theoretical basis for shale gas exploration and development during the transition from marine to marine–continental facies. Full article
Show Figures

Figure 1

26 pages, 10001 KB  
Article
Dolomite Reservoir Genesis Controlled by Sedimentary Cycles: Geochemical Evidence from the Middle Permian Qixia Formation, SE Sichuan Basin
by Rui Xu, Guangwei Wang, Fang Hao, Li Quan, Ling Zhou, Lingao Kong, Dinglin Peng and Modong Duan
Minerals 2025, 15(11), 1114; https://doi.org/10.3390/min15111114 - 27 Oct 2025
Viewed by 304
Abstract
Dolostone is an important reservoir for hydrocarbons, and significant hydrocarbons have been produced in the Middle Permian Qixia Formation dolostone reservoirs in the southeastern Sichuan Basin. The origin and formation process of the dolomite reservoir in the research area are studied through thin-section, [...] Read more.
Dolostone is an important reservoir for hydrocarbons, and significant hydrocarbons have been produced in the Middle Permian Qixia Formation dolostone reservoirs in the southeastern Sichuan Basin. The origin and formation process of the dolomite reservoir in the research area are studied through thin-section, geochemical, and sedimentary cycle analyses and U-Pb geochronology. Three types of dolomites were identified, including stratiform fine-crystalline dolomite (D1), patchy fine-crystalline dolomite (D2), and saddle dolomite cement (SD). D1 and D2 exhibit a range of δ13C values from 3.39‰ to 4.21‰ and a range of δ18O values from −6.06‰ to −5.75‰, indicating a mild depletion of δ18O relative to coeval seawater while maintaining seawater-equivalent δ13C signatures. Their 87Sr/86Sr ratios and REE patterns indicate seawater-derived fluids for D1 and D2 (both test results showed a U-Pb age of ≈274 Ma) and hydrothermal origin for SD. Sedimentary cycle analysis found that the regression process in the fourth-order sequence is conducive to the formation of dolomite under the background of regression in the third-order sequence. Exposure of bioclastic shoals enabled evaporated seawater reflux, forming penecontemporaneous D1 in fluid-saturated settings. Selective dolomitization occurred in the bioturbation structure with good porosity and permeability, forming D2. In the burial stage, the hydrothermal fluid had a slight transformation on the dolomite and formed SD. This model highlights transgressive–regressive cycle controls on reservoir development, providing exploration criteria for analogous carbonate systems. Full article
(This article belongs to the Special Issue Formation of Dolomite Reservoirs: Diagenetic and Tectonic Controls)
Show Figures

Figure 1

29 pages, 30657 KB  
Article
Provenance of Middle-Upper Permian Sandstones in Lintan and Jiangligou Areas, West Qinling, China: Insights from Geochemistry, Detrital Zircon Chronology, and Hf Isotopes
by Ziwen Jiang, Lamao Meiduo, Zhichao Li, Zhengtao Zhang, Xiangjun Li, Xiwei Qin, Shangwei Ma, Jinhai Ma, Jie Li, Wenzhi Ma, Weiran Zhao, Wenqi Pan and Ziqiang Tian
Minerals 2025, 15(10), 1024; https://doi.org/10.3390/min15101024 - 27 Sep 2025
Viewed by 312
Abstract
The provenance of the Middle-Upper Permian in the Lintan and Jiangligou areas, remnants of rift basin sedimentation within the West Qinling, remains controversial, hindering understanding of the basin-range coupling evolution of the Qinling Orogenic Belt and its periphery. Heavy minerals, major and trace [...] Read more.
The provenance of the Middle-Upper Permian in the Lintan and Jiangligou areas, remnants of rift basin sedimentation within the West Qinling, remains controversial, hindering understanding of the basin-range coupling evolution of the Qinling Orogenic Belt and its periphery. Heavy minerals, major and trace elements, rare earth elements, detrital zircon U-Pb dating, and in situ Lu-Hf isotopes were analyzed to determine the provenance of the Middle-Upper Permian sandstones. Results were integrated with previous studies to investigate basin-range coupling processes. The results reveal the following: (1) The Upper Member of the Shilidun Formation in the Lintan area was deposited during the Late Permian. Heavy minerals are dominated by moderately to highly stable species. Source rocks were derived from intermediate-acidic magmatic rocks and low- to medium-grade metamorphic terrains. The provenance was primarily situated in a continental island arc tectonic setting. Diverse source rock types were identified, including materials from felsic igneous, quartzose recycled, and mafic igneous provenances. Detrital zircon U–Pb age spectra display two major peak ages at 285 Ma and 442 Ma, along with five subordinate peaks at 818 Ma, 970 Ma, 1734 Ma, 1956 Ma, and 2500 Ma. The εHf(t) values range from –44.95 to 42.67, and TDM2 ages vary from 367 Ma to 4106 Ma. It is concluded that the sedimentary materials were mainly derived from the North Qinling Orogenic Belt, with minor contributions from the basement of the North China Craton. (2) In the Jiangligou area, the Shiguan Formation is characterized by highly and stable heavy minerals. The provenance is dominated by intermediate-acidic magmatic rocks, within an oceanic island arc tectonic setting. Detrital zircon U–Pb age spectrum displays a prominent peak at 442 Ma. The εHf(t) values range from –0.5 to 10.55, with TDM2 ages ranging from 744 Ma to 897 Ma. These results indicate that the sedimentary materials were derived from the North Qilian Orogenic Belt. (3) The Permian in the Western Qinling exhibit multi-provenance supply, dominated by the North Qinling Orogenic Belt and the North China Craton basement, with local contributions from the North Qilian Orogenic Belt. Significant regional variations in provenance contributions were identified. This study further constrains the closure of the Shangdan Ocean to pre-Late Permian. It reveals that the Western Qinling was situated in a back-arc rift basin setting during the Late Paleozoic. Key sedimentary evidence is provided for understanding the tectonic evolution of the Paleo-Tethys Ocean and the collision between the North China and Yangtze cratons. Full article
(This article belongs to the Special Issue Tectonic Setting and Provenance of Sedimentary Rocks)
Show Figures

Figure 1

36 pages, 17646 KB  
Article
Multifractal Characteristics of Heterogeneous Pore-Throat Structure and Insight into Differential Fluid Movability of Saline-Lacustrine Mixed Shale-Oil Reservoirs
by Wei Yang, Ming Xie, Haodong Hou, Zhenxue Jiang, Yan Song, Shujing Bao, Yingyan Li, Yang Gao, Shouchang Peng, Ke Miao and Weihao Sun
Fractal Fract. 2025, 9(9), 604; https://doi.org/10.3390/fractalfract9090604 - 18 Sep 2025
Cited by 1 | Viewed by 565
Abstract
The root causes forcing the differential pore-throat performances and crude oil recoverability in heterogeneous shale lithofacies of saline-lacustrine fine-grained mixed sedimentary sequences are still debated. Especially application cases of fractal theory in characterizing pore-throat heterogeneity are still lacking and the significance of differential [...] Read more.
The root causes forcing the differential pore-throat performances and crude oil recoverability in heterogeneous shale lithofacies of saline-lacustrine fine-grained mixed sedimentary sequences are still debated. Especially application cases of fractal theory in characterizing pore-throat heterogeneity are still lacking and the significance of differential multifractal distribution patterns on reservoir assessment remains controversial. This present study focuses on the shale-oil reservoirs in saline-lacustrine fine-grained mixed depositional sequences of the Middle Permian Lucaogou Formation (southern Junggar Basin, NW China), and presents a set of new results from petrographical investigation, field-emission scanning electron microscopy (FE-SEM) imaging, fluid injection experiments (low-pressure N2 adsorption and high-pressure mercury intrusion porosimetry (HMIP)), nuclear magnetic resonance (NMR) spectroscopy and T1-T2 mapping, directional spontaneous imbibition, as well as contact angle measurements. Our results demonstrated that the investigated lithofacies are mainly divided into a total of five lithofacies categories: felsic siltstones, sandy dolomitic sandstones, dolarenites, micritic dolomites, and dolomitic mudstones, respectively. More importantly, the felsic siltstone and sandy dolomitic siltstones can be identified as the most advantageous lithofacies categories exhibiting the strongest movable oil-bearing capacity owing to an acceptable complexity and heterogeneity of mesopore-throat structures, as evidenced by the corresponding moderate fractal dimension of mesopores (D2) from HMIP and apparently lower fractal dimension of movable fluids’ pores (D2) from NMR results. Particularly noteworthy is the relatively poor shale-oil movability recognized in the dolarenites, micritic dolomites, and dolomitic mudstones due to heterogeneous and unfavorable pore-throat systems, even though an acceptable micro-connectivity and a more oleophilic interfacial wettability prevails in crucial dolomitic components. Finally, a comprehensive and conceptual model is established for an effective and characteristic parameter system for assessing differential reservoir petrophysical properties, interfacial wettability, and shale-oil movability concerning heterogeneous lithofacies categories. Our achievements can serve as an analog for investigating saline-lacustrine mixed shale-oil reservoirs to gain a more comprehensive understanding of differential recoverability of dessert reservoir intervals, and to guide the assessment of “sweet spots” distribution and optimization of engineering technique schemes for commercial exploitation. Full article
(This article belongs to the Special Issue Analysis of Geological Pore Structure Based on Fractal Theory)
Show Figures

Figure 1

21 pages, 5880 KB  
Article
Petrographic and Geochemical Insights from Fibrous Calcite Veins: Unraveling Overpressure and Fracture Evolution in the Upper Permian Dalong Formation, South China
by An Liu, Lin Chen, Shu Jiang, Hai Li, Baomin Zhang, Yingxiong Cai, Jingyu Zhang, Wei Wei and Feiyong Xia
Minerals 2025, 15(9), 896; https://doi.org/10.3390/min15090896 - 24 Aug 2025
Viewed by 700
Abstract
The characteristics and evolution of fibrous calcite veins in organic-rich shales have gained significant attention due to the recent advancements in shale oil and gas exploration. However, the fibrous calcite veins in the Upper Permian Dalong Formation remain lacking in awareness. To investigate [...] Read more.
The characteristics and evolution of fibrous calcite veins in organic-rich shales have gained significant attention due to the recent advancements in shale oil and gas exploration. However, the fibrous calcite veins in the Upper Permian Dalong Formation remain lacking in awareness. To investigate the formation and significance of bedding-parallel fibrous calcite veins in the Dalong Formation, we conducted an extensive study utilizing petrography, geochemistry, isotopic analysis, and fluid inclusion studies on outcrops of the Dalong Formation in South China. Our findings reveal that fibrous calcite veins predominantly develop in the middle section of the Dalong Formation, specifically within the transitional interval between siliceous and calcareous shales, characterized by symmetric, antitaxial fibrous calcite veins. The δ13C values of these veins exhibit a broad range (−4.53‰ to +3.39‰) and display a decreasing trend in the directions of fiber growth from the central part, indicating an increased contribution of organic carbon to the calcite veins. Additionally, a consistent increase in trace element concentrations from the central part toward the fiber growth directions suggests a singular fluid source in a relatively closed environment, while other samples exhibit no distinct pattern, possibly due to the mixing of fluids from multiple layers resulting from repeated opening and closing of bedding-parallel fractures in the shales. The notable difference in δEu between the fibers on either side of the median zone indicates that previously formed veins acted as barriers, impeding the mixing of fluids, with the variation in δEu reflecting the differing sedimentary properties of the surrounding rocks. The in situ U-Pb dating of fibrous calcite veins yields an absolute age of 211 ± 23 Ma, signifying formation during the Late Triassic, which correlates with a shale maturity of 1.0‰ to 1.25‰. This integrated study suggests that the geochemical records of fibrous calcite veins document the processes related to overpressure generation and the opening and healing of bedding-parallel fractures within the Dalong Formation. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

15 pages, 3992 KB  
Article
Characteristics of Organisms and Origin of Organic Matter in Permian Shale in Western Hubei Province, South China
by Yuying Zhang, Baojian Shen, Dongjun Feng, Bo Gao, Pengwei Wang, Min Li, Yifei Li and Yang Liu
Processes 2025, 13(9), 2673; https://doi.org/10.3390/pr13092673 - 22 Aug 2025
Viewed by 557
Abstract
Permian shale gas is a kind of energy resource with commercial development potential. The characteristics of its organic source and enrichment have received extensive attention in recent years. This study systematically analyzed the variations in types and assemblages of hydrocarbon-forming organisms across different [...] Read more.
Permian shale gas is a kind of energy resource with commercial development potential. The characteristics of its organic source and enrichment have received extensive attention in recent years. This study systematically analyzed the variations in types and assemblages of hydrocarbon-forming organisms across different stratigraphic layers of Permian shale in western Hubei through scanning electron microscopy (SEM) and microscopic observations. Moreover, the source characteristics and enrichment mechanisms of organic matter in Permian shale were identified. Hydrocarbon generation in Permian shale is primarily attributed to planktonic algae-derived acritarchs, supplemented by higher plants and green algae, based on the observation under the SEM and microscope. The hydrocarbon-forming microorganisms in the Gufeng Formation are predominantly characterized by acritarchs. A notable decrease in acritarch content is observed at the bottom of the Wujiaping Formation, accompanied by a significant increase in higher plant constituents and a slight rise in green algae abundance. Subsequently, from the middle-upper members of the Wujiaping Formation through the Dalong Formation, acritarch concentrations rebound while higher plants and green algae contributions diminish. The organic matter in the studied layer is predominantly generated from planktonic algae (acritarchs and green algae), with subordinate contributions from terrestrial higher plants. During the sedimentary stage of the Gufeng Formation, rising sea levels sustained a deep siliceous shelf environment in the E’xi Trough, where organic matter was primarily sourced from acritarchs, with limited terrigenous input. The regressive phase at the bottom of the Wujiaping Formation resulted in coastal marsh throughout the E’xi Trough, creating a mixed organic matter assemblage of aquatic planktonic algae and enhanced terrestrial higher plant material. As sedimentation progressed into the middle-upper Wujiaping Formation and Dalong Formation, the E’xi Trough evolved into a deep siliceous shelf and platform-margin slope environment. During this stage, organic matter was again predominantly supplied by planktonic algae (mainly acritarchs), with reduced terrestrial organic input. These findings provide valuable theoretical insights for guiding Permian shale gas exploration and development strategies. Full article
Show Figures

Figure 1

29 pages, 14630 KB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 821
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

22 pages, 20312 KB  
Review
On the Incompleteness of the Coelacanth Fossil Record
by Zhiwei Yuan, Lionel Cavin and Haijun Song
Foss. Stud. 2025, 3(3), 10; https://doi.org/10.3390/fossils3030010 - 8 Jul 2025
Cited by 2 | Viewed by 3605
Abstract
This study conducted a spatiotemporal review of the coelacanth fossil record and explored its distribution and diversity patterns. Coelacanth research can be divided into two distinct periods: the first period, which is based solely on the fossil record, and the second period following [...] Read more.
This study conducted a spatiotemporal review of the coelacanth fossil record and explored its distribution and diversity patterns. Coelacanth research can be divided into two distinct periods: the first period, which is based solely on the fossil record, and the second period following the discovery of extant taxa, significantly stimulating research interest. The distribution and research intensity of coelacanth fossils exhibit marked spatial heterogeneity, with Europe and North America being the most extensively studied regions. In contrast, Asia, South America, and Oceania offer substantial potential for future research. Temporally, the coelacanth fossil record also demonstrates significant variation across geological periods, revealing three diversity peaks in the Middle Devonian, Early Triassic, and Late Jurassic, with the Early Triassic peak exhibiting the highest diversity. With the exception of the Late Devonian, Carboniferous, and Late Cretaceous, most periods remain understudied, particularly the Permian, Early Jurassic, and Middle Jurassic, where the record is notably scarce. Integrating the fossil record with phylogenetic analyses enables more robust estimations of coelacanth diversity patterns through deep time. The diversity peak observed in the Middle Devonian is consistent with early burst models of diversification, whereas the Early and Middle Triassic peaks are considered robust, and the Late Jurassic peak may be influenced by taphonomic biases. The low population abundance and limited diversity of coelacanths reduce the number of specimens available for fossilization. The absence of a Cenozoic coelacanth fossil record may be linked to their moderately deep-sea habitat. Future research should prioritize addressing gaps in the fossil record, particularly in Africa, Asia, and Latin America; employing multiple metrics to mitigate sampling biases; and integrating a broader range of taxa into phylogenetic analyses. In contrast to the widespread distribution of the fossil record, extant coelacanths exhibit a restricted distribution, underscoring the urgent need to increase conservation efforts. Full article
(This article belongs to the Special Issue Continuities and Discontinuities of the Fossil Record)
Show Figures

Figure 1

26 pages, 4252 KB  
Article
Vertebrate Diversity of the Middle Triassic Xingyi Fauna
by Da-yong Jiang, Andrea Tintori, Min Zhou, Ryosuke Motani, Cheng Ji, Olivier Rieppel, Nicholas C. Fraser, Davide Conedera, Ming-tao Yao, Yi-nuo Wang and Zuo-yu Sun
Diversity 2025, 17(7), 453; https://doi.org/10.3390/d17070453 - 26 Jun 2025
Viewed by 1261
Abstract
The Xingyi Fauna yields abundant and well-articulated skeletons of Ladinian (Middle Triassic, ab. 240 Ma) marine reptiles, associated with fishes, conodonts, crinoids, ammonoids, bivalves, arthropods, and other fossils including nannofossils and coprolites. It represents a new marine ecosystem fully developed after the end-Permian [...] Read more.
The Xingyi Fauna yields abundant and well-articulated skeletons of Ladinian (Middle Triassic, ab. 240 Ma) marine reptiles, associated with fishes, conodonts, crinoids, ammonoids, bivalves, arthropods, and other fossils including nannofossils and coprolites. It represents a new marine ecosystem fully developed after the end-Permian Mass Extinction, and characterized by the appearance of a diversity of large marine reptiles with large ichthyosaurs as the apex predators. Twenty marine reptile and 17 fish species have been reported. The sequence of the Xingyi Fauna records the transition from a marine ecosystem dominated by air-breathing tetrapods extending across the shallow platform to the deep ocean, as indicated by large marine reptiles with a capability for long-distance cruising into the outer sea. The faunal composition of the Lower Assemblage of the Xingyi Fauna, dominated by small- to medium-sized pachypleurosaurids and nothosaurids, is similar to that of the older Anisian Panxian Fauna and the western Tethyan Monte San Giorgio Fauna, but the faunal composition of the Upper Assemblage, with large ichthyopterygians, pistosauroid sauropterygians, and flying fishes, is similar to that of the younger Carnian Guanling Biota as well as the Raibl and Polzberg Faunas in the Alps and California. Therefore, the Xingyi Fauna can be considered a hub of paleobiogeological exchange connecting the western Tethys and the eastern Pathalassa. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

18 pages, 3113 KB  
Article
Chemical Composition of Wolframite from the Porokhovskoe and Yugo-Konevskoe W Deposits (Central Urals): Implications for Fluid Evolution and Ore Genesis
by Konstantin Novoselov, Danil Rogov and Dmitry A. Artemyev
Minerals 2025, 15(6), 661; https://doi.org/10.3390/min15060661 - 19 Jun 2025
Viewed by 516
Abstract
The composition of wolframite from ores of the Porokhovskoe and Yugo-Konevskoe W greisen deposits in the Central Urals is studied using SEM-EDS and LA-ICP-MS analyses. The Porokhovskoe deposit is localized in a metamorphosed volcanosedimentary sequence of Lower Silurian age, and the Yugo-Konevskoe is [...] Read more.
The composition of wolframite from ores of the Porokhovskoe and Yugo-Konevskoe W greisen deposits in the Central Urals is studied using SEM-EDS and LA-ICP-MS analyses. The Porokhovskoe deposit is localized in a metamorphosed volcanosedimentary sequence of Lower Silurian age, and the Yugo-Konevskoe is enclosed in an eponymous granite pluton of Middle Permian–Lower Triassic age. Most studied wolframite grains belong to hűbnerite. The Fe/(Fe + Mn) value of wolframite varies in a range of 0.02–0.50. Wolframite from both deposits is enriched in Zn, Nb, and Mg. The wolframite from the Porokhovskoe deposit is enriched in V, Sc, Zn, and Mg and is depleted in Mo, U, rare earth elements (REEs), Nb, and Ta, compared to wolframite from the Yugo-Konevskoe deposit. It is suggested that this difference is due to the occurrence of ore veins in different rocks at different distance from the source of the ore-forming fluid, which cools down as it moves away from the source, leading to a decrease in the incorporation of trace elements by the lower-temperature wolframite. The predominance of heavy REEs over light REEs in all the studied wolframite is explained by the close ionic radii of heavy REEs to the main mineral-forming elements Fe and Mn. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

29 pages, 4559 KB  
Article
Revisiting the Permian Stratigraphy of the Kuznetsk Coal Basin (Siberia, Russia) Using Radioisotopic Data: Sedimentology, Biotic Events, and Palaeoclimate
by Vladimir V. Silantiev, Yaroslav M. Gutak, Marion Tichomirowa, Alexandra Käßner, Anna V. Kulikova, Sergey I. Arbuzov, Nouria G. Nourgalieva, Eugeny V. Karasev, Anastasia S. Felker, Maria A. Naumcheva, Aleksandr S. Bakaev, Lyubov G. Porokhovnichenko, Nikolai A. Eliseev, Veronika V. Zharinova, Dinara N. Miftakhutdinova and Milyausha N. Urazaeva
Minerals 2025, 15(6), 643; https://doi.org/10.3390/min15060643 - 13 Jun 2025
Viewed by 1133
Abstract
The radioisotopic dating of five stratigraphic levels within the Permian succession of the Kuznetsk Coal Basin refined the ages of the corresponding stratigraphic units and, for the first time, enabled their direct correlation with the International Chronostratigraphic Chart, 2024. The analysis revealed significant [...] Read more.
The radioisotopic dating of five stratigraphic levels within the Permian succession of the Kuznetsk Coal Basin refined the ages of the corresponding stratigraphic units and, for the first time, enabled their direct correlation with the International Chronostratigraphic Chart, 2024. The analysis revealed significant discrepancies between the updated ages and the previously accepted regional scheme (1982–1996). A comparison of regional stratigraphic units’ durations with estimated coal and siliciclastic sediment accumulation rates indicated that the early Permian contains the most prolonged stratigraphic hiatuses. The updated stratigraphic framework enabled re-evaluating the temporal sequence of regional sedimentological, volcano–tectonic and biotic events, allowing for more accurate comparison with the global record. Palaeoclimate reconstructions indicated that during the early Permian, the Kuznetsk Basin was characterised by a relatively warm, humid, and aseasonal climate, consistent with its mid-latitude position during the Late Palaeozoic Ice Age. In contrast, the middle-to-late Permian shows a transition to a temperate, moderately humid climate with pronounced seasonality, differing from the warmhouse conditions of low-latitude palaeoequatorial regions. The latest Lopingian reveals a distinct trend toward increasing dryness, consistent with global palaeoclimate signals associated with the end-Permian crisis. Full article
(This article belongs to the Special Issue Sedimentary Basins and Minerals)
Show Figures

Graphical abstract

28 pages, 59439 KB  
Article
The Middle–Late Permian to Late Cretaceous Mediterranean-Type Karst Bauxites of Western Iran: Authigenic Mineral Forming Conditions and Critical Raw Materials Potential
by Farhad Ahmadnejad, Giovanni Mongelli, Ghazal Rafat and Mohammad Sharifi
Minerals 2025, 15(6), 584; https://doi.org/10.3390/min15060584 - 29 May 2025
Cited by 2 | Viewed by 873
Abstract
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the [...] Read more.
The Sanandaj–Sirjan Zone and Zagros Fold–Thrust Belt in Iran host numerous Mediterranean-type karst bauxite deposits; however, their formation mechanisms and critical raw material potential remain ambiguous. This study combines mineralogical and geochemical analyses to explore (1) the formation of authigenic minerals, (2) the role of microbial organic processes in Fe cycling, and (3) the assessment of their critical raw materials potential. Mineralogical analyses of the Late Cretaceous Daresard and Middle–Late Permian Yakshawa bauxites reveal distinct horizons reflecting their genetic conditions: Yakshawa exhibits a vertical weathering sequence (clay-rich base → ferruginous oolites → nodular massive bauxite → bleached cap), while Daresard shows karst-controlled profiles (breccia → oolitic-pisolitic ore → deferrified boehmite). Authigenic illite forms via isochemical reactions involving kaolinite and K-feldspar dissolution. Scanning electron microscopy evidence demonstrates illite replacing kaolinite with burial depth enhancing crystallinity. Diaspore forms through both gibbsite transformation and direct precipitation from aluminum-rich solutions under surface conditions in reducing microbial karst environments, typically associated with pyrite, anatase, and fluorocarbonates under neutral–weakly alkaline conditions. Redox-controlled Fe-Al fractionation governs bauxite horizon development: (1) microbial sulfate reduction facilitates Fe3⁺ → Fe2⁺ reduction under anoxic conditions, forming Fe-rich horizons, while (2) oxidative weathering (↑Eh, ↓moisture) promotes Al-hydroxide/clay enrichment in upper profiles, evidenced by progressive total organic carbon depletion (0.57 → 0.08%). This biotic–abiotic coupling ultimately generates stratified, high-grade bauxite. Finally, both the Yakshawa and Daresard karst bauxite ores are enriched in critical raw materials. It is worth noting that the overall enrichment appears to be mostly driven by the processes that led to the formation of the ores and not by the chemical features of the parent rocks. Divergent bauxitization pathways and early diagenetic processes—controlled by paleoclimatic fluctuations, redox shifts, and organic matter decay—govern critical raw material distributions, unlike typical Mediterranean-type deposits where parent rock composition dominates critical raw material partitioning. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

22 pages, 18204 KB  
Article
Late Paleozoic–Mesozoic Tectonic Evolution of the Mudanjiang Ocean: Constraints from the Zircon U-Pb and Ar-Ar Chronology of the Heilongjiang Complex, NE China
by Jianxin Xu, Peiyuan Hu, Wendong Wang, Hongyu Guo and Xin Zhang
Minerals 2025, 15(5), 517; https://doi.org/10.3390/min15050517 - 14 May 2025
Viewed by 667
Abstract
The Heilongjiang Complex provides a crucial geological record of the evolutionary history of the Mudanjiang Ocean, making it significant for understanding the accretion process between the Jiamusi Block and the Songliao Block. In this study, we analyzed samples from the Heilongjiang Complex in [...] Read more.
The Heilongjiang Complex provides a crucial geological record of the evolutionary history of the Mudanjiang Ocean, making it significant for understanding the accretion process between the Jiamusi Block and the Songliao Block. In this study, we analyzed samples from the Heilongjiang Complex in the Huanan region using zircon U-Pb and 40Ar/39Ar isotopic dating. The LA-ICP-MS U-Pb dating results show that the deposition time of the mica quartz schist is Late Triassic (237–207 Ma), while the protolith age of the amphibolite is Middle Triassic (245.5 ± 1.2 Ma). Detrital zircon ages from the mica quartz schist reveal four groups: 155–229 Ma, 237–296 Ma, 485–556 Ma, and 585–2238 Ma. The provenances are related to the magmatic and metamorphic activities at the junction of the Jiamusi Block and Songliao Block. 40Ar/39Ar isotopic dating yielded a plateau age of 183.40 ± 1.83 Ma for phengite in the mica quartz schist, with the metamorphic ages obtained from zircon U-Pb dating. We identify three major metamorphic events in the Heilongjiang Complex: (1) ~229 Ma, marking the earliest tectonic thermal disturbance in the complex; (2) 207–202 Ma, corresponding to the metamorphic event related to the collision between the Jiamusi Block and Songliao Block; and (3) ~183 Ma, indicating the closure of the Mudanjiang Ocean. Integrating these new findings with the results of previous research on magmatism and metamorphism, we reconstruct the tectonic evolution of the Mudanjiang Ocean from the Late Paleozoic to the Mesozoic. During the Early Permian, the Mudanjiang Ocean had already opened. Between the Middle Permian and Middle Triassic, bidirectional subduction occurred. In the Late Triassic, the Mudanjiang Ocean entered a subduction dormancy period. By the Early to Middle Jurassic, the Mudanjiang Ocean closed due to continental collision, leading to the final positioning of the Heilongjiang Complex. Full article
Show Figures

Figure 1

22 pages, 4447 KB  
Article
Geochronological and Geochemical Characterization of Triassic Felsic Volcanics in the Youjiang Basin, Southwest China: Implications for Tectonic Evolution of Eastern Tethyan Geodynamics
by Kai Dong, Zhuoyang Li, Xiaoli Fei, Yongqing Wang and Xiaohu Deng
Minerals 2025, 15(4), 398; https://doi.org/10.3390/min15040398 - 9 Apr 2025
Viewed by 495
Abstract
The Youjiang Basin is situated at the junction between the Tethyan and Pacific tectonic domains, and its Permian–Triassic volcanic rocks provide important geological archives recording the tectonic evolution and collisional interactions between the South China and Indochina blocks. This study employed LA-ICP-MS zircon [...] Read more.
The Youjiang Basin is situated at the junction between the Tethyan and Pacific tectonic domains, and its Permian–Triassic volcanic rocks provide important geological archives recording the tectonic evolution and collisional interactions between the South China and Indochina blocks. This study employed LA-ICP-MS zircon U-Pb geochronology and whole-rock geochemistry to investigate interbedded Triassic felsic volcanics. Felsic volcanic rocks in Youjiang Basin were erupted during the Early–Middle Triassic period (ca. 241~251 Ma) and are situated within the strata of the Beisi, Baifeng, and Banba Formations. These rocks in the Daqingshan area are rich in SiO2 (66.8~72.7 wt%), K2O (1.4~5.1 wt%), U (5.2~6.7 ppm), and Th (26~32.1 ppm). Conversely, they are depleted in MgO (0.6~1.4 wt%), TiO2 (0.5~0.9 wt%), Cr (13.1~19.7 ppm), Ni (7.3~10.1 ppm), and negative Eu anomalies (Eu/Eu* = 0.41~0.52), and they also exhibit negative zircon εHf(t) values. It is inferred that these Triassic felsic volcanics originated from the partial melting of crustal rocks in high-pressure environments such as the garnet stability zone within the deep mantle. These felsic volcanic rocks were likely generated during the transitional stage from island arc subduction to syn-collisional settings. Notably, the syn-collisional interaction between South China and Indochina blocks exerted significantly greater tectonic control on the Youjiang Basin than oceanic subduction. Full article
Show Figures

Figure 1

19 pages, 4764 KB  
Article
Tectonic Evolution of the Hainan Island, South China: Geochronological and Geochemical Constraints from Late Permian to Early Triassic Basalts
by Jieting Ouyang, Guoyu Chen, Liya Yang, Wenqian Lu and Yun Zhou
Minerals 2025, 15(3), 293; https://doi.org/10.3390/min15030293 - 13 Mar 2025
Cited by 1 | Viewed by 972
Abstract
The tectonic evolution of Hainan Island during the Late Permian–Early Triassic period is still unclear. This study identified two types of basalts on the island and presented detailed geochronology, whole-rock geochemistry, and Hf isotope data of the Late Permian–Early Triassic basalts. U-Pb dating [...] Read more.
The tectonic evolution of Hainan Island during the Late Permian–Early Triassic period is still unclear. This study identified two types of basalts on the island and presented detailed geochronology, whole-rock geochemistry, and Hf isotope data of the Late Permian–Early Triassic basalts. U-Pb dating results indicated that baddeleyites and zircons of one sample from Group 1 basalts had formation ages of 256 ± 3 Ma and 255 ± 3 Ma, respectively, and two samples from Group 2 gave formation ages of 241 ± 2 Ma and 240 ± 3 Ma, respectively. Both groups are characterized by negative anomalies of Nb, Ta, and Ti, and enrichment in Ba, Th, U, and K. Group 1 belongs to sub-alkaline basalt and exhibited SiO2 contents ranging from 50.50% to 51.05%, with ΣREE concentration of 136–148 ppm. Hf isotope analysis showed that the εHf(t) values of baddeleyites and zircons were −10.56 to −4.70 and −14.94 to −6.95, respectively. Group 2 belongs to alkaline basalt and had a higher SiO2 content of 52.48%–55.49% and ΣREE concentration of 168–298 ppm. They showed more depleted Hf isotopic composition with εHf(t) values ranging from −2.82 to +4.74. These data indicate that the source area of Group 1 was an enriched mantle, likely derived from partial melting of spinel lherzolite mantle, and was modified by subduction-derived fluids. Group 2 was derived from depleted mantle, most likely originating from partial melting of garnet + spinel lherzolite mantle. They were contaminated by crustal materials and metasomatized by subduction-derived fluids with a certain degree of fractional crystallization. Comprehensive analysis suggests that Group 1 samples likely formed in an island arc tectonic setting, while Group 2 formed in a continental intraplate extensional (or initial rift) tectonic setting. Their formation was mainly controlled by the Paleo-Tethys tectonic domain. Group 1 basalts implied that subduction of the Paleo-Tethys oceanic crust lasted at least in the late Permian (ca. 255 Ma). Group 2 basalts revealed that the intra-plate extensional (or initial rift) stage occurred in the middle Triassic (ca. 240 Ma). Full article
Show Figures

Figure 1

Back to TopTop