Dolomite Reservoir Genesis Controlled by Sedimentary Cycles: Geochemical Evidence from the Middle Permian Qixia Formation, SE Sichuan Basin
Abstract
1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. Petrological Type
4.2. Petrophysical Characteristics
4.3. C-O-Sr Isotope Characteristics
4.4. Rare Earth Element Characteristics
4.5. Carbonate U-Pb Geochronology
5. Discussion
5.1. Dolomite Genesis
5.1.1. Origin of D1
5.1.2. Origin of D2
5.1.3. Origin of SD
5.2. Reservoir Characteristics and Controlling Factors
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, B. Microarchitecture of dolomite crystals as revealed by subtle variations in solubility: Implications for dolomitization. Sediment. Geol. 2013, 288, 66–80. [Google Scholar] [CrossRef]
- Warren, J. Dolomite occurrence, evolution and economically important associations. Earth Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Gregg, J.M.; Bish, D.L.; Kaczmarek, S.E.; Machel, H.G.; Hollis, C. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology 2015, 62, 1749–1769. [Google Scholar] [CrossRef]
- Mckenzie, J.A.; Vasconcelos, C. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives. Sedimentology 2009, 56, 205–219. [Google Scholar] [CrossRef]
- Machel, H.G. Concepts and Models of Dolomitization: A Critical Reappraisal; The Geological Society of London: London, UK, 2004; Volume 235, pp. 7–63. [Google Scholar]
- Chen, H.; Wang, S.; Mansour, A.; Qin, Q.; Ahmed, M.S.; Cen, Y.; Liang, F.; He, Y.; Fan, Y.; Gentzis, T. Key Characteristics and Controlling Factors of the Gas Reservoir in the Fourth Member of the Ediacaran Dengying Formation in the Penglai Gas Field, Sichuan Basin. Minerals 2025, 15, 98. [Google Scholar] [CrossRef]
- Stanley, S.M.; Hardie, L.A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 144, 3–19. [Google Scholar] [CrossRef]
- Wang, G.; Li, P.; Hao, F.; Zou, H.; Yu, X. Origin of dolomite in the third member of Feixianguan Formation (Lower Triassic) in the Jiannan area, Sichuan Basin, China. Mar. Pet. Geol. 2015, 63, 127–141. [Google Scholar] [CrossRef]
- Hao, F.; Guo, T.; Zhu, Y.; Cai, X.; Zou, H.; Li, P. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China. Am. Assoc. Pet. Geol. Bull. 2008, 92, 611–637. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, X.; Guo, T.; Huang, R.; Cai, X.; Li, G. The Puguang gas field: New giant discovery in the mature Sichuan Basin, southwest China. Am. Assoc. Pet. Geol. Bull. 2007, 91, 627–643. [Google Scholar] [CrossRef]
- Wang, G.; Li, P.; Hao, F.; Zou, H.; Yu, X. Dolomitization process and its implications for porosity development in dolostones: A case study from the Lower Triassic Feixianguan Formation, Jiannan area, Eastern Sichuan Basin, China. J. Pet. Sci. Eng. 2015, 131, 184–199. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, G.; Zhang, Y.; Qiao, Y.; Hao, F.; Xu, R.; Quan, L.; Wang, P. Characteristics and origin of Lower Triassic Feixianguan Formation dolostones on the west side of Kaijiang–Liangping Trough, northeastern Sichuan Basin, China. Mar. Pet. Geol. 2023, 147, 105956. [Google Scholar] [CrossRef]
- Xiao, D.; Cao, J.; Luo, B.; Tan, X.; Liu, H.; Zhang, B.; Yang, X.; Li, Y. On the dolomite reservoirs formed by dissolution: Differential eogenetic versus hydrothermal in the lower Permian Sichuan Basin, southwestern China. Am. Assoc. Pet. Geol. Bull. 2020, 104, 1405–1438. [Google Scholar] [CrossRef]
- Li, P.; Zou, H.; Hao, F.; Yu, X.; Wang, G.; Eiler, J.M. Using clumped isotopes to determine the origin of the Middle Permian Qixia Formation dolostone, NW Sichuan Basin, China. Mar. Pet. Geol. 2020, 122, 104660. [Google Scholar] [CrossRef]
- Quan, L.; Wang, G.; Zhang, Y.; Hao, F.; Xu, R.; Zhou, L.; Liu, Z. Early dolomitization and subsequent hydrothermal modification of the middle Permian Qixia Formation carbonate in the northwest Sichuan Basin. Geoenergy Sci. Eng. 2023, 221, 211384. [Google Scholar] [CrossRef]
- Sandberg, P.A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 1983, 305, 19–22. [Google Scholar] [CrossRef]
- Rieder, M.; Wegner, W.; Horschinegg, M.; Klackl, S.; Preto, N.; Breda, A.; Gier, S.; Klötzli, U.; Bernasconi, S.M.; Arp, G.; et al. Precipitation of dolomite from seawater on a Carnian coastal plain (Dolomites, northern Italy): Evidence from carbonate petrography and Sr isotopes. Solid Earth 2019, 10, 1243–1267. [Google Scholar] [CrossRef]
- Lowenstein, T.K.; Timofeeff, M.N.; Brennan, S.T.; Hardie, L.A.; Demicco, R.V. Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions. Science 2001, 294, 1086–1088. [Google Scholar] [CrossRef]
- Mills, B.J.W.; Krause, A.J.; Scotese, C.R.; Hill, D.J.; Shields, G.A.; Lenton, T.M. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 2019, 67, 172–186. [Google Scholar] [CrossRef]
- He, J.; Lian, Z.; Luo, W.; Zhou, H.; Xu, H.; He, P.; Yang, Y.; Lan, X. Characteristics and main controlling factors of intra-platform shoal thin-layer dolomite reservoirs: A case study of Middle Permian Qixia Formation in Gaoshiti–Moxi area of Sichuan Basin, SW China. Pet. Explor. Dev. 2024, 51, 69–80. [Google Scholar] [CrossRef]
- Yang, G.; Wang, H.; Shen, H.; Yang, Y.; Jia, S.; Chen, W.; Zhu, H.; Li, Y. Characteristics and exploration prospects of Middle Permian reservoirs in the Sichuan Basin. Nat. Gas Ind. B 2015, 2, 399–405. [Google Scholar] [CrossRef]
- Bai, X.; Wen, L.; Zhang, Y.; Zhang, X.; Wang, J.; Chen, Y.; Peng, S.; Wang, W.; Zhong, J.; Li, Y.; et al. Origin of facies-controlled dolomite and exploration significance of the Middle Permian Qixia Formation in central Sichuan Basin, Western China. Pet. Sci. 2024, 21, 2927–2945. [Google Scholar] [CrossRef]
- Shi, L.; Lu, Z.; Li, F.; Qing, H.; Jiang, W.; Li, W.; Li, Z.; Ye, N.; Zhu, B.; Tang, Q.; et al. Depositional systems constraining the distribution of hydrothermal dolostone geobodies: A case study of Permian Guadalupian dolostone in the eastern Sichuan Basin. Sediment. Geol. 2025, 479, 106837. [Google Scholar] [CrossRef]
- Yang, X.; Tang, H.; Zhang, J.; Du, Y.; Tang, R.; Pan, S.; Zhou, X.; Xu, Y. Mottled dolomite in the lower Cambrian Longwangmiao formation in the Northern Sichuan Basin, South China. Petroleum 2024, 10, 19–29. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, H.; Zhong, D.; Zhang, B.; Liu, R.; Zeng, Y.; Chen, X.; Li, R.; Peng, S. Effects of basin tectonic evolution on multi-phase dolomitization: Insights from the Middle Permian Qixia Formation of the NW Sichuan Basin, SW China. Sediment. Geol. 2024, 470, 106718. [Google Scholar] [CrossRef]
- Lin, P.; Peng, J.; Zhang, L.; Lan, X.; Wang, J.; Xia, Q.; Xia, J. Characteristics of multiple dolomitizing fluids and the genetic mechanism of dolomite formation in the Permian Qixia Formation, NW Sichuan Basin. J. Pet. Sci. Eng. 2022, 208, 109749. [Google Scholar] [CrossRef]
- Pei, S.; Wang, X.; Hu, X.; Li, R.; Long, H.; Huang, D. Characteristics and diagenetic evolution of dolomite reservoirs in the Middle Permian Qixia Formation, southwestern Sichuan Basin, China. Carbonates Evaporites 2022, 37, 17. [Google Scholar] [CrossRef]
- Yang, T.; Azmy, K.; He, Z.; Li, S.; Liu, E.; Wu, S.; Wang, J.; Li, T.; Gao, J. Fault-controlled hydrothermal dolomitization of Middle Permian in southeastern Sichuan Basin, SW China, and its temporal relationship with the Emeishan Large Igneous Province: New insights from multi-geochemical proxies and carbonate U–Pb dating. Sediment. Geol. 2022, 439, 106215. [Google Scholar] [CrossRef]
- Pan, L.; Shen, A.; Zhao, J.; Hu, A.; Hao, Y.; Liang, F.; Feng, Y.; Wang, X.; Jiang, L. LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin (SW China). Sediment. Geol. 2020, 407, 105728. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Deng, B.; Zhong, Y.; Wen, L.; Sun, W.; Li, Z.; Jansa, L.; Li, J.; Song, J.; et al. Tectonic evolution of the Sichuan Basin, Southwest China. Earth Sci. Rev. 2021, 213, 103470. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Huang, B.; Dong, Y.; Li, S.; Zhang, G.; Yu, S. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth Sci. Rev. 2018, 186, 262–286. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Miao, M.; Yu, X.; Liu, X.; Wang, M.; Sun, L. Reservoir identification of marine facies carbonate shoals in the Middle Permian in the Sichuan Basin. Pet. Res. 2024, 9, 502–513. [Google Scholar] [CrossRef]
- Sun, Y.; Zuo, Y.; Zhang, L.; Zhang, C.; Wang, Y.; Zhang, T.; Li, X.; Yang, M.; Yan, K.; Cui, L. Geothermal resource evaluation of the Middle Permian Qixia-Maokou Formation in the southern Sichuan Basin, China. Geothermics 2024, 122, 103073. [Google Scholar] [CrossRef]
- Lin, Z.; Hu, Q.; Yin, N.; Yang, S.; Liu, H.; Chao, J. Nanopores-to-microfractures flow mechanism and remaining distribution of shale oil during dynamic water spontaneous imbibition studied by NMR. Geoenergy Sci. Eng. 2024, 241, 213202. [Google Scholar] [CrossRef]
- Yuan, Y.; Rezaee, R.; Zhou, M.; Iglauer, S. A comprehensive review on shale studies with emphasis on nuclear magnetic resonance (NMR) technique. Gas Sci. Eng. 2023, 120, 205163. [Google Scholar] [CrossRef]
- Fheed, A.; Krzyżak, A.; Świerczewska, A. Exploring a carbonate reef reservoir—nuclear magnetic resonance and computed microtomography confronted with narrow channel and fracture porosity. J. Appl. Geophys. 2018, 151, 343–358. [Google Scholar] [CrossRef]
- Wang, P.; Wang, G.; Chen, Y.; Hao, F.; Yang, X.; Hu, F.; Zhou, L.; Yi, Y.; Yang, G.; Wang, X.; et al. Formation and preservation of ultra-deep high-quality dolomite reservoirs under the coupling of sedimentation and diagenesis in the central Tarim Basin, NW China. Mar. Pet. Geol. 2023, 149, 106084. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Zhong, Z.; Zhang, B.; Zhang, L.; Hu, S. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids; constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chem. Geol. 2002, 186, 281–299. [Google Scholar] [CrossRef]
- Guo, L.; Tang, Y.; Hou, L.; Liu, S.; Huang, C.; Han, Z.; Xu, S.; Luo, Z.; Liang, H. Late Triassic orogenic gold mineralization along the northwest margin of the Indochina Block: Revealed from calcite U-Pb ages and geochemistry of the Phapon gold deposit, Laos. J. Asian Earth Sci. 2024, 276, 106350. [Google Scholar] [CrossRef]
- Sibley, D.F.; Gregg, J.M. Classification of Dolomite Rock Textures. J. Sediment. Res. 1987, 6, 967–975. [Google Scholar] [CrossRef]
- Lucia, F.J.; Braithwaite, C.J.R.; Rizzi, G.; Darke, G. Origin and petrophysics of dolostone pore space. Geol. Soc. Spec. Publ. 2004, 235, 141–155. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Z.; Ostadhassan, M. The application of Gaussian distribution deconvolution method to separate the overlapping signals in the 2D NMR map. Pet. Sci. 2023, 20, 1513–1520. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K. 87Sr/86Sr, d13C and d18O and evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef]
- Fisher, R.S.; Land, L.S. Diagenetic history of Eocene Wilcox sandstones, South-Central Texas. Geochim. Cosmochim. Acta 1986, 50, 551–561. [Google Scholar] [CrossRef]
- Jones, C.E.; Jenkyns, H.C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci. 2001, 301, 112–149. [Google Scholar] [CrossRef]
- Tostevin, R.; Shields, G.A.; Tarbuck, G.M.; He, T.; Clarkson, M.O.; Wood, R.A. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem. Geol. 2016, 438, 146–162. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Feng, Y.; Zhao, J.; Wang, Z.; Hu, M.; Jiang, H.; Duc Nguyen, A. In situ U-Pb dating and geochemical characterization of multi-stage dolomite cementation in the Ediacaran Dengying Formation, Central Sichuan Basin, China: Constraints on diagenetic, hydrothermal and paleo-oil filling events. Precambrian Res. 2022, 368, 106481. [Google Scholar] [CrossRef]
- Nuriel, P.; Wotzlaw, J.; Ovtcharova, M.; Vaks, A.; Stremtan, C.; Šala, M.; Roberts, N.M.W.; Kylander-Clark, A.R.C. The use of ASH-15 flowstone as a matrix-matched reference material for laser-ablation U − Pb geochronology of calcite. Geochronology 2021, 3, 35–47. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, N.; Feng, Q. The thermal history of Permian carbonate strata reconstructed with clumped isotopes and U–Pb dating: Eastern Sichuan Basin, SW China. Mar. Pet. Geol. 2024, 163, 106767. [Google Scholar] [CrossRef]
- Gao, J.; Lv, D.; van Loon, A.J.T.; Wu, D. Geochemical, mineralogical, and petrological analyses for the interpretation of the sedimentary environment of the Middle-Late Ordovician Majiagou Formation (northern China) as a tool for more effective gas exploration. Pet. Sci. 2022, 19, 2519–2532. [Google Scholar] [CrossRef]
- Horowitz, A.; Cronan, D.S. The geochemistry of basal sediments from the North Atlantic Ocean. Mar. Geol. 1976, 20, 205–228. [Google Scholar] [CrossRef]
- Jones, B. Dolomite Crystal Architecture: Genetic Implications for the Origin of the Tertiary Dolostones of the Cayman Islands. J. Sediment. Res. 2005, 75, 177–189. [Google Scholar] [CrossRef]
- Machel, H.G. Recrystallization versus neomorphism, and the concept of “significant recrystallization” in dolomite research. Sediment. Geol. 1997, 113, 161–168. [Google Scholar] [CrossRef]
- Riechelmann, S.; Mavromatis, V.; Buhl, D.; Dietzel, M.; Immenhauser, A. Controls on formation and alteration of early diagenetic dolomite: A multi-proxy δ44/40Ca, δ26Mg, δ18O and δ13C approach. Geochim. Cosmochim. Acta 2020, 283, 167–183. [Google Scholar] [CrossRef]
- Lukoczki, G.; Haas, J.; Gregg, J.M.; Machel, H.G.; Kele, S.; John, C.M. Multi-phase dolomitization and recrystallization of Middle Triassic shallow marine–peritidal carbonates from the Mecsek Mts. (SW Hungary), as inferred from petrography, carbon, oxygen, strontium and clumped isotope data. Mar. Pet. Geol. 2019, 101, 440–458. [Google Scholar] [CrossRef]
- Morad, S.; Farooq, U.; Mansurbeg, H.; Alsuwaidi, M.; Morad, D.; Al-Aasm, I.S.; Shahrokhi, S.; Hozayen, M.; Koyi, H. Variations in extent, distribution and impact of dolomitization on reservoir quality of Upper Cretaceous foreland-basin carbonates, Abu Dhabi, United Arab Emirates. Mar. Pet. Geol. 2023, 155, 106357. [Google Scholar] [CrossRef]
- Adineh, S.; Závada, P.; Mukherjee, S.; Bruthans, J.; Zare, M. Multistage dolomitization and fluid evolution of the late Ediacaran cap carbonates, Hormuz complex, Paskhand salt diapir, southern Iran: Insights into the dolomite problem. Mar. Pet. Geol. 2025, 173, 107228. [Google Scholar] [CrossRef]
- Cai, W.K.; Liu, J.H.; Zhou, C.H.; Keeling, J.; Glasmacher, U.A. Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas. Chem. Geol. 2021, 573, 120191. [Google Scholar] [CrossRef]
- Niu, Y.; Cheng, M.; Zhang, L.; Zhong, J.; Liu, S.; Wei, D.; Xu, Z.; Wang, P. Bioturbation enhanced petrophysical properties in the Ordovician carbonate reservoir of the Tahe oilfield, Tarim Basin, NW China. J. Palaeogeogr. 2022, 11, 31–51. [Google Scholar] [CrossRef]
- Peng, Y.; Li, H.; BouDagher-Fadel, M.; Wang, L.; Zhang, D.; Zheng, T.; Yang, K. Benthic foraminifera distribution and sedimentary environmental evolution of a carbonate platform: A case study of the Guadalupian (middle Permian) in eastern Sichuan Basin. Mar. Micropaleontol. 2022, 170, 102079. [Google Scholar] [CrossRef]
- James, A.; Golab, J.J.S.A. Bioturbation-influenced fluid pathways within a carbonate platform system: The Lower Cretaceous (Aptian-Albian) Glen Rose Limestone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 465, 138–155. [Google Scholar] [CrossRef]
- Saraih, N.A.; Eltom, H.A.; Goldstein, R.H.; El-Husseiny, A.; Hanafy, S.; Whattam, S.A.; Humphrey, J.; Salih, M. Controls on fracture propagation in bioturbated carbonate rocks: Insights from the Aruma formation, central Saudi Arabia. Mar. Pet. Geol. 2024, 167, 106938. [Google Scholar] [CrossRef]
- Searl, A. Saddle dolomite: A new view of its nature and origin. Miner. Mag. 1989, 53, 547–555. [Google Scholar] [CrossRef]
- Liu, X.; Zhuo, Y.; Feng, M.; Zhang, B.; Xia, M.; Wang, X. Constrains of eruption environment and hydrothermal fluid on the Permian pyroclastic reservoirs in the Sichuan Basin, SW China. Petroleum 2022, 8, 17–30. [Google Scholar] [CrossRef]
- Bellanca, A.; Claps, M.; Erba, E.; Masetti, D.; Neri, R.; Premoli Silva, I.; Venezia, F. Orbitally induced limestone/marlstone rhythms in the Albian-Cenomanian Cismon section (Venetian region, northern Italy); sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 126, 227–260. [Google Scholar] [CrossRef]
- Wang, R.; Xie, J.; Ran, A.; Wang, S.; Wang, J.; Hu, X.; Cai, W.; Zhou, Y. Comparison of INPEFA technology and wavelet transform in sequence stratigraphic division of mixed reservoir: A case study of lower Es3 of KL oilfield in Laizhouwan Sag. J. Pet. Explor. Prod. Technol. 2022, 12, 3213–3225. [Google Scholar] [CrossRef]
- Jia, X.; Alsuwaidi, M.; Morad, D.; Martín-Martín, J.D.; Wang, X.; Al Tameemi, K.; Al Muhairi, B. Linking dolomitization to sequence stratigraphy: Insights from the Upper Jurassic Arab Formation, offshore oilfield, UAE. Sediment. Geol. 2024, 474, 106772. [Google Scholar] [CrossRef]
- Ye, Y.; Li, F.; Song, X.; Guo, R. Transformation mechanism of muddy carbonate rock by the coupling of bioturbation and diagenesis: A case study of the Cretaceous of the Mesopotamia Basin in the Middle East. Pet. Explor. Dev. 2021, 48, 1367–1382. [Google Scholar] [CrossRef]
- Blinkenberg, K.H.; Rameil, N.; Hodgskiss, M.S.W.; Polonio, I.; Riber, L.; Gianotten, I.P.; Roberts, N.M.W.; Lepland, A.; Stemmerik, L. Widespread dolomite recrystallization and porosity modification of upper Permian Zechstein carbonates, Symra discovery, Utsira High, Norwegian North Sea. Mar. Pet. Geol. 2024, 170, 107064. [Google Scholar] [CrossRef]
- Davies, G.R.; Smith, L.B. Structurally controlled hydrothermal dolomite reservoir facies: An overview. Am. Assoc. Pet. Geol. Bull. 2006, 90, 1641–1690. [Google Scholar] [CrossRef]
- Feng, Q.; Qiu, N.; Fu, X.; Li, W.; Liu, X.; Ji, R. Maturity evolution of Permian source rocks in the Sichuan Basin, southwestern China: The role of the Emeishan mantle plume. J. Asian Earth Sci. 2022, 229, 105180. [Google Scholar] [CrossRef]
- Pan, L.; Hu, A.; Liang, F.; Jiang, L.; Hao, Y.; Feng, Y.; Shen, A.; Zhao, J. Diagenetic conditions and geodynamic setting of the middle Permian hydrothermal dolomites from southwest Sichuan Basin, SW China: Insights from in situ U–Pb carbonate geochronology and isotope geochemistry. Mar. Pet. Geol. 2021, 129, 105080. [Google Scholar] [CrossRef]















| Sample | Well | Type | δ13C Permil VPDB | δ18O Permil VPDB | 87Sr/86Sr | Std Err |
|---|---|---|---|---|---|---|
| FB1-1 | FB1 | Limestone | 3.67 | −5.34 | ||
| FB1-2 | FB1 | Limestone | 3.54 | −6.28 | ||
| FB1-3 | FB1 | Limestone | 4.18 | −6.97 | ||
| FB1-4 | FB1 | Limestone | 4.16 | −5.81 | 0.7074 | 6.68 × 10−6 |
| FB1-6 | FB1 | Limestone | 3.65 | −3.90 | ||
| FB1-7 | FB1 | Limestone | 3.15 | −5.89 | 0.7075 | 1.10 × 10−5 |
| FB1-9 | FB1 | Limestone | 4.08 | −3.45 | ||
| FB1-10 | FB1 | Limestone | 3.24 | −5.73 | 0.7075 | 5.43 × 10−6 |
| FB1-11 | FB1 | Limestone | 3.79 | −6.17 | ||
| FB1-12 | FB1 | Limestone | 3.80 | −6.71 | ||
| FB1-13 | FB1 | D1 | 3.39 | −6.06 | ||
| FB1-14 | FB1 | D1 | 4.21 | −5.91 | 0.7073 | 7.41 × 10−6 |
| FB1-15 | FB1 | Limestone | 4.52 | −5.67 | ||
| FB1-16 | FB1 | Limestone | 4.12 | −6.45 | ||
| FB1-17 | FB1 | Limestone | 3.58 | −5.80 | ||
| FB1-18 | FB1 | Limestone | 3.53 | −5.60 | ||
| FB1-19 | FB1 | Limestone | 4.20 | −4.47 | ||
| FB1-20 | FB1 | Limestone | 4.23 | −5.23 | 0.7073 | 6.58 × 10−6 |
| FB1-21 | FB1 | Limestone | 3.62 | −5.77 | ||
| FB1-22 | FB1 | Limestone | 4.51 | −5.13 | ||
| FB1-23 | FB1 | Limestone | 4.41 | −5.86 | ||
| FB1-24 | FB1 | Limestone | 3.67 | −4.46 | ||
| FB1-25 | FB1 | Limestone | 3.40 | −6.30 | 0.7075 | 5.94 × 10−6 |
| FB1-26 | FB1 | Limestone | 3.82 | −5.90 | ||
| FB1-28 | FB1 | Limestone | 4.52 | −5.78 | ||
| FB1-29 | FB1 | Limestone | 4.03 | −4.33 | ||
| FB1-30 | FB1 | Limestone | 4.73 | −5.88 | ||
| FB1-31-1 | FB1 | SD | 1.65 | −7.57 | ||
| MY1-17A | MY1 | D2 | 3.84 | −5.75 | 0.7074 | 1.30 × 10−5 |
| MY1-12 | MY1 | Limestone | 3.67 | −5.68 | 0.7074 | 1.10 × 10−5 |
| MY1-10 | MY1 | Limestone | 3.74 | −5.82 | 0.7073 | 1.70 × 10−5 |
| MY1-19 | MY1 | D2 | 3.27 | −6.26 | 0.7073 | 1.20 × 10−5 |
| MY1-21 | MY1 | D2 | 0.7074 | 1.60 × 10−5 | ||
| MY1-17B | MY1 | SD | 0.7082 | 1.50 × 10−5 | ||
| MY1-8 | MY1 | Limestone | 0.7073 | 1.50 × 10−5 | ||
| XJG-10 | XJG | D1 | 0.7073 | 4.66 × 10−6 | ||
| XJG-12 | XJG | Limestone | 0.7072 | 3.80 × 10−6 | ||
| XJG-4-1 | XJG | Limestone | 0.7073 | 7.65 × 10−6 | ||
| XJG-6 | XJG | Limestone | 0.7073 | 5.69 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Wang, G.; Hao, F.; Quan, L.; Zhou, L.; Kong, L.; Peng, D.; Duan, M. Dolomite Reservoir Genesis Controlled by Sedimentary Cycles: Geochemical Evidence from the Middle Permian Qixia Formation, SE Sichuan Basin. Minerals 2025, 15, 1114. https://doi.org/10.3390/min15111114
Xu R, Wang G, Hao F, Quan L, Zhou L, Kong L, Peng D, Duan M. Dolomite Reservoir Genesis Controlled by Sedimentary Cycles: Geochemical Evidence from the Middle Permian Qixia Formation, SE Sichuan Basin. Minerals. 2025; 15(11):1114. https://doi.org/10.3390/min15111114
Chicago/Turabian StyleXu, Rui, Guangwei Wang, Fang Hao, Li Quan, Ling Zhou, Lingao Kong, Dinglin Peng, and Modong Duan. 2025. "Dolomite Reservoir Genesis Controlled by Sedimentary Cycles: Geochemical Evidence from the Middle Permian Qixia Formation, SE Sichuan Basin" Minerals 15, no. 11: 1114. https://doi.org/10.3390/min15111114
APA StyleXu, R., Wang, G., Hao, F., Quan, L., Zhou, L., Kong, L., Peng, D., & Duan, M. (2025). Dolomite Reservoir Genesis Controlled by Sedimentary Cycles: Geochemical Evidence from the Middle Permian Qixia Formation, SE Sichuan Basin. Minerals, 15(11), 1114. https://doi.org/10.3390/min15111114

