materials-logo

Journal Browser

Journal Browser

Diverse Nanomaterials Applied in Bio- and Electrochemical Sensing

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Nanomaterials and Nanotechnology".

Deadline for manuscript submissions: closed (20 March 2025) | Viewed by 893

Special Issue Editor


E-Mail Website
Guest Editor
TU Bergakademie Freiberg, Institute of Electronic and Sensor Materials, Freiberg, Germany
Interests: biosensors; electrochemistry; nanomaterials; functionalization; nanocomposites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The field of nanotechnology has witnessed significant advancements in recent years, leading to the development of diverse nanomaterials with promising applications in bio- and electrochemical sensing. These nanomaterials possess unique properties such as a high surface-area-to-volume ratio, excellent conductivity, and exceptional catalytic activity, making them suitable candidates for sensing applications.

One of the extensively studied nanomaterials is carbon nanotubes (CNTs), which have shown remarkable potential in biosensing. CNTs can be utilized as nanoelectrodes for detecting a range of biomolecules, including DNA, proteins, and enzymes. Their large surface area allows for increased analyte adsorption, resulting in enhanced sensitivity. Moreover, CNTs can be functionalized with various biomolecules, such as antibodies and aptamers, enabling selective detection of target analytes.

Another class of nanomaterials is metal nanoparticles, such as gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). These nanomaterials possess unique optical and electronic properties that can be exploited for bio- and electrochemical sensing. For instance, AuNPs can act as efficient nanocatalysts, accelerating redox reactions and enhancing sensing signal amplification. AgNPs, on the other hand, exhibit excellent surface-enhanced Raman scattering (SERS) performance, enabling the ultrasensitive detection of analytes through vibrational spectroscopy.

Furthermore, semiconductor nanomaterials, including quantum dots (QDs) and metal oxides, have attracted attention in bio- and electrochemical sensing due to their strong photoemission properties and high electron mobility. QDs offer size-dependent emission spectra, enabling the multiplexed detection of different analytes simultaneously. Metal oxides, such as titanium dioxide (TiO2) and zinc oxide (ZnO), can be used as sensitive materials in electrochemical sensors, facilitating the detection of various analytes.

In summary, diverse nanomaterials, including carbon nanotubes, metal nanoparticles, and semiconductor nanomaterials, have been extensively studied and applied in bio- and electrochemical sensing. These nanomaterials possess unique properties that contribute to enhanced sensitivity, selectivity, and signal amplification, enabling the detection of a wide range of analytes. Harnessing the potential of nanomaterials in sensing applications has great implications for fields such as medical diagnostics, environmental monitoring, and food safety.

Dr. Parvaneh Rahimi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • bio- and electrochemical sensing
  • carbon nanotubes
  • metal nanoparticles
  • quantum dots
  • metal oxides
  • sensitivity
  • selectivity
  • signal amplification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 4870 KiB  
Article
Incorporation of Zinc Oxide Nanoparticles Biosynthesized from Epimedium brevicornum Maxim. into PCL Nanofibers to Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells
by Kuei-Ping Hsieh, Parichart Naruphontjirakul, Jen-Hao Chen, Chih-Sheng Ko, Chi-Wei Lin and Wen-Ta Su
Materials 2025, 18(10), 2295; https://doi.org/10.3390/ma18102295 - 15 May 2025
Viewed by 164
Abstract
The optimal parameters for the microwave-assisted extraction of Epimedium brevicornum Maxim. were determined by using response surface methodology (RSM), increasing the extraction of flavonoids by 1.79 times. The resulting extract facilitated the green synthesis of zinc oxide nanoparticles (ZnONPs) with a wurtzite structure [...] Read more.
The optimal parameters for the microwave-assisted extraction of Epimedium brevicornum Maxim. were determined by using response surface methodology (RSM), increasing the extraction of flavonoids by 1.79 times. The resulting extract facilitated the green synthesis of zinc oxide nanoparticles (ZnONPs) with a wurtzite structure through a reaction with zinc nitrate. These ZnONPs were then incorporated into polycaprolactone (PCL) by using an electrospinning technique to produce nanofibers. The incorporation of ZnONPs resulted in an increase in Young’s modulus, biodegradation rate, and swelling ratio while decreasing the diameter and water contact angle of the nanofibers, thereby improving the hydrophilicity of PCL. ZnO demonstrates excellent biocompatibility with periodontal ligament stem cells (PDLSCs), increasing cell proliferation and enhancing alkaline phosphatase activity by 56.9% (p < 0.05). Additionally, mineralization deposition increased by 119% (p < 0.01) in the presence of 1% ZnO and showed a concentration-dependent response. After inducing PDLSC cultures with PCL–1% ZnO for 21 days, the protein expression levels of Runx2 and OCN increased by 50% (p < 0.05) and 30% (p < 0.001), respectively. Additionally, Col-1, Runx2, BSP, and OCN gene expression levels increased by 2.18, 1.88, 1.8, and 1.7 times, respectively. This study confirms that biosynthesized ZnONPs improve the physical properties of PCL nanofibers and effectively induce the osteogenic differentiation of PDLSCs. Full article
(This article belongs to the Special Issue Diverse Nanomaterials Applied in Bio- and Electrochemical Sensing)
Show Figures

Figure 1

12 pages, 3053 KiB  
Article
Metal-Free Elemental Selenium Quantum Dots: A Novel and Robust Fluorescent Nanoprobe for Cell Imaging and the Sensitive Detection of Cr(VI)
by Ziyi Gao, Jie Liao, Xia Li and Li Zhou
Materials 2025, 18(9), 2119; https://doi.org/10.3390/ma18092119 - 5 May 2025
Viewed by 245
Abstract
In this paper, we present a simple solvothermal method to synthesize highly fluorescent metal-free elemental selenium quantum dots (SeQDs) using cost-effective bulk selenium powder. The SeQDs exhibit a small and uniform size, excellent aqueous dispersibility, a high photoluminescence quantum yield (PLQY) of 19.3% [...] Read more.
In this paper, we present a simple solvothermal method to synthesize highly fluorescent metal-free elemental selenium quantum dots (SeQDs) using cost-effective bulk selenium powder. The SeQDs exhibit a small and uniform size, excellent aqueous dispersibility, a high photoluminescence quantum yield (PLQY) of 19.3% with stable fluorescence, and scalable production with a 7.2% yield. Owing to the inner filter effect (IFE), these SeQDs function as a highly effective nanoprobe for Cr(VI) detection, exhibiting exceptional sensitivity (detection limit: 145 nM) and selectivity over a wide linear range (5–105 μM), along with rapid response kinetics. Moreover, SeQDs show low cytotoxicity and efficient cellular uptake, enabling cell imaging and intracellular Cr(VI) monitoring. Significant fluorescence quenching in Cr(VI)-exposed cells confirms the potential of SeQDs as a viable fluorescent nanoprobe for Cr(VI) detection in complex cellular environments. This work thus not only establishes a simple method for the preparation of fluorescent SeQDs but also develops a promising fluorescent nanoprobe for cell imaging and Cr(VI) sensing. Full article
(This article belongs to the Special Issue Diverse Nanomaterials Applied in Bio- and Electrochemical Sensing)
Show Figures

Figure 1

Back to TopTop