Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (341)

Search Parameters:
Keywords = microwave-assisted oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 (registering DOI) - 2 Aug 2025
Viewed by 159
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 (registering DOI) - 1 Aug 2025
Viewed by 139
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

12 pages, 1511 KiB  
Article
Biological Activities of Glucosinolate and Its Enzymatic Product in Moringa oleifera (Lam.)
by Jinglin Wang, Saifei Yang, Sijia Shen, Chunxian Ma and Rui Chen
Int. J. Mol. Sci. 2025, 26(15), 7323; https://doi.org/10.3390/ijms26157323 - 29 Jul 2025
Viewed by 229
Abstract
In this study, using 70% anhydrous ethanol as the extraction solvent, Moringa oleifera Lam. seed powder was extracted with the microwave-assisted extraction method, followed by purification using macroporous adsorbent resin NKA-9. The purified glucosinolate was subsequently hydrolyzed with myrosinase. The glucosinolate and its [...] Read more.
In this study, using 70% anhydrous ethanol as the extraction solvent, Moringa oleifera Lam. seed powder was extracted with the microwave-assisted extraction method, followed by purification using macroporous adsorbent resin NKA-9. The purified glucosinolate was subsequently hydrolyzed with myrosinase. The glucosinolate and its enzymatic product were identified as 4-(α-L-rhamnopyranosyloxy) benzyl glucosinolate (4-RBMG) and benzyl isothiocyanate (BITC) by UV–Vis, FT-IR, NMR, and MS. The bioactivities, including anti-oxidation, anti-inflammation, and anti-tumor activities of 4-RBMG and BITC, were systematically evaluated and compared. The results show that at 5–20 mg/mL, the anti-oxidation effects of 4-RBMG on DPPH and ABTS free radicals are superior to those of BITC. However, at the same concentrations, BITC has stronger anti-inflammatory and anti-tumor activities compared to 4-RBMG. Notably, at a concentration of 6.25 μmol/L, BITC significantly inhibited NO production with an inhibitory rate of 96.67% without cytotoxicity. Additionally, at a concentration of 40 μmol/L, BITC exhibited excellent inhibitory effects on five tumor cell lines, with the cell inhibitory rates of leukemia HL-60, lung cancer A549, and hepatocellular carcinoma HepG2 exceeding 90%. This study provides some evidence that the enzymatic product, BITC, shows promise as a therapeutic agent for tumor suppression and inflammation reduction. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

30 pages, 1991 KiB  
Review
Emerging Technologies for Extracting Antioxidant Compounds from Edible and Medicinal Mushrooms: An Efficient and Sustainable Approach
by Salome Mamani Parí, Erick Saldaña, Juan D. Rios-Mera, María Fernanda Quispe Angulo and Nils Leander Huaman-Castilla
Compounds 2025, 5(3), 29; https://doi.org/10.3390/compounds5030029 - 28 Jul 2025
Viewed by 271
Abstract
Edible mushrooms are well-known for their culinary and nutritional values. Additionally, they serve as a natural source of polyphenols, a group of bioactive compounds that significantly treat diseases associated with oxidative stress. The polyphenolic profile of mushrooms mainly consists of phenolic acids and [...] Read more.
Edible mushrooms are well-known for their culinary and nutritional values. Additionally, they serve as a natural source of polyphenols, a group of bioactive compounds that significantly treat diseases associated with oxidative stress. The polyphenolic profile of mushrooms mainly consists of phenolic acids and flavonoids, whose chemical properties have attracted the attention of both the food and pharmaceutical industries. Consequently, methods for extracting polyphenols from mushrooms encompass conventional techniques (maceration and Soxhlet extraction) as well as innovative or green methods (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, enzyme-assisted extraction, and pulsed electric field extraction). Nonetheless, extraction with pressurized liquids and supercritical fluids is considered the most suitable method, as they function in a gentle and selective manner, preserving the integrity of the phenolic compounds. The use of mushroom-derived phenolic compounds in food and pharmaceutical formulations continues to face challenges concerning the safety of these extracts, as they might contain unwanted substances. Future applications should incorporate purification systems to yield highly pure extracts, thereby creating safe polyphenol carriers (for food and pharmaceutical products) for consumers. Full article
(This article belongs to the Special Issue Compounds–Derived from Nature)
Show Figures

Graphical abstract

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 344
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

17 pages, 3345 KiB  
Article
Novel Tetraphenolic Porphyrazine Capable of MRSA Photoeradication
by Wojciech Szczolko, Eunice Zuchowska, Tomasz Koczorowski, Michal Kryjewski, Jolanta Dlugaszewska and Dariusz T. Mlynarczyk
Molecules 2025, 30(15), 3069; https://doi.org/10.3390/molecules30153069 - 22 Jul 2025
Viewed by 250
Abstract
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic [...] Read more.
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic Synthesis (MAOS) approach. The obtained compounds were characterized using spectral techniques: UV-Vis spectrophotometry, mass spectrometry, 1H and 13C NMR spectroscopy. The porphyrazine derivatives were tested for their electrochemical properties (CV and DPV), which revealed four redox processes, of which in compound 7 positive shifts of oxidation potentials were observed, resulting from the presence of free phenolic hydroxyl groups. In spectroelectrochemical measurements, changes in UV-Vis spectra associated with the formation of positive-charged states were noted. Photophysical studies revealed the presence of characteristic absorption Q and Soret bands, low fluorescence quantum yields and small Stokes shifts. The efficiency of singlet oxygen generation (ΦΔ) was higher for compound 6 (up to 0.06), but compound 7, despite its lower efficiency (0.02), was distinguished by a better biological activity profile. Toxicity tests using the Aliivibrio fischeri bacteria indicated the lower toxicity of 7 compared to 6. The most promising result was the strong photodynamic activity of porphyrazine 7 against the Methicillin-resistant Stapylococcus aureus (MRSA) strain, leading to a more-than-5.6-log decrease in viable counts after the colony forming units (CFU) after light irradiation. Compound 6 did not show any significant antibacterial activity. The obtained data indicate that porphyrazine 7 is a promising candidate for applications in photodynamic therapy of bacterial infections. Full article
Show Figures

Figure 1

14 pages, 5943 KiB  
Article
Preparation and Optimization of Mn2+-Activated Na2ZnGeO4 Phosphors: Insights into Precursor Selection and Microwave-Assisted Solid-State Synthesis
by Xiaomeng Wang, Siyi Wei, Jiaping Zhang, Jiaren Du, Yukun Li, Ke Chen and Hengwei Lin
Nanomaterials 2025, 15(14), 1117; https://doi.org/10.3390/nano15141117 - 18 Jul 2025
Viewed by 336
Abstract
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for [...] Read more.
Mn2+-doped phosphors emitting green light have garnered significant interest due to their potential applications in display technologies and solid-state lighting. To facilitate the rapid synthesis of high-performance Mn2+-activated green phosphors, this research optimizes a microwave-assisted solid-state (MASS) method for the preparation of Na2ZnGeO4:Mn2+. Leveraging the unique attributes of the MASS technique, a systematic investigation into the applicability of various Mn-source precursors was conducted. Additionally, the integration of the MASS approach with traditional solid-state reaction (SSR) methods was assessed. The findings indicate that the MASS technique effectively incorporates Mn ions from diverse precursors (including higher oxidation states of manganese) into the crystal lattice, resulting in efficient green emission from Mn2+. Notably, the photoluminescence quantum yield (PLQY) of the sample utilizing MnCO3 as the manganese precursor was recorded at 2.67%, whereas the sample synthesized from MnO2 exhibited a remarkable PLQY of 17.69%. Moreover, the post-treatment of SSR-derived samples through the MASS process significantly enhanced the PLQY from 0.67% to 8.66%. These results underscore the promise of the MASS method as a novel and efficient synthesis strategy for the rapid and scalable production of Mn2+-doped green luminescent materials. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

37 pages, 2135 KiB  
Review
Neuroprotective Mechanisms of Red Algae-Derived Bioactive Compounds in Alzheimer’s Disease: An Overview of Novel Insights
by Tianzi Wang, Wenling Shi, Zijun Mao, Wei Xie and Guoqing Wan
Mar. Drugs 2025, 23(7), 274; https://doi.org/10.3390/md23070274 - 30 Jun 2025
Viewed by 579
Abstract
Alzheimer’s disease (AD) is characterized by β-amyloid plaques, neurofibrillary tangles, neuroinflammation, and oxidative stress—pathological features that pose significant challenges for the development of therapeutic interventions. Given these challenges, this review comprehensively evaluates the neuroprotective mechanisms of bioactive compounds derived from red algae, [...] Read more.
Alzheimer’s disease (AD) is characterized by β-amyloid plaques, neurofibrillary tangles, neuroinflammation, and oxidative stress—pathological features that pose significant challenges for the development of therapeutic interventions. Given these challenges, this review comprehensively evaluates the neuroprotective mechanisms of bioactive compounds derived from red algae, including polysaccharides and phycobiliproteins, which are considered a promising source of natural therapeutics for AD. Red algal constituents exhibit neuroprotective activities through multiple mechanisms. Sulfated polysaccharides (e.g., carrageenan, porphyran) suppress NF-κB-mediated neuroinflammation, modulate mitochondrial function, and enhance brain-derived neurotrophic factor (BDNF) expression. Phycobiliproteins (phycoerythrin, phycocyanin) and peptides derived from their degradation scavenge reactive oxygen species (ROS) and activate antioxidant pathways (e.g., Nrf2/HO-1), thus mitigating oxidative damage. Carotenoids (lutein, zeaxanthin) improve cognitive function through the inhibition of acetylcholinesterase and pro-inflammatory cytokines (TNF-α, IL-1β), while phenolic compounds (bromophenols, diphlorethol) provide protection by targeting multiple pathways involved in dopaminergic system modulation and Nrf2 pathway activation. Emerging extraction technologies—including microwave- and enzyme-assisted methods—have been shown to optimize the yield and maintain the bioactivity of these compounds. However, the precise identification of molecular targets and the standardization of extraction techniques remain critical research priorities. Overall, red algae-derived compounds hold significant potential for multi-mechanism AD interventions, providing novel insights for the development of therapeutic strategies with low toxicity. Full article
(This article belongs to the Special Issue Marine-Derived Bioactive Compounds for Neuroprotection)
Show Figures

Figure 1

33 pages, 1666 KiB  
Review
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications
by Sabina Vohl, Irena Ban, Janja Stergar and Mojca Slemnik
Nanomaterials 2025, 15(12), 921; https://doi.org/10.3390/nano15120921 - 13 Jun 2025
Viewed by 1070
Abstract
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview [...] Read more.
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview of the synthesis, characterization, and diverse applications of magnetic zeolite NCs. We begin by introducing the fundamental properties of zeolites and magnetic nanoparticles (MNPs), highlighting their synergistic integration into multifunctional composites. The structural features of various zeolite frameworks and their influence on composite performance are discussed, along with different interaction modes between MNPs and zeolite matrices. The evolution of research on magnetic zeolite NCs is traced chronologically from its early stages in the 1990s to current advancements. Synthesis methods such as co-precipitation, sol–gel, hydrothermal, microwave-assisted, and sonochemical approaches are systematically compared, emphasizing their advantages and limitations. Key characterization techniques—including X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning and Transmission Electron Microscopy (SEM, TEM), Thermogravimetric Analysis (TGA), Nitrogen Adsorption/Desorption (BET analysis), Vibrating Sample Magnetometry (VSM), Zeta potential analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and X-Ray Photoelectron Spectroscopy (XPS)—are described, with attention to the specific insights they provide into the physicochemical, magnetic, and structural properties of the NCs. Finally, the review explores current and potential applications of these materials in environmental and biomedical fields, focusing on adsorption, catalysis, magnetic resonance imaging (MRI), drug delivery, ion exchange, and polymer modification. This article aims to provide a foundation for future research directions and inspire innovative applications of magnetic zeolite NCs. Full article
Show Figures

Figure 1

25 pages, 2165 KiB  
Review
A Review on Improving the Oxidative Stability of Pine Nut Oil in Extraction, Storage, and Encapsulation
by Jingwen Zhu, Zhenzhou Li, Yisen Wang, Zhexuan Mu, Xiaohong Lv, Zhenyu Wang, Aijun Dong, Ziluan Fan and Hua Zhang
Antioxidants 2025, 14(6), 716; https://doi.org/10.3390/antiox14060716 - 12 Jun 2025
Viewed by 663
Abstract
Pine nut oil (PNO) is highly valued by consumers for its rich content of unsaturated fatty acids, which confer unique nutritional benefits. However, PNO is highly susceptible to lipid oxidation during storage and extraction. This chemical degradation compromises product quality and poses potential [...] Read more.
Pine nut oil (PNO) is highly valued by consumers for its rich content of unsaturated fatty acids, which confer unique nutritional benefits. However, PNO is highly susceptible to lipid oxidation during storage and extraction. This chemical degradation compromises product quality and poses potential risks to food safety. To address this challenge, the food industry is developing antioxidant strategies, including optimizing pretreatment conditions to improve flavor and storage stability. Green extraction technologies such as microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) have been introduced to enhance extraction efficiency and promote environmental sustainability. Light-proof packaging, reduced oxygen environments, and temperature control have also been employed to significantly extend the shelf life of PNO. Furthermore, to maintain the nutritional integrity and safety of PNO while expanding its functional applications in the food industry, several innovative approaches have been employed. These include the incorporation of natural antioxidants, the development of Pickering emulsions, the use of microencapsulation, and the formulation of oleogels. Full article
Show Figures

Figure 1

25 pages, 3711 KiB  
Article
Eco-Friendly Extraction of Curcumin from Turmeric and Dyeability of Textile Fibers
by Vasilica Popescu, Ana-Diana Alexandrescu, Gabriel Popescu and Viorica Vasilache
Fibers 2025, 13(6), 73; https://doi.org/10.3390/fib13060073 - 4 Jun 2025
Viewed by 1870
Abstract
Classical and modern methods are used to release curcumin by degrading the polysaccharides found in the turmeric powder matrix. Classical methods use chemicals as acids (HCl, H2SO4, CH3COOH), oxidants (H2O2, kojic acid), and [...] Read more.
Classical and modern methods are used to release curcumin by degrading the polysaccharides found in the turmeric powder matrix. Classical methods use chemicals as acids (HCl, H2SO4, CH3COOH), oxidants (H2O2, kojic acid), and enzymes (amylase type) that can degrade amylose and amylopectin from starch. The modern applied methods consist of the degradation of the polysaccharides in the turmeric powder during eco-friendly processes assisted by ultrasound or microwaves. The extraction medium can consist of only water, water with a solvent, and/or an oxidizing agent. The presence of curcumin in turmeric powder is confirmed by FTIR analysis. The UV–VIS analysis of the extracts allows the determination of the efficiency of modern extraction processes. The release of curcumin from turmeric is highlighted quantitatively by colorimetric measurements for the obtained extracts, using a portable DataColor spectrophotometer. The comparison of the results leads to the conclusion that microwave-assisted extractions are the most effective. These extracts are able to dye many types of textile fibers: wool, cotton, hemp, silk, polyacrylonitrile, polyamide, polyester, and cellulose acetate. CIELab and color strength (K/S) measurements indicate that the most intense yellow colors are obtained on polyacrylonitrile (b* = 86.32, K/S = 15.14) and on cellulose acetate (b* = 90.40, K/S = 14.17). Full article
Show Figures

Figure 1

21 pages, 2130 KiB  
Article
A Straightforward Approach Towards Phosphadecalones by Microwave-Assisted Diels–Alder Reaction
by Elżbieta Łastawiecka, Anna E. Kozioł and K. Michał Pietrusiewicz
Molecules 2025, 30(11), 2338; https://doi.org/10.3390/molecules30112338 - 27 May 2025
Viewed by 470
Abstract
A stereoselective and scalable strategy for the synthesis of phosphorus-containing bicyclic and tricyclic compounds from 1-phenylphosphin-2-en-4-one 1-oxide is presented. This activated dienophile, available in both racemic and enantiopure forms, undergoes smooth [4+2] cycloadditions with acyclic and cyclic dienes, affording products with excellent yields [...] Read more.
A stereoselective and scalable strategy for the synthesis of phosphorus-containing bicyclic and tricyclic compounds from 1-phenylphosphin-2-en-4-one 1-oxide is presented. This activated dienophile, available in both racemic and enantiopure forms, undergoes smooth [4+2] cycloadditions with acyclic and cyclic dienes, affording products with excellent yields and controlled stereochemistry. Notably, the cis/trans-fusion of the cycloadducts (phosphadecalones and phosphahexahydrochrysene) can be selectively controlled by fine-tuning the conditions of microwave-assisted cycloaddition reaction. The influence of temperature, time, and steric effects on cis/trans and endo/exo selectivity was examined in detail. The molecular structure, including the absolute configuration, of eight products has been determined by X-ray crystallography. These analyses further established the endo-selective nature of the cycloaddition, favoring the P=O face of the dienophile. Post-cycloaddition transformations of selected P-stereogenic phosphadecalone, such as isomerization, reduction and deoxygenation, demonstrate the synthetic versatility of the resulting products. Full article
Show Figures

Graphical abstract

26 pages, 4870 KiB  
Article
Incorporation of Zinc Oxide Nanoparticles Biosynthesized from Epimedium brevicornum Maxim. into PCL Nanofibers to Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells
by Kuei-Ping Hsieh, Parichart Naruphontjirakul, Jen-Hao Chen, Chih-Sheng Ko, Chi-Wei Lin and Wen-Ta Su
Materials 2025, 18(10), 2295; https://doi.org/10.3390/ma18102295 - 15 May 2025
Cited by 1 | Viewed by 589
Abstract
The optimal parameters for the microwave-assisted extraction of Epimedium brevicornum Maxim. were determined by using response surface methodology (RSM), increasing the extraction of flavonoids by 1.79 times. The resulting extract facilitated the green synthesis of zinc oxide nanoparticles (ZnONPs) with a wurtzite structure [...] Read more.
The optimal parameters for the microwave-assisted extraction of Epimedium brevicornum Maxim. were determined by using response surface methodology (RSM), increasing the extraction of flavonoids by 1.79 times. The resulting extract facilitated the green synthesis of zinc oxide nanoparticles (ZnONPs) with a wurtzite structure through a reaction with zinc nitrate. These ZnONPs were then incorporated into polycaprolactone (PCL) by using an electrospinning technique to produce nanofibers. The incorporation of ZnONPs resulted in an increase in Young’s modulus, biodegradation rate, and swelling ratio while decreasing the diameter and water contact angle of the nanofibers, thereby improving the hydrophilicity of PCL. ZnO demonstrates excellent biocompatibility with periodontal ligament stem cells (PDLSCs), increasing cell proliferation and enhancing alkaline phosphatase activity by 56.9% (p < 0.05). Additionally, mineralization deposition increased by 119% (p < 0.01) in the presence of 1% ZnO and showed a concentration-dependent response. After inducing PDLSC cultures with PCL–1% ZnO for 21 days, the protein expression levels of Runx2 and OCN increased by 50% (p < 0.05) and 30% (p < 0.001), respectively. Additionally, Col-1, Runx2, BSP, and OCN gene expression levels increased by 2.18, 1.88, 1.8, and 1.7 times, respectively. This study confirms that biosynthesized ZnONPs improve the physical properties of PCL nanofibers and effectively induce the osteogenic differentiation of PDLSCs. Full article
(This article belongs to the Special Issue Diverse Nanomaterials Applied in Bio- and Electrochemical Sensing)
Show Figures

Figure 1

13 pages, 4056 KiB  
Article
Recovery of Carbon Fibers from Carbon Fiber-Reinforced Plastics Using Microwave-Assisted Sulfuric Acid Treatment and Reuse of Recycled Carbon Fibers
by Zheng Nan, Lei Xu, Yiyao Ren, Junyu Lu, Yongfen Sun, Di Zhang and Jiayu He
Processes 2025, 13(5), 1437; https://doi.org/10.3390/pr13051437 - 8 May 2025
Viewed by 657
Abstract
In this study, a microwave-assisted sulfuric acid recovery method is proposed for the efficient recovery of high-value carbon fibers at 100–140 °C. The recycled carbon fibers (RCF) were characterized, and recycled carbon fiber-reinforced plastics (RCFRP) were fabricated using their fibers. The recycling process [...] Read more.
In this study, a microwave-assisted sulfuric acid recovery method is proposed for the efficient recovery of high-value carbon fibers at 100–140 °C. The recycled carbon fibers (RCF) were characterized, and recycled carbon fiber-reinforced plastics (RCFRP) were fabricated using their fibers. The recycling process preserved the surface morphology of the carbon fibers, with the RCF maintaining the axial groove structure on the surface of the virgin carbon fiber (VCF). X-ray diffraction (XRD) and Raman spectroscopy analyses confirmed that the degree of graphitization and crystalline structure of the RCF remained largely unchanged compared to the original carbon fibers. Surface oxidation occurred during the recycling process, leading to an increase in O–C=O content on the surface of the RCF compared to that of the VCF, which facilitated interfacial chemical bonding with the resin and enhanced the wettability. Compared to virgin carbon fiber-reinforced plastics (VCFRP), RCFRP retained up to 95.25% of the tensile strength, 97.47% of the shear strength, and 96.76% of the bending stress, demonstrating excellent mechanical properties. This study provides a simple and effective approach for the low-temperature and high-efficiency recycling of carbon fiber composites. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

11 pages, 7660 KiB  
Article
Exploration of the Reduction Diffusion Temperature for Different Phases of Samarium–Cobalt Magnetic Particles
by Yani Lu, Xiangyu Ma, Jinping Ren, Jinke Kang and Yatao Wang
Molecules 2025, 30(9), 1975; https://doi.org/10.3390/molecules30091975 - 29 Apr 2025
Viewed by 436
Abstract
We report a method for synthesizing different phases of samarium–cobalt particles through microwave-assisted combustion combined with high-temperature reduction and diffusion, and identify the optimal temperature for forming the 1:5 phase using this approach. Initially, the samarium-to-cobalt ratio in a nitrate solution was determined. [...] Read more.
We report a method for synthesizing different phases of samarium–cobalt particles through microwave-assisted combustion combined with high-temperature reduction and diffusion, and identify the optimal temperature for forming the 1:5 phase using this approach. Initially, the samarium-to-cobalt ratio in a nitrate solution was determined. Using urea as both a reductant and fuel, samarium–cobalt oxides were synthesized via microwave-assisted combustion. The main components of the oxides were confirmed to be SmCoO3 and Co3O4. Subsequently, samarium–cobalt particles were synthesized at various diffusion temperatures. The results indicate that at 700 °C, the oxides were reduced to elemental Sm and Co. As the reduction temperature increased, the alloying of samarium and cobalt occurred, and the particle size gradually increased. At 900 °C, a pure 1:5 phase was formed, with particle sizes of approximately 800 nm, a coercivity of 35 kOe, and a maximum energy product of 14 MGOe. Based on the microwave-assisted combustion method, this study clarifies the transition temperatures of samarium–cobalt phases during the reduction and diffusion process, and further establishes the synthesis temperature for the 1:5 phase, providing new insights into the preparation and development of samarium–cobalt materials and potentially other rare earth materials. Full article
Show Figures

Figure 1

Back to TopTop