Revisiting the Permian Stratigraphy of the Kuznetsk Coal Basin (Siberia, Russia) Using Radioisotopic Data: Sedimentology, Biotic Events, and Palaeoclimate
Abstract
1. Introduction
2. Geological Setting
3. Materials
4. Methods and Approaches
5. Results
5.1. Radioisotopic Dating
5.2. Coal Accumulation
5.3. Biotic Events
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gradstein, F.M.; Ogg, J.G.; Schmitz, M.D.; Ogg, G.M. Geologic Time Scale 2020; Elsevier: Amsterdam, The Netherlands, 2020; 1144p. [Google Scholar]
- Ogg, J.G.; Ogg, G.; Gradstein, F.M. A Concise Geologic Time Scale; Elsevier: Amsterdam, The Netherlands, 2016; 240p. [Google Scholar]
- Henderson, C.M.; Shen, S.Z. Chapter 24–The Permian Period. In Geologic Time Scale 2020; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 875–902. [Google Scholar]
- Lucas, S.G.; Schneider, J.W.; Cassinis, G. Non-marine Permian bios-tratigraphy and biochronology: An introduction. In Non-Marine Permian Biostratigraphy and Biochronology; Lucas, S.G., Cassinis, G., Schneider, J.W., Eds.; Geological Society of London, Special Publications: London, UK, 2006; Volume 265, pp. 1–14. [Google Scholar]
- Menning, M.; Alekseev, A.S.; Chuvashov, B.I.; Davydov, V.I.; Devuyst, F.-X.; Forke, H.C.; Grunt, T.A.; Hance, L.; Heckel, P.H.; Izokh, N.G.; et al. Global time scale and regional stratigraphic reference scales of Central and WestEurope, East Europe, Tethys, South China, and North America as used in the Devonian–Carboniferous–Permian Correlation Chart 2003 (DCP2003). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 240, 318–372. [Google Scholar] [CrossRef]
- Schneider, J.W.; Lucas, S.G.; Scholze, F.; Voigt, S.; Marchetti, L.; Klein, H.; Opluštil, S.; Werneburg, R.; Golubev, V.K.; Barrick, J.E.; et al. Late Paleozoic–early Mesozoic continental biostratigraphy–Links to the Standard Global Chronostratigraphic Scale. Palaeoworld 2020, 29, 186–238. [Google Scholar] [CrossRef]
- Krasnov, V.I. (Ed.) Decisions of the All-Union Conference on the Development of Unified Stratigraphic Schemes for the Precambrian, Paleozoic and Quaternary Systems of Central Siberia (Novosibirsk, 1979). Part 2 (Middle and Upper Paleozoic); SNIIGGiMS: Novosibirsk, Russia, 1982; 129p. (In Russian) [Google Scholar]
- Budnikov, I.V. Decision of the Meeting on the stratigraphy of the Upper Paleozoic deposits of Kuzbass. In Kuznetsk Basin–Key Region in Stratigraphy of the Angarida Upper Paleozoic; Budnikov, I.V., Ed.; YuzhSibgeolkom: Novosibirsk, Russia, 1996; Volume 2, pp. 93–94. (In Russian) [Google Scholar]
- Schmitz, M.D.; Singer, B.S.; Rooney, A.D. Radioisotope Geochronology. In Geologic Time Scale 2020; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 193–209. [Google Scholar]
- Kotlyar, G.V.; Pukhonto, S.K.; Burago, V.I. Interregional Correlation of the Permian Continental and Marine Deposits of Northeastern Russia, Southern Far East, Siberia, and Pechora Cisurals. Russ. J. Pac. Geol. 2018, 12, 1–19. [Google Scholar] [CrossRef]
- Lyons, P.C.; Krogh, T.E.; Kwok, Y.Y.; Davis, D.W.; Outerbridge, W.F.; Evans, H.T. Radiometric ages of the Fire Clay tonstein [Pennsylvanian (Upper Carboniferous), Westphalian, Duckmantian]: A comparison of U-Pb zircon single-crystal ages and 40Ar/39Ar sanidine single-crystal plateau ages. Int. J. Coal Geol. 2006, 67, 259–266. [Google Scholar] [CrossRef]
- Ducassou, C.; Mercuzot, M.; Bourquin, S.; Rossignol, C.; Pellenard, P.; Beccaletto, L.; Poujol, M.; Hallot, E.; Pierson-Wickmann, A.C.; Hue, C.; et al. Sedimentology and U-Pb dating of Carboniferous to Permian continental series of the northern Massif Central (France): Local palaeogeographic evolution and larger scale correlations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 533, 109228. [Google Scholar] [CrossRef]
- Opluštil, S.; Schmitz, M.; Cleal, C.J.; Martínek, K. A review of the Middle–Late Pennsylvanian west European regional substages and floral biozones, and their correlation to the Geological Time Scale based on new U–Pb ages. Earth-Sci. Rev. 2016, 154, 301–335. [Google Scholar] [CrossRef]
- Davydov, V.I.; Korn, D.; Schmitz, M.D. The Carboniferous period. In The Geologic Time Scale, 1st ed.; Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G., Eds.; Elsevier: Oxford, UK, 2012; pp. 603–651. [Google Scholar]
- Maravelis, A.G.; Breckenridge, J.; Ruming, K.; Holmes, E.; Amelin, Y.; Collins, W.J. Re-assessing the upper Permian stratigraphic succession of the northern Sydney basin, Australia, by ca-idtims. Geosciences 2020, 10, 474. [Google Scholar] [CrossRef]
- Sobczak, K.; Cooling, J.; Crossingham, T.; Holl, H.G.; Reilly, M.; Esterle, J.; Crowley, J.L.; Hannaford, C.; Mohr, M.T.; Hamerli, Z.; et al. Palynostratigraphy and Bayesian age stratigraphic model of new CA-ID-TIMS zircon ages from the Walloon Coal Measures, Surat Basin, Australia. Gondwana Res. 2024, 132, 150–167. [Google Scholar] [CrossRef]
- Cagliari, J.; Schmitz, M.D.; Tedesco, J.; Trentin, F.A.; Lavina, E.L.C. High-precision U-Pb geochronology and Bayesian age-depth modelling of the glacial-postglacial transition of the southern Paraná Basin: Detailing the terminal phase of the Late Paleozoic Ice Age on Gondwana. Sediment. Geol. 2023, 451, 106397. [Google Scholar] [CrossRef]
- Jurigan, I.; Ricardi-Branco, F.; Neregato, R.; dos Santos, T.J.S. A new tonstein occurrence in the eastern Paraná Basin associated with the Figueira coalfield (Paraná, Brazil): Palynostratigraphy and U-Pb radiometric dating integration. J. S. Am. Earth Sci. 2019, 96, 102377. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, T.; Liang, F.; Liu, F.; Sun, G. New zircon U–Pb age of the Didao Formation in Jixi Basin and its significance for the geology and paleogeography in Jixi and eastern Heilongjiang region in the Early Cretaceous. Cretac. Res. 2022, 135, 105169. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, D.; Hower, J.C.; Wang, L.; Shen, Y.; Zhang, A.; Xu, J.; Gao, J. Geochronology, mineralogy, and geochemistry of tonsteins from the Pennsylvanian Taiyuan Formation of the Jungar Coalfield, Ordos Basin, North China. Int. J. Coal Geol. 2023, 267, 104183. [Google Scholar] [CrossRef]
- Davydov, V.I.; Karasev, E.V.; Nurgalieva, N.G.; Schmitz, M.D.; Budnikov, I.V.; Biakov, A.S.; Kuzina, D.M.; Silantiev, V.V.; Urazaeva, M.N.; Zharinova, V.V.; et al. Climate and biotic evolution during the Permian-Triassic transition in the temperate Northern Hemisphere, Kuznetsk Basin, Siberia, Russia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 573, 110432. [Google Scholar] [CrossRef]
- Silantiev, V.V.; Gutak, Y.M.; Tichomirowa, M.; Kulikova, A.V.; Felker, A.S.; Urazaeva, M.N.; Porokhovnichenko, L.G.; Karasev, E.V.; Bakaev, A.S.; Zharinova, V.V.; et al. First radiometric dating of tonsteins from coal-bearing succession of the Kuznetsk Basin: U-Pb geochronology of the Tailugan Formation. Georesur. Georesour. 2023, 25, 203–227. [Google Scholar] [CrossRef]
- Silantiev, V.V.; Gutak, Y.M.; Tichomirowa, M.; Käßner, A.; Kutygin, R.V.; Porokhovnichenko, L.G.; Karasev, E.V.; Felker, A.S.; Bakaev, A.S.; Naumcheva, M.A.; et al. U-Pb Dating of the Kolchugino Group Basement (Kuznetsk Coal Basin, Siberia): Was the Change in Early–Middle Permian Floras Simultaneous at Different Latitudes in Angaraland? Geosciences 2024, 14, 21. [Google Scholar] [CrossRef]
- Meyen, S.V. The Carboniferous and Permian floras of Angaraland: (a synthesis). Biol. Mem. 1982, 7, 1–109. [Google Scholar]
- Meyen, S.V.; Afanasieva, G.A.; Betekhtina, O.A.; Durante, M.V.; Ganelin, V.G.; Gorelova, S.G.; Graizer, M.I.; Kotlyar, G.V.; Maximova, S.V.; Tschernjak, G.E.; et al. Angara and surrounding marine basins. In The Carboniferous of the World. III. The Former USSR, Mongolia, Middle Eastern Platform, Afganistan & Iran; Diaz, C.M., Wagner, R.H., Winkler Prins, C.F., Granados, L.F., Eds.; Instituto Geológico y Minero de España: Madrid, Spain, 1996; pp. 180–237. [Google Scholar]
- Oshurkova, M.V. Paleoecological parallelism between the Angaran and Euramerican phytogeographic provinces. Rev. Palaeobot. Palynol. 1996, 90, 99–111. [Google Scholar] [CrossRef]
- Silantiev, V.V. Permian Nonmarine Bivalve Mollusks: Review of Geographical and Stratigraphic Distribution. Paleontol. J. 2018, 52, 707–729. [Google Scholar] [CrossRef]
- Budnikov, I.V.; Kutygin, R.V.; Shi, G.R.; Sivtchikov, V.E.; Krivenko, O.V. Permian stratigraphy and paleogeography of Central Siberia (Angaraland)–A review. J. Asian Earth Sci. 2020, 196, 104365. [Google Scholar] [CrossRef]
- Betekhtina, O.A.; Gorelova, S.G.; Dryagina, L.L.; Danilov, V.I.; Batyaeva, S.P.; Tokareva, P.A. Upper Paleozoic of Angarida; Zhuravleva, I.T., Ilyina, V.I., Eds.; Nauka: Novosibirsk, Russia, 1988; 265p. (In Russian) [Google Scholar]
- Budnikov, I.V. Kuznetsk Basin–Key Region in Stratigraphy of the Angarida Upper Paleozoic; YuzhSibgeolkom: Novosibirsk, Russia, 1996; Volume 1, pp. 1–122, Volume 2, pp. 1–109. (In Russian) [Google Scholar]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.X. The ICS International Chronostratigraphic Chart (updated, version 2024/12). Int. Union Geol. Sci. 2013, 36, 199–204. [Google Scholar] [CrossRef]
- Zhamoida, A.I. Stratigraphic Guide of Russia, 3rd ed.; Corrected and Supplemented; VSEGEI: St. Petersburg, Russia, 2019; 96p. (In Russian) [Google Scholar]
- Kotlyar, G.V.; Golubev, V.K.; Silantiev, V.V. General stratigraphic scale of the Permian system: Current state of affairs. In General Stratigraphic Scale of Russia: Current State and Ways of Perfection, Proceedings of the All-Russian meeting, Institute of RAS, Moscow, Russsia, 23–25 May 2013; GIN RAS: Moscow, Russia, 2013; pp. 187–195. [Google Scholar]
- Vakhrameev, V.A.; Dobruskina, I.A.; Zaklinskaya, E.D.; Meyen, S.V. Paleozoic and Mesozoic Floras of Eurasia and Phytogeography of This Time; In Proceedings GIN; Nauka: Moscow, Russia, 1970; 431p. (In Russian) [Google Scholar]
- Meyen, S.V. Carboniferous and Permian floras of the Angarides (review). In Theoretical Problems of Paleobotany; Meyen, S.V., Ed.; Nauka: Moscow, Russia, 1990; pp. 131–223. [Google Scholar]
- Amler, M.R.W.; Silantiev, V.V. A global review of Carboniferous marine and non-marine bivalve biostratigraphy. Geol. Soc. Lond. Spec. Publ. 2021, 512, 893–932. [Google Scholar] [CrossRef]
- Buslov, M.M.; Watanabe, T.; Fujiwara, Y.; Iwata, K.; Smirnova, L.V.; Safonova, I.Y.; Semakova, N.N.; Kiryanova, A.P. Late Paleozoic faults of the Altai region, Central Asia: Tectonic pattern and model of formation. J. Asian Earth Sci. 2004, 23, 655–671. [Google Scholar] [CrossRef]
- Buslov, M.M. Tectonics and geodynamics of the Central Asian Foldbelt: The role of Late Paleozoic large-amplitude strike-slip faults. Russ. Geol. Geophys. 2011, 52, 52–71. [Google Scholar] [CrossRef]
- Gutak, Y.M. Development of Structure of the West Part of the Altay-Sayan Orogen (the Mesozoic Stage). Geosfernye Issled. Geosph. Res. 2021, 1, 123–129. (In Russian) [Google Scholar] [CrossRef]
- Yuzvitsky, A.Z. Kuznetsk Coal Basin. In Coal Basins and Deposits of Western Siberia (Kuznetsk, Gorlovsky, Zapadno-Sibirsky Basins, Deposits of the Altai Territory and the Republic of Altai); Geoinformtsentr: Moscow, Russia, 2003; Volume 2, pp. 7–46. (In Russian) [Google Scholar]
- Parfenov, L.M.; Khanchuk, A.I.; Badarch, G.; Miller, R.J.; Naumova, V.V.; Nokleberg, W.J.; Ogasawara, M.; Prokopiev, V.; Yan, H. Geodynamics Map of Northeast Asia; Scientific Investigations Map 3024, Scale 1:5,000,000, 2 Sheets, US; Geological Survey: Reston, VA, USA, 2013. [Google Scholar]
- Petrov, O.V.; Leonov, Y.G.; Tingdong, L.; Tomurtogoo, O. Tectonic Map of Northern-Central-Eastern Asia and Adjacent Areas, Scale 1:2,500,000. In Atlas of Geological Maps of Northern-Central-Eastern Asia and Adjacent Areas; VSEGEI Publishing House: St. Petersburg, Russia. 2014. Available online: https://karpinskyinstitute.ru/ru/info/inter-proj/tect-asia2500/ (accessed on 20 April 2025).
- Petrov, O.V.; Khanchuk, A.I.; Shokalsky, S.P.; Babin, G.A.; Pospelov, I.I. Principles of tectonic mapping of Asia and the Arctic, scales 1:2,500,000–1:5,000,000. Geodyn. Tectonophys. 2021, 12, 173–198. [Google Scholar] [CrossRef]
- Van, A.V. The role of pyroclastic material in coal-bearing deposits of the Kuznetsk basin. Sov. Geol. 1968, 4, 129–138. (In Russian) [Google Scholar]
- Van, A.V.; Kazanskiy, Y.P. Volcanic Material in Sediments and Sedimentary Rocks; Nauka: Novosibirsk, Russia, 1985; 128p. (In Russian) [Google Scholar]
- Chernovyants, M.G. Tonsteins and Their Use in the Study of Coalbearing Formations; Nedra: Moscow, Russia, 1992; 144p. (In Russian) [Google Scholar]
- Kazanskiy, Y.P.; Van, A.V. Using of tephrochronology for subdivision and correlation of Upper Paleozoic deposits of Kuzbass. In Kuznetsk Basin–Key Region in Stratigraphy of the Angarida Upper Paleozoic; Budnikov, I.V., Ed.; YuzhSibgeolkom: Novosibirsk, Russia, 1996; Volume 2, pp. 31–37. (In Russian) [Google Scholar]
- Arbuzov, S.I.; Spears, D.A.; Vergunov, A.V.; Ilenok, S.S.; Mezhibor, A.M.; Ivanov, V.P.; Zarubina, N.A. Geochemistry, mineralogy and genesis of rare metal (Nb-Ta-Zr-Hf-Y-REE-Ga) coals of the seam XI in the south of Kuznetsk Basin, Russia. Ore Geol. Rev. 2019, 113, 103073. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Vergunov, A.V. Volcanogenic Pyroclastics as a Factor in the Formation of Nb(Ta)-Zr(Hf)-REE-Ga Mineralisation in Coals (the Case of Siberia). In Large Igneous Provinces Through Earth History: Mantle Plumes, Supercontinents, Climate Change, Metallogeny and Oil-Gas, Planetary Analogues, Abstract Volume of the 7th International Conference; CSTI Publishing House: Tomsk, Russia, 2019; pp. 177–178. Available online: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000668647 (accessed on 6 May 2025). (In Russian)
- Bakaev, A.S. Revision of Permian Ray-Finned Fishes from the Kazankovo-Markino Formation of the Kuznetsk Basin. Paleontol. J. 2023, 57, 335–342. [Google Scholar] [CrossRef]
- Kotelnikov, A.D.; Maksikov, S.V.; Kotelnikova, I.V.; Makarenko, N.A.; Subbotin, K.S. Legend of the Kuzbass Series of the State Geological Map of the Russian Federation, Scale 1:200,000, 2nd ed.; Novokuznetsk: Zapsibgeols’emka, Russia, 1999. (In Russian) [Google Scholar]
- Babin, G.A. State Geological Map of the Russian Federation, Scale 1:1,000,000; Third Generation; Altai-Sayan Series, Sheet N-45–Novokuznetsk, Explanatory Note; VSEGEI: Saint Petersburg, Russia, 2007; 665p. (In Russian) [Google Scholar]
- Yarkova, N.M.; Shestakova, O.E. Stratigraphy of the Carboniferous–Permian succession of the Kuznetsk Basin. In Modern Problems in Mining and Methods for Modeling Mining and Geological Conditions in the Development of Mineral Deposits; Kuzbass State Technical University: Kemerovo, Russia, 2015; pp. 1–5. (In Russian) [Google Scholar]
- Gorelova, S.G.; Budnikov, I.V. Main stages of studying the stratigraphy of the Upper Palaeozoic of Kuzbass. In Kuznetsk Basin–Key Region in Stratigraphy of the Angarida Upper Paleozoic; Budnikov, I.V., Ed.; YuzhSibgeolkom: Novosibirsk, Russia, 1996; Volume 1, pp. 7–12. (In Russian) [Google Scholar]
- Sivtchikov, V.E.; Donova, N.B. Stratigraphic subdivision of the Upper Palaeozoic deposits of the South Minusinsk Depression. Lethaea Ross. Russ. Palaeobot. J. 2016, 13, 1–46. [Google Scholar]
- Silantiev, V.V.; Arbuzov, S.I.; Tichomirowa, M.; Käßner, A.; Izmailova, A.K.; Ilenok, S.S.; Soktoev, B.R.; Nurgalieva, N.G.; Gutak, Y.M.; Felker, A.S.; et al. First U-Pb (CA-ID-TIMS) Dating of the Uppermost Permian Coal Interval in the Minusinsk Coal Basin (Siberia, Russia) Using Zircon Grains from Volcanic Ashfalls. Minerals 2024, 14, 982. [Google Scholar] [CrossRef]
- Silantiev, V.V.; Validov, M.F.; Miftakhutdinova, D.N.; Nourgalieva, N.G.; Korolev, E.A.; Ganiev, B.G.; Lutfullin, A.A.; Shumatbaev, K.D.; Khabipov, P.M.; Sudakov, V.A.; et al. Visean terrigenous sediments of the South Tatar Arch–multifacial filling of the karst surface of the Tournaisian carbonate platform. Georesur. Georesour. 2023, 25, 3–28. (In Russian) [Google Scholar] [CrossRef]
- Ayaz, S.A.; Martin, M.; Esterle, J.; Amelin, Y.; Nicoll, R.S. Age of the Yarrabee and accessory tuffs: Implications for the upper Permian sediment-accumulation rates across the Bowen Basin. Aust. J. Earth Sci. 2016, 63, 843–856. [Google Scholar] [CrossRef]
- Karpenko, L.V.; Prokushkin, A.S. Genesis and history of the postglacial evolution of forest bog in the valley of the Dubches River. Sib. J. For. Sci. 2018, 5, 33–44. (In Russian) [Google Scholar]
- Volkova, E.M.; Pel’gunova, L.A.; Kochkina, A.V. The dynamic of development of mires in karst depressions and accumulation of chemical elements in peat deposits. Izv. Tul’skogo Gos. Universiteta. Estestv. Nauk. 2014, 4, 158–173. (In Russian) [Google Scholar]
- Bakhnov, V.K. Biogeochemical Aspects of the Mire-Forming Process; Nauka: Novosibirsk, Russia, 1986; 192p. [Google Scholar]
- Kukal, Z. Geology of Recent Sediments; Academic Press: London, UK, 1971; 490p. [Google Scholar]
- Skursky, M.D. On the material composition of coals. J. Min. Geotech. Eng. 2022, 1, 31–82. [Google Scholar] [CrossRef]
- Sun, Y.-Z. Review and update on the applications of inertinite macerals in coal geology, paleoclimatology, and paleoecology. Palaeoworld 2024, 33, 1449–1463. [Google Scholar] [CrossRef]
- Schoene, B.; Crowley, J.L.; Condon, D.C.; Schmitz, M.D.; Bowring, S.A. Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochim. Cosmochim. Acta 2006, 70, 426–445. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Schaltegger, U.; Ovtcharova, M.; Gaynor, S.; Schoene, B.; Wotzlaw, J.-F.; Davies, J.; Farina, F.; Greber, N.D.; Szymanowski, D.; Chelle-Michou, C. Long-term repeatability and interlaboratory reproducibility of high-precision ID-TIMS U-Pb geochronology. J. Anal. At. Spectrom. 2021, 36, 1466–1477. [Google Scholar] [CrossRef]
- Pakh, E.M.; Artser, A.S. Petrographic composition of coals. In Coal Basins and Deposits of Western Siberia (Kuznetsk, Gorlovsky, Zapadno-Sibirsky Basins, Deposits of the Altai Territory and the Republic of Altai); Geoinformtsentr: Moscow, Russia, 2003; Volume 2, pp. 46–51. (In Russian) [Google Scholar]
- Betekhtina, O.A.; Batyayeva, S.K.; Dryagina, L.L.; Gorelova, S.G. Biochronological scale of the Upper Paleozoic of the Angarida In Stratigraphy and Lithofacies Analysis of the Upper Paleozoic of Siberia; Nauka: Novosibirsk, Russia, 1991; pp. 14–23. (In Russian) [Google Scholar]
- Polukonova, N.A. Geological and economic districts: Tom-Usinsk region. In Coal Basins and Deposits of Western Siberia (Kuznetsk, Gorlovsky, Zapadno-Sibirsky Basins, Deposits of the Altai Territory and the Republic of Altai); Geoinformtsentr: Moscow, Russia, 2003; Volume 2, pp. 433–452. (In Russian) [Google Scholar]
- Papin, A.A.; Lezhnin, Y.A. Marker Horizons of the Carboniferous–Permian of the Kuznetsk Basin. In Kuznetsk Basin–Key Region in Stratigraphy of the Angarida Upper Paleozoic; Budnikov, I.V., Ed.; YuzhSibgeolkom: Novosibirsk, Russia, 1996; Volume 2, pp. 42–49. (In Russian) [Google Scholar]
- Davies, C.; Allen, M.B.; Buslov, M.M.; Safonova, I. Deposition in the Kuznetsk Basin, Siberia: Insights into the Permian-Triassic transition and the Mesozoic evolution of Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 295, 307–322. [Google Scholar] [CrossRef]
- Buslov, M.M.; Safonova, I.Y.; Fedoseev, G.S.; Reichow, M.K.; Davies, K.; Babin, G.A. Permo-Triassic plume magmatism of the Kuznetsk Basin, Central Asia: Geology, geochronology, and geochemistry. Russ. Geol. Geophys. 2010, 51, 1021–1036. [Google Scholar] [CrossRef]
- Svetlitskaya, T.V.; Nevolko, P.A. Late Permian–Early Triassic traps of the Kuznetsk Basin, Russia: Geochemistry and petrogenesis in respect to an extension of the Siberian Large Igneous Province. Gondwana Res. 2016, 39, 57–76. [Google Scholar] [CrossRef]
- Reichow, M.K.; Pringle, M.S.; Al’Mukhamedov, A.I.; Allen, M.B.; Andreichev, V.L.; Buslov, M.M.; Davies, C.E.; Fedoseev, G.S.; Fitton, J.G.; Inger, S.; et al. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet Sci. Lett. 2009, 277, 9–20. [Google Scholar] [CrossRef]
- Sadovnikov, G.N. Evolution of the Biome of the Middle Siberian Trappean Plateau. Paleontol. J. 2016, 50, 518–532. [Google Scholar] [CrossRef]
- Montañez, I.P. Current synthesis of the penultimate icehouse and its imprint on the Upper Devonian through Permian stratigraphic record. Geol. Soc. Spec. Publ. 2022, 512, 213–245. [Google Scholar] [CrossRef]
- Schneider, J.W.; Werneburg, R.; Voigt, S.; Rößler, R. Karbon und Perm im Thüringer-Wald-Becken–ein euramerisches Referenzprofil für regionale und globale Prozesse. In Rotliegend-Fauna des Thüringer Waldes; Werneburg, R., Schneider, J.W., Eds.; Naturhistorisches Museum Schloss Bertholdsburg; Semana: Schleusingen, Germany, Special Publication; 2024; Volume 19, pp. 257–268. (In German) [Google Scholar]
- Travin, A.B.; Senderzon, E.M.; Shorin, V.P.; Gromova, T.A.; Ivankova, E.E.; Permitina, K.S.; Popova, M.E.; Shugurov, V.F.; Yusupov, T.S. Atlas of Coals of the Kuznetsk Basin; Nauka, Siberian Publishing House: Novosibirsk, Russia, 1966; 367p. [Google Scholar]
- Lepekhina, V.G. Paleoxylological Characterization of the Upper Palaeozoic Coalbearing Deposits of the Kuznetsk Basin; Transactions of VSEGEI: Moscow, Russia, 1969; Volume 130, pp. 126–153. (In Russian) [Google Scholar]
- Rodendorf, B.B.; Becker-Migdisova, E.E.; Martynova, O.M.; Sharov, A.G. Paleozoic Insects of the Kuznetsk Basin; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1961; 746p. [Google Scholar]
- Wright, I.J.; Dong, N.; Maire, V.; Prentice, I.C.; Westoby, M.; Díaz, S.; Gallagher, R.V.; Jacobs, B.F.; Kooyman, R.; Law, E.A.; et al. Global climatic drivers of leaf size. Science 2017, 357, 917–921. [Google Scholar] [CrossRef]
- Sun, Y.-Z.; Püttmann, W.; Kalkreuth, W.; Horsfield, B. Petrologic and geochemical characteristics of Seam 9–3 and Seam 2, Xingtai Coalfield, Northern China. Int. J. Coal Geol. 2002, 49, 251–262. [Google Scholar] [CrossRef]
- Durante, M.V. Reconstruction of Late Paleozoic climatic changes in Angaraland according to phytogeographic data. Stratigr. Geol. Correl. 1995, 3, 123–133. (In Russian) [Google Scholar]
- Shcherbakov, D.E. Permian Faunas of Homoptera (Hemiptera) in Relation to Phytogeography and the Permo-Triassic Crisis. Paleontol. J. 2000, 34, 251–267. [Google Scholar]
- Shcherbakov, D.E. A peculiar new genus of Scytinopteridae (Hemiptera, Cicadomorpha) from the Permian-Triassic boundary beds of Mongolia. Palaeoentomology 2022, 5, 218–221. [Google Scholar] [CrossRef]
- Ponomarenko, A.G. Beetles (Insecta, Coleoptera) of the late Permian and early Triassic. Paleontol. J. 2004, 38, 185–196. [Google Scholar]
- Glukhova, L.V.; Menshikova, L.V. Microstructure of cordaites from the Upper Permian deposits of the Kuznetsk basin. Paleontol. J. 1980, 3, 107–117. [Google Scholar]
- Zalessky, M.D.; Tchirkova, E.F. Sur la constitution de la substance mère des charbons du bassin de Kuznetzk. Bull. Acad. Sci. URSS 1931, 2, 269–276. (In French) [Google Scholar]
- Krassilov, V.A. Terrestrial Palaeoecology and Global Change; Pensoft: Sophia, Bulgaria, 2003; 464p. [Google Scholar]
- Hudspith, V.; Scott, A.C.; Collinson, M.E.; Pronina, N.; Beeley, T. Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: An example from the Late Permian, Kuznetsk Basin, Russia. Int. J. Coal Geol. 2012, 89, 13–25. [Google Scholar] [CrossRef]
- Mogutcheva, N.K. The change of the flora at the Permian-Triassic boundary in Angarida. In Upper Paleozoic and Triassic of Siberia; Dagys, A.S., Dubatolov, V., Eds.; Novosibirsk: Nauka, Russia, 1989; pp. 4–12. (In Russian) [Google Scholar]
- Bakaev, A.S. Actinopterygians from the continental Permian–Triassic boundary section at Babiy Kamen (Kuznetsk Basin, Siberia, Russia). Palaeoworld 2025, 34, 100861. [Google Scholar] [CrossRef]
- Iannuzzi, R. The flora of Early Permian coal measures from the Paraná Basin in Brazil: A review. Int. J. Coal Geol. 2010, 83, 229–247. [Google Scholar] [CrossRef]
- Cairncross, B. An overview of the Permian coal deposits of southern Africa. J. Afr. Earth Sci. 2001, 33, 529–562. [Google Scholar] [CrossRef]
- Maravelis, A.G.; Perleros, K.; Papandropoulou, E.; Chamilaki, E.; Pasadakis, N.; Kalaitzidis, S.; Zelilidis, A. Petrographic and geochemical signatures of the Upper Permian Gondwana coals: Newcastle Coal Measures, Northern Sydney Basin, Australia. Int. J. Coal Geol. 2024, 295, 104628. [Google Scholar] [CrossRef]
- Mattinson, J.M. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 2005, 220, 47–66. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Käßner, A.; Sperner, B.; Lapp, M.; Leonhardt, D.; Linnemann, U.; Münker, C.; Ovtcharova, M.; Pfänder, J.A.; Schaltegger, U.; et al. Dating multiply overprinted granites: The effect of protracted magmatism and fluid flow on dating systems (zircon U-Pb: SHRIMP/SIMS, LA-ICP-MS, CA-ID-TIMS; and Rb–Sr, Ar–Ar) – Granites from the Western Erzgebirge (Bohemian Massif, Germany). Chem. Geol. 2019, 519, 11–38. [Google Scholar] [CrossRef]
- Condon, D.J.; Schoene, B.; McLean, N.M.; Bowring, S.A.; Parrish, R.R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 2015, 164, 464–480. [Google Scholar] [CrossRef]
- Gerstenberger, H.; Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 1997, 136, 309–312. [Google Scholar] [CrossRef]
- Hiess, J.; Condon, D.J.; McLean, N.; Noble, S.R. 238U/235U systematics in terrestrial uranium bearing minerals. Science 2012, 335, 1610–1614. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.; Woodhead, J.; Hellstrom, J.; Hergt, J.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust down-hole fractionation correction. Geochem. Geophys. 2010, 11, Q0AA06. [Google Scholar]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Slama, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Ludwing, K. User’s Manual for Isoplot 3.00. In A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 4, pp. 1–70. [Google Scholar]
- Gehrels, G. Detrital zircon U/Pb geochronology: Current methods and new opportunities. In Tectonics of Sedimentary Basins; Basby, C., Azor, A., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012; pp. 47–62. [Google Scholar]
- Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.C.; Essling, A.M. Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Phys. Rev. C 1971, 4, 1889–1906. [Google Scholar] [CrossRef]
Stratigraphic Interval | Sedimentary and Biotic Features | Interpretation of Setting | Climate Interpretation | Landscape and Sedimentary Environments |
---|---|---|---|---|
Late Permian, Wuchiapingian– Changhsingian coal-bearing succession (Gramoteino and Tailugan Fms) | Sedimentary: – Coal accumulation: 30–40 seams, 80–100 m total thickness; – Elevated content (25– 30 wt%) of depleting microcomponents, including fusinite, in coal. Biotic: – DOM: ‘sulcial’ cordaitoids with thin furrows along the veins on the upper side of the leaf and numerous false veins, as well as Mesozoic-type pteridosperms; – Monogeneric assemblages of non-marine bivalves; – Peak diversity of fish and insects in the later half of the phase; – Notable decline in xylophagous Coleoptera; – Extinction of cordaitoids, other Permian plants, ostracods, non-marine bivalves, and fishes at the end of the phase. | – Local but intense peat accumulation in stable ecological niches – High wildfire frequency – Frequent seasonal drought – Ecological instability and stress, leading to biocoenotic simplification – Temporary improvement of conditions in freshwater ecosystems – Catastrophic change in terrestrial and aquatic environments | Humid Intercalated wet and dry seasons Dryness Seasonality Global hot house at the end of phase | Dry uplands: – reduced vegetation cover; – simplified plant communities; – dominance of ‘sulcial’ cordaitoids and Mesozoic-type pteridosperms; – pronounced dryness; – frequent wildfires. Transitional zone: – open woodlands and shrublands; – flammable biomass actively transported into peatlands; – widespread wildfires; – peak insect diversity prior to the end-Permian crisis, with diminishing distinctions between regional entomofaunas. Peatlands: – localised but stable peat accumulation; – frequent wildfires, with potential gaps in peat accumulation and erosion; – proximity of forest vegetation to peatlands. Freshwater systems (lakes and channels): – monogeneric non-marine bivalve assemblages indicate ecological degradation of aquatic systems; – peak fish diversity in the latter part of the phase suggests temporary environmental stabilisation prior to extinction events; – the phase concludes with the extinction of Permian plants, invertebrates, and fishes. Fluvial systems: accumulation of clastic sediments; widespread erosion. |
Middle Permian, Wordian–Capitanian coal-bearing succession (Leninsk Fm) | Sedimentary: – Coal accumulation represented by ~20 seams, with a total thickness of 35–50 m; – Low content (<10 wt%) of depleting microcomponents (including fusinite) in most of the interval; – Sharp increase in fusinite content to 25–30 wt% near the top of the section. Biotic: – LAD: Rufloria; – presence of distinct growth rings in fossil wood; – Im: fish from Euramerica; – FAD: new fish genera. | – Fragmented and unstable peatlands – Relatively high humidity for most of the phase – Intensifying dryness and more frequent wildfires towards the end of the stage. | Humid Humid Episodic dry phases Declining humidity and increasing dryness Seasonality Intermittent wet phases, floods, and ephemeral water bodies | Dry uplands: – sparse vegetation dominated by xerophytic forms (cordaitoids, callipterids); – trees with well-defined growth rings. Transitional zone: – open shrublands and woodlands; – partial preservation of woody vegetation. Peatlands: – locally developed; – unstable peat accumulation; – probable periodic drying; – wildfires rare in the early phase, becoming more frequent toward the end. Freshwater systems (lakes and channels): – likely increased seasonal water-level fluctuations; – episodic hydrological connections between neighbouring biogeographical provinces. Fluvial systems: accumulation of clastic sediments; widespread erosion. |
Middle Permian, Roadian coal-bearing succession (Kazankova-Markina and Uskat Fms) | Sedimentary: – Coal accumulation: 95–145 seams; total thickness 35–120 m; – Low content (<10 wt%) of depleting microcomponents, including fusinite, in coal. Biotic: – FOD of the subgenus Rufloria; DOM of Tungussocarpus; – Small-leaved and ‘sulcial’ cordaitoids; callipterids (Callipteris); – Presence of distinct growth rings in fossil wood; – FOD of Permochoristidae (Mecoptera); – LOD of Palaeoptera (except Odonata), Archescytinidae; – Decline in Homoptera abundance; dominance of Prosbolidae among Homoptera; – Development of coarse elytral sculpture and thickening in Coleoptera (DOM: Schizocoleidae; Rhombocoleidae); – DOM: ostracods and non-marine bivalves that had previously migrated into the basin; – D: freshwater fishes. | Vigorous plant growth; peatlands with anaerobic conditions favourable for peat accumulation; Rare and/or low-intensity wildfires; Absence of forest vegetation in proximity to peatlands; Peat-forming and wetland ecosystems; Dry episodes; Mosaic of peatlands interspersed with open woodlands or/and shrublands; Seasonal variation in temperature and humidity; Seasonal conditions with stable biotic communities; Stable freshwater environments; High resilience of aquatic ecosystems. | Humid Humid Seasonal, short dry episodes Seasonality Stability | Dry uplands: – small-leaved, ‘sulcial’ cordaitoids and callipterids adapted to drought; – colonisation by drought-tolerant insect groups; – strongly seasonal climate; – infrequent wildfires. Transitional zone: – lowland areas with open woodlands or/and shrublands; – patchy vegetation cover; – low woody productivity; – abundance of Mecoptera (Permochoristidae), dominance of Prosbolidae and schizophoroid beetles. Peatlands: – active peat accumulation; – peat-forming vegetation; – stable humidity, absence of wildfires; – resilient ecosystem, sensitive to climatic seasonality. Freshwater systems (lakes and channels): – stable hydrological regime with seasonal fluctuations. Fluvial systems (perennial and intermittent): accumulation of clastic sediments; widespread erosion. |
Early Permian, Late Kungurian coal-free succession (Starokuznetsk and Mitina Fms) | Sedimentary: – Coal accumulation virtually absent or removed by erosion. | Peat failed to accumulate or was eroded by seasonal floods. | Water balance disturbance; unstable moisture | Dry uplands: – xerophytic callipterids with narrow, folded leaves; narrowing of sphenopsid stems; – moisture deficit and unstable hydrological conditions. Open lowland landscapes: – sparse woodland, shrub vegetation, mosaic plant communities; –dominance of Homoptera (indicative of seasonal biocenoses); insects active during short wet intervals. Swampy areas and ephemeral channels: – minimal peat accumulation; – frequent erosion and reworking of sediments; – predominantly clastic deposition; – seasonal flooding and ephemeral water bodies; Freshwater systems (lakes and channels): – immigration of freshwater invertebrates from other palaeobiogeographic provinces; – temporarily stable aquatic environments. Fluvial systems: accumulation of clastic sediments; widespread erosion. |
Biotic: – FAD: xerophytic callipterids; – LOD: Blattodea; – Dom: Hemiptera: Homoptera; Mecoptera, and Grylloblattodea; – Im: ostracods from Kazakhstan; – Im: bivalves from Euramerica; – Im: Coleoptera from Euramerica; – FAD: new fish genera. | Plants adapted to drought and intense solar radiation. Loss of humid, shaded forest biotopes; disappearance of forest ecosystems Insects associated with seasonally active plant communities. Emergence of temporary hydrological routes between biogeographical provinces. Transformation of ecosystems and changes in freshwater environments. | Progressive dryness; rising temperatures; decreasing precipitation Intensification of dryness Seasonal climate with a short wet period Intermittent wetting; flood events; ephemeral water bodies Temporary and permanent well-aerated water bodies | ||
Early Permian, Asselian, Sakmarian, and early Kungurian coal-bearing succession (Promezhutochnaya (Transitional), Ishanova, and Kemerovo Fms) | Sedimentary: – Coal accumulation: 20–40 seams with a total thickness of 55–65 m; | Active vegetation growth; extensive peat-forming wetlands under persistently anaerobic conditions | Humid and stable regime | Wet lowland forested plains: – presence of giant trees (lacking growth rings); – high biomass productivity; – development of forest litter supporting Blattodea dominance. Transitional zone: – forests adjoin peatlands; – accumulation of woody debris as habitat for cockroaches and a potential source of combustible material during wildfires. Peatlands: – persistently wet, anoxic conditions; – occurrence of charred plant remains and fusinite, indicating recurrent wildfire activity. Freshwater systems (lakes and channels): – habitats for non-marine bivalves and fish; – stable water levels, not prone to desiccation; – proximity to wetlands, with potential input of carbonaceous material to peatlands Fluvial systems: accumulation of clastic sediments; widespread erosion. |
– High content of depleting microcomponents (ΣDm <30–70 wt%), including fusinite. | Periodic droughts triggering wildfire events Presence of forested vegetation in proximity to peatlands | Short dry episodes | ||
Biotic: – Plant gigantism; – Absence of growth rings in fossil wood; – Gigantism: non-marine bivalves; – Dom: Blattodea. | Absence of climatic stressors (e.g., frost, drought) Continuous, non-seasonal plant growth throughout the year Well-developed freshwater ecosystems with stable water supply | Warm, humid, and stable Little or no evidence of seasonality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silantiev, V.V.; Gutak, Y.M.; Tichomirowa, M.; Käßner, A.; Kulikova, A.V.; Arbuzov, S.I.; Nourgalieva, N.G.; Karasev, E.V.; Felker, A.S.; Naumcheva, M.A.; et al. Revisiting the Permian Stratigraphy of the Kuznetsk Coal Basin (Siberia, Russia) Using Radioisotopic Data: Sedimentology, Biotic Events, and Palaeoclimate. Minerals 2025, 15, 643. https://doi.org/10.3390/min15060643
Silantiev VV, Gutak YM, Tichomirowa M, Käßner A, Kulikova AV, Arbuzov SI, Nourgalieva NG, Karasev EV, Felker AS, Naumcheva MA, et al. Revisiting the Permian Stratigraphy of the Kuznetsk Coal Basin (Siberia, Russia) Using Radioisotopic Data: Sedimentology, Biotic Events, and Palaeoclimate. Minerals. 2025; 15(6):643. https://doi.org/10.3390/min15060643
Chicago/Turabian StyleSilantiev, Vladimir V., Yaroslav M. Gutak, Marion Tichomirowa, Alexandra Käßner, Anna V. Kulikova, Sergey I. Arbuzov, Nouria G. Nourgalieva, Eugeny V. Karasev, Anastasia S. Felker, Maria A. Naumcheva, and et al. 2025. "Revisiting the Permian Stratigraphy of the Kuznetsk Coal Basin (Siberia, Russia) Using Radioisotopic Data: Sedimentology, Biotic Events, and Palaeoclimate" Minerals 15, no. 6: 643. https://doi.org/10.3390/min15060643
APA StyleSilantiev, V. V., Gutak, Y. M., Tichomirowa, M., Käßner, A., Kulikova, A. V., Arbuzov, S. I., Nourgalieva, N. G., Karasev, E. V., Felker, A. S., Naumcheva, M. A., Bakaev, A. S., Porokhovnichenko, L. G., Eliseev, N. A., Zharinova, V. V., Miftakhutdinova, D. N., & Urazaeva, M. N. (2025). Revisiting the Permian Stratigraphy of the Kuznetsk Coal Basin (Siberia, Russia) Using Radioisotopic Data: Sedimentology, Biotic Events, and Palaeoclimate. Minerals, 15(6), 643. https://doi.org/10.3390/min15060643