Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (114)

Search Parameters:
Keywords = microwave-assisted chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

9 pages, 817 KiB  
Article
A Green and Simple Analytical Method for the Evaluation of the Effects of Zn Fertilization on Pecan Crops Using EDXRF
by Marcelo Belluzzi Muiños, Javier Silva, Paula Conde, Facundo Ibáñez, Valery Bühl and Mariela Pistón
Processes 2025, 13(7), 2218; https://doi.org/10.3390/pr13072218 - 11 Jul 2025
Viewed by 334
Abstract
A simple and fast analytical method was developed and applied to assess the effect of two forms of zinc fertilization on a pecan tree cultivar in Uruguay: fertigation and foliar application with a specially formulated fertilizer. Zinc content was determined in 36 leaf [...] Read more.
A simple and fast analytical method was developed and applied to assess the effect of two forms of zinc fertilization on a pecan tree cultivar in Uruguay: fertigation and foliar application with a specially formulated fertilizer. Zinc content was determined in 36 leaf samples from two crop cycles: 2020–2021 and 2021–2022. Fresh samples were dried, ground, and sieved. Analytical determinations were performed by flame atomic absorption spectrometry (FAAS, considered a standard method) and energy dispersive X-ray spectrometry (EDXRF, the proposed method). In the first case, sample preparation was carried out by microwave-assisted digestion using 4.5 mol L−1 HNO3. In the second case, pellets (Φ 13 mm, 2–3 mm thick) were prepared by direct mechanical pressing. Figures of merit of both methodologies were adequate for the purpose of zinc monitoring. The results obtained from both methodologies were statistically compared and found to be equivalent (95% confidence level). Based on the principles of Green Analytical Chemistry, both procedures were evaluated using the Analytical Greenness Metric Approach (AGREE and AGREEprep) tools. It was concluded that EDXRF was notably greener than FAAS and can be postulated as an alternative to the standard method. The information emerging from the analyses aided decision-making at the agronomic level. Full article
Show Figures

Figure 1

15 pages, 990 KiB  
Article
Towards a Green and Sustainable Valorization of Salix amplexicaulis: Integrating Natural Deep Eutectic Solvents and Microwave-Assisted Extraction for Enhanced Recovery of Phenolic Compounds
by Milica Vidić, Nevena Grujić-Letić, Branislava Teofilović and Emilia Gligorić
Sustainability 2025, 17(14), 6347; https://doi.org/10.3390/su17146347 - 10 Jul 2025
Viewed by 318
Abstract
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract [...] Read more.
Combining advanced extraction technologies with non-pollutant solvents represents a sustainable approach toward valorizing medicinal plants and aligns with the principles of green chemistry. This study aimed to evaluate the efficiency of microwave-assisted extraction (MAE) combined with natural deep eutectic solvents (NADES) to extract bioactive compounds from the underexplored leaves and bark of Salix amplexicaulis Bory & Chaub. Additionally, the potential of NADES as sustainable alternatives to conventional solvents was assessed through a comparative evaluation of MAE-NADES with MAE–water and traditional ethanol maceration. NADES based on lactic acid–glycerol, lactic acid–glucose, glycerol–glucose, and glycerol–urea were synthesized by heating and stirring. Willow extracts were characterized by HPLC-DAD, resulting in the identification and quantification of seven phenolic acids and four flavonoids. Lactic acid–glucose (5:1)-based NADES extracted the highest number of phenolics in the greatest amount from the bark and leaves of S. amplexicaulis. MAE-NADES offers a fast, cost-effective preparation, high extraction efficiency, and environmentally friendly properties, opening new perspectives on the valorization of S. amplexicaulis in the pharmaceutical field. Furthermore, NADES provide a promising alternative to water and toxic organic solvents for extracting bioactives. Full article
Show Figures

Figure 1

27 pages, 3488 KiB  
Review
Current Perspectives on the Extraction, Isolation, and Identification of Fats and Fatty Acids Using Conventional and Green Methods
by Ytaiara Lima-Pereira, Esther Maria Oliveira de Souza, David Silva dos Reis, Ian Gardel Carvalho Barcellos-Silva, Karine Sayuri Lima Miki, Valdir F. Veiga-Júnior and Barbara Elisabeth Teixeira-Costa
Separations 2025, 12(6), 160; https://doi.org/10.3390/separations12060160 - 13 Jun 2025
Viewed by 911
Abstract
The global demand for oils and lipids, particularly those derived from vegetable sources with high polyunsaturated fatty acid content, has posed significant challenges for the food industry. This trend is largely driven by growing consumer awareness of health and nutrition. To meet this [...] Read more.
The global demand for oils and lipids, particularly those derived from vegetable sources with high polyunsaturated fatty acid content, has posed significant challenges for the food industry. This trend is largely driven by growing consumer awareness of health and nutrition. To meet this demand, it is essential to not only identify richer sources of lipids but also develop efficient, sustainable, and environmentally friendly methods for their extraction, isolation, and characterization. In this context, the present work provides a comprehensive review of current perspectives on the extraction, isolation, and identification of lipids and fatty acids, comparing conventional and green methodologies for food applications. Ideally, analytical and processing methodologies for obtaining food-grade materials should prioritize low energy consumption, minimal or no use of hazardous substances, and the generation of non-polluting residues, thereby safeguarding both human health and the environment. In recent years, green extraction techniques have emerged as promising alternatives to conventional methods, offering partial or complete replacements, such as ultrasound-assisted extraction, microwave-assisted extraction, supercritical and subcritical fluid extraction, and others. However, significant advancements are still required to fully address these concerns. Techniques such as chromatography and spectrometry play pivotal roles in the isolation and identification process, especially gas chromatography coupled with mass spectrometry or with flame ionization detectors; while separating individual fatty acids based on their chain length and degree of unsaturation, reversed-phase high-performance liquid chromatography (HPLC) is quite a helpful approach. Furthermore, the isolation and structural elucidation of fatty acids are critical steps in ensuring the nutritional quality and commercial viability of lipid products. Full article
(This article belongs to the Special Issue Extraction and Characterization of Food Components)
Show Figures

Graphical abstract

19 pages, 533 KiB  
Review
Extraction of Phenolic Compounds from Agro-Industrial By-Products Using Natural Deep Eutectic Solvents: A Review of Green and Advanced Techniques
by Fernanda de Sousa Bezerra and Maria Gabriela Bello Koblitz
Separations 2025, 12(6), 150; https://doi.org/10.3390/separations12060150 - 3 Jun 2025
Cited by 1 | Viewed by 856
Abstract
As sustainability gains prominence, the circular economy has encouraged the valorization of agri-food by-products, which are rich in phenolic compounds known for their antioxidant and anti-inflammatory properties. Conventional extraction methods commonly employ organic solvents, which contradict green chemistry principles. Natural deep eutectic solvents [...] Read more.
As sustainability gains prominence, the circular economy has encouraged the valorization of agri-food by-products, which are rich in phenolic compounds known for their antioxidant and anti-inflammatory properties. Conventional extraction methods commonly employ organic solvents, which contradict green chemistry principles. Natural deep eutectic solvents (NaDESs) have emerged as environmentally friendly alternatives for recovering bioactive compounds from food waste. This review investigated recent studies (2020–2024) on ultrasound (UAE), microwave (MAE), and pressurized liquid extraction (PLE) using NaDESs to extract phenolic compounds from agri-food by-products. A total of 116 publications were initially identified, of which 19 met the inclusion criteria. UAE combined with NaDESs proved effective, particularly for fruit and oilseed residues. MAE achieved good yields for phenolic acids and flavonoids but showed limitations on high temperatures. PLE, though less explored, demonstrated promising results when optimized for temperature, pressure, and NaDES composition. The combination of NaDESs with assisted extraction techniques enhanced yield, selectivity, and environmental performance compared to conventional approaches. These findings highlight a greener and more efficient strategy for phenolic recovery within a biorefinery framework. Ultimately, this approach contributes to the sustainable management and valorization of agri-food by-products, supporting circular economy principles and the development of cleaner extraction technologies for functional ingredients. Full article
Show Figures

Figure 1

19 pages, 1415 KiB  
Article
Green and Efficient Synthetic Protocol for 1,3,5-Triazine Derivatives with Anticancer Potential Against Colorectal Cancer
by Julia Chrzan, Anna Karolina Drabczyk, Izabela Siemińska, Monika Baj-Krzyworzeka, Katarzyna Ewa Greber, Jolanta Jaśkowska, Damian Kułaga and Krzesimir Ciura
Molecules 2025, 30(11), 2437; https://doi.org/10.3390/molecules30112437 - 2 Jun 2025
Viewed by 2249
Abstract
Colorectal cancer (CRC) remains a major global health challenge, necessitating the development of more effective and environmentally sustainable treatments. This study presents a novel green synthetic protocol for 1,3,5-triazine derivatives with anticancer potential, employing both microwave-assisted and ultrasound-assisted methods. The synthesis was optimized [...] Read more.
Colorectal cancer (CRC) remains a major global health challenge, necessitating the development of more effective and environmentally sustainable treatments. This study presents a novel green synthetic protocol for 1,3,5-triazine derivatives with anticancer potential, employing both microwave-assisted and ultrasound-assisted methods. The synthesis was optimized using 4-chloro-N-(2-chlorophenyl)-6-(morpholin-4-yl)-1,3,5-triazin-2-amine as the key intermediate, with sodium carbonate, TBAB, and DMF providing optimal yields under microwave conditions. To enhance sustainability, a modified sonochemical method was also developed, enabling efficient synthesis in aqueous media with a minimal use of organic solvents. A series of nine morpholine-functionalized derivatives were synthesized and evaluated for cytotoxic activity against SW480 and SW620 colorectal cancer cell lines. Compound 11 demonstrated superior antiproliferative activity (IC₅₀ = 5.85 µM) compared to the reference drug 5-fluorouracil, while compound 5 showed promising dual-line activity. In silico ADME analysis supported the drug likeness of the synthesized compounds, and biomimetic chromatography analysis confirmed favorable physicochemical properties, including lipophilicity and membrane affinity. These results underscore the potential of the developed protocol to produce bioactive triazine derivatives through an efficient, scalable, and environmentally friendly process, offering a valuable strategy for future anticancer drug development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

24 pages, 1664 KiB  
Review
Microextraction and Eco-Friendly Techniques Applied to Solid Matrices Followed by Chromatographic Analysis
by Attilio Naccarato, Rosangela Elliani and Antonio Tagarelli
Separations 2025, 12(5), 124; https://doi.org/10.3390/separations12050124 - 14 May 2025
Cited by 2 | Viewed by 716
Abstract
In this review, a 5-year overview on environmentally friendly approaches for the extraction of the most relevant organic pollutants in soil, sediment, particulate matter, and sewage sludge coupled with chromatographic analysis is reported. Organic contaminants encompass various compounds derived from personal care products, [...] Read more.
In this review, a 5-year overview on environmentally friendly approaches for the extraction of the most relevant organic pollutants in soil, sediment, particulate matter, and sewage sludge coupled with chromatographic analysis is reported. Organic contaminants encompass various compounds derived from personal care products, industrial chemicals, microplastics, organic matter combustion, agricultural practices, and plasticizer material. The principles of green analytical chemistry (GAC) and green sample preparation (GSP) serve as a guideline for the development of more environmentally sustainable analytical protocols. This study focuses attention on microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), matrix solid-phase dispersion (MSPD), and microextraction techniques, such as solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), spray-assisted droplet formation-based liquid-phase microextraction (SADF-LPME), and dispersive liquid–liquid extraction (DLLME). These approaches represent the most relevant eco-friendly sample preparation for the advanced extraction of target analytes from environmental solid samples. Full article
Show Figures

Figure 1

13 pages, 5041 KiB  
Article
A Sustainable Microwave-Assisted Process for Chemical Recycling and the Reuse of Epoxy Resin Matrices
by Fabrizio Cafaro, Francesca Ferrari, Gloria Anna Carallo, Antonio Greco and Alfonso Maffezzoli
Polymers 2025, 17(7), 989; https://doi.org/10.3390/polym17070989 - 5 Apr 2025
Cited by 1 | Viewed by 1035
Abstract
This work presents an optimized and sustainable chemical recycling method for epoxy resin matrices, which uses microwave-assisted reactions to achieve the complete recovery of the matrix without generating waste byproducts. The proposed method employs a green chemistry approach, with hydrogen peroxide (H2 [...] Read more.
This work presents an optimized and sustainable chemical recycling method for epoxy resin matrices, which uses microwave-assisted reactions to achieve the complete recovery of the matrix without generating waste byproducts. The proposed method employs a green chemistry approach, with hydrogen peroxide (H2O2) and tartaric acid (TA) as the eco-friendly reagents. Microwaves are used to activate the chemical reaction, ensuring localized heating, reduced energy consumption, and shorter processing times compared to conventional thermal methods. Unlike most existing recycling processes, which focus on fiber recovery, this study emphasizes the recovery and reuse of the matrix, transforming it into a valuable resource for producing new thermosetting materials. The recovered matrix was characterized using FTIR and H-NMR analyses, confirming the presence of reactive functional groups that enable its reintegration into new composite matrix formulations. The process has also demonstrated environmental benefits and economic advantages due to the absence of any waste and the reduced need for virgin raw materials. This method addresses a critical gap in composite material recycling, paving the way for a circular lifecycle and advancing the principles of sustainability in materials engineering. Full article
Show Figures

Figure 1

14 pages, 3556 KiB  
Article
Microwave-Assisted Enantioselective Synthesis of (2R,5S)-Theaspirane: A Green Chemistry Approach
by Sayuri Cristina Santos Takada, Maria Carolina Blassioli-Moraes, Miguel Borges, Raul Alberto Laumann, Izabella Vitória Maravalho and Wender Alves Silva
Molecules 2025, 30(7), 1519; https://doi.org/10.3390/molecules30071519 - 29 Mar 2025
Viewed by 634
Abstract
The banana weevil (Cosmopolites sordidus) is a significant pest that reduces banana yields and can result in plant mortality. (2R,5S)-theaspirane, a kairomone from senesced banana leaves, is one of the natural banana volatiles, aiding weevil attraction. A [...] Read more.
The banana weevil (Cosmopolites sordidus) is a significant pest that reduces banana yields and can result in plant mortality. (2R,5S)-theaspirane, a kairomone from senesced banana leaves, is one of the natural banana volatiles, aiding weevil attraction. A rapid and cost-effective synthesis of (2R,5S)-theaspirane was developed utilizing microwave-assisted conditions and the principles of green chemistry. The process comprised five steps, beginning with the reduction of dihydro-β-ionone, followed by lipase-mediated kinetic resolution to attain high enantiomeric excess. Microwave-assisted heating significantly reduced reaction times. Optimized cyclization with the minimum quantities of selenium dioxide oxidation was employed. The final diastereomers were separated by chromatography, yielding compounds which exceeded 99% enantiomeric purity. Full article
(This article belongs to the Special Issue Synthesis, Modification and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

32 pages, 3860 KiB  
Review
Green Analytical Chemistry—Recent Innovations
by Anil Kumar Meher and Akli Zarouri
Analytica 2025, 6(1), 10; https://doi.org/10.3390/analytica6010010 - 11 Mar 2025
Cited by 6 | Viewed by 6094
Abstract
Green analytical chemistry represents a transformative approach to analytical science, emphasizing sustainability and environmental stewardship while maintaining high standards of accuracy and precision. This review highlights recent innovations in green analytical chemistry, including the use of green solvents, such as water, supercritical carbon [...] Read more.
Green analytical chemistry represents a transformative approach to analytical science, emphasizing sustainability and environmental stewardship while maintaining high standards of accuracy and precision. This review highlights recent innovations in green analytical chemistry, including the use of green solvents, such as water, supercritical carbon dioxide, ionic liquids, and bio-based alternatives, as well as energy-efficient techniques like microwave-assisted, ultrasound-assisted, and photo-induced processes. Advances in green instrumentation, including miniaturized and portable devices, and the integration of automation and chemometric tools, have further enhanced efficiency and reduced the environmental footprint of analytical workflows. Despite these advancements, challenges remain, including the need to balance analytical performance with eco-friendliness and the lack of global standards to measure and promote sustainable practices consistently. However, the future of green analytical chemistry looks promising, with emerging technologies like artificial intelligence and digital tools offering new ways to optimize workflows, minimize waste, and streamline analytical processes. By focusing on these areas, green analytical chemistry is transforming analytical methodologies into tools that not only achieve high performance but also align with global sustainability goals. This review underscores how green analytical chemistry is more than just a scientific discipline, but a pathway for reducing the ecological impact of analytical processes while driving innovation in science and industry. With the continued commitment to research, collaboration, and the adoption of cutting-edge technologies, green analytical chemistry has the potential to shape a greener and more sustainable future for analytical chemistry and its diverse applications. Full article
Show Figures

Figure 1

44 pages, 7836 KiB  
Review
Biomass Hydrochar: A Critical Review of Process Chemistry, Synthesis Methodology, and Applications
by Joshua O. Ighalo, Florence C. Akaeme, Jordana Georgin, Jivago Schumacher de Oliveira and Dison S. P. Franco
Sustainability 2025, 17(4), 1660; https://doi.org/10.3390/su17041660 - 17 Feb 2025
Cited by 6 | Viewed by 3690
Abstract
Hydrothermal carbonization (HTC) is a novel thermochemical process that turns biomass into hydrochar, a substance rich in carbon that has potential uses in advanced material synthesis, energy production, and environmental remediation. With an emphasis on important chemical pathways, such as dehydration, decarboxylation, and [...] Read more.
Hydrothermal carbonization (HTC) is a novel thermochemical process that turns biomass into hydrochar, a substance rich in carbon that has potential uses in advanced material synthesis, energy production, and environmental remediation. With an emphasis on important chemical pathways, such as dehydration, decarboxylation, and polymerization, that control the conversion of lignocellulosic biomass into useful hydrochar, this review critically investigates the fundamental chemistry of HTC. A detailed analysis is conducted on the effects of process variables on the physicochemical characteristics of hydrochar, including temperature, pressure, biomass composition, water ratio, and residence time. Particular focus is placed on new developments in HTC technology that improve sustainability and efficiency, like recirculating process water and microwave-assisted co-hydrothermal carbonization. Furthermore, the improvement of adsorption capacity for organic contaminants and heavy metals is explored in relation to the functionalization and chemical activation of hydrochar, namely through surface modification and KOH treatment. The performance of hydrochar and biochar in adsorption, catalysis, and energy storage is compared, emphasizing the unique benefits and difficulties of each substance. Although hydrochar has a comparatively high higher heating value (HHV) and can be a good substitute for coal, issues with reactor design, process scalability, and secondary waste management continue to limit its widespread use. In order to maximize HTC as a sustainable and profitable avenue for biomass valorization, this study addresses critical research gaps and future initiatives. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

9 pages, 1196 KiB  
Article
A Rapid and Green Method for the Preparation of Solketal Carbonate from Glycerol
by Sanjib Kumar Karmee, Sreedhar Gundekari, Louis C. Muller and Ajinkya Hable
Reactions 2025, 6(1), 15; https://doi.org/10.3390/reactions6010015 - 13 Feb 2025
Viewed by 1149
Abstract
Glycerol is a biogenic waste that is generated in both the biodiesel and oleo-chemical industries. The value addition of surplus glycerol is of utmost importance for making these industries economically profitable. In line with this, glycerol is converted into glycerol carbonate, a potential [...] Read more.
Glycerol is a biogenic waste that is generated in both the biodiesel and oleo-chemical industries. The value addition of surplus glycerol is of utmost importance for making these industries economically profitable. In line with this, glycerol is converted into glycerol carbonate, a potential candidate for the industrial production of polymers and biobased non-isocyanate polyurethanes. In addition, glycerol can also be converted into solketal, which is the protected form of glycerol with a primary hydroxyl functional group. In this contribution, we developed a microwave-assisted solvent and catalyst-free method for converting solketal into solketal carbonate. Under conventional heating conditions, the reaction of solketal with dimethyl carbonate resulted in 70% solketal carbonate in 48 h. However, under microwave heating, 90% solketal carbonate was obtained in just 30 min. From the perspective of sustainability and green chemistry, biomass-derived heterogeneous catalysts are gaining importance. Therefore, in this project, several green catalysts, such as molecular sieves (MS, 4Å), Hβ-Zeolite, Montmorillonite K-10 clay, activated carbon from groundnut shell (Arachis hypogaea), biochar prepared from the pyrolysis of sawdust, and silica gel, were successfully used for the carbonyl transfer reaction. The obtained solketal carbonate was thoroughly characterized by 1H NMR, 13C NMR, IR, and MS. The method presented here is facile, clean, and environmentally benign, as it eliminates the use of complicated procedures, toxic solvents, and toxic catalysts. Full article
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Optimization of Two Methods for the Rapid and Effective Extraction of Quinine from Cinchona officinalis
by Gianella Ochoa, Leonardo Armijos, Jorge G. Figueroa, Ximena Jaramillo-Fierro and Natalí Solano-Cueva
Plants 2025, 14(3), 364; https://doi.org/10.3390/plants14030364 - 25 Jan 2025
Cited by 2 | Viewed by 2173
Abstract
This study successfully optimized two advanced extraction methods, microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), for the efficient and rapid recovery of quinine from Cinchona officinalis. Among the evaluated parts of the plant, the bark consistently yielded the highest quinine concentration, highlighting [...] Read more.
This study successfully optimized two advanced extraction methods, microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE), for the efficient and rapid recovery of quinine from Cinchona officinalis. Among the evaluated parts of the plant, the bark consistently yielded the highest quinine concentration, highlighting its significance as the primary source for alkaloid extraction. The optimized conditions for MAE (65% ethanol, 130 °C, 34 min) achieved a maximum yield of 3.93 ± 0.11 mg/g, while UAE (61% ethanol, 25 °C, 15 min) provided a faster but slightly lower yield of 2.81 ± 0.04 mg/g. These findings confirm the superiority of MAE and UAE over conventional methods like Soxhlet extraction in terms of time efficiency and sustainability. The quantification of quinine using high-performance liquid chromatography (HPLC) coupled with advanced detection methods further validated the reliability and reproducibility of the results. While this study focused on optimizing extraction and quantification parameters, it sets the groundwork for future research into the sustainable utilization and potential valorization of C. officinalis byproducts. These findings not only provide a standardized protocol for extracting quinine but also contribute to the broader application of green chemistry principles in pharmaceutical production. Full article
Show Figures

Figure 1

15 pages, 6215 KiB  
Article
Ultrasound-Assisted Determination of Selenium in Organic Rice Using Deep Eutectic Solvents Coupled with Inductively Coupled Plasma Mass Spectrometry
by Shanshan Zhang, Boyu Chen, Yu Liu, Haoyu Sun, Haixing Zhang, Na Li, Yang Qing, Jeevithan Elango, Dayun Zhao and Wenhui Wu
Foods 2025, 14(3), 384; https://doi.org/10.3390/foods14030384 - 24 Jan 2025
Viewed by 982
Abstract
As the focus on green chemistry intensifies, researchers are progressively looking to incorporate biodegradable and environmentally friendly solvents. Given the prevalent use of inorganic solvents in conventional methods for detecting selenium content, this study utilized a mixture design approach to create four deep [...] Read more.
As the focus on green chemistry intensifies, researchers are progressively looking to incorporate biodegradable and environmentally friendly solvents. Given the prevalent use of inorganic solvents in conventional methods for detecting selenium content, this study utilized a mixture design approach to create four deep eutectic solvents (DESs). The elements of the DESs consisted of six different compounds: guanidine hydrochloride, fructose, glycerol, citric acid, proline, and choline chloride. The synthesized deep eutectic solvents (DESs) exhibited a uniform and transparent appearance. The ideal ratios for each DES were established based on their density and viscosity measurements, leading to the formulations of DES1 (34% guanidine hydrochloride, 21% fructose, 45% water), DES2 (23% guanidine hydrochloride, 32% glycerol, 45% water), DES3 (27.5% citric acid, 27.5% proline, 45% water), and DES4 (30% choline chloride, 25% citric acid, 45% water). The characterization of the deep eutectic solvents (DESs) was performed using nuclear magnetic resonance (NMR) spectroscopy and infrared (IR) spectroscopy, which confirmed the molecular formation of each DES. Following this, the DESs were applied as extraction solvents in a process involving ultrasonic-assisted microextraction (UAE) combined with inductively coupled plasma mass spectrometry (ICP-MS) to assess the selenium levels in selenium-rich rice. The results were benchmarked against traditional microwave-assisted acid digestion (TM-AD), revealing selenium recovery rates ranging from 85.5% to 106.7%. These results indicate that UAE is an effective method for extracting selenium from selenium-rich rice, thereby establishing a solid data foundation for the environmentally friendly analysis of selenium content in rice. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 2591 KiB  
Article
Microwave-Assisted Reduction of Graphene Oxide to Reduced Graphene Oxide
by Jessica T. Mhlongo, Boitumelo Tlhaole, Linda Z. Linganiso, Tshwafo E. Motaung and Ella C. Linganiso-Dziike
Processes 2025, 13(1), 216; https://doi.org/10.3390/pr13010216 - 14 Jan 2025
Cited by 2 | Viewed by 1459
Abstract
Green chemistry seeks to find alternative synthesis routes that are less harsh to living organisms and the environment. In this communication, a microwave-assisted hydrothermal technique and a thermal annealing method were used in the reduction of graphene oxide (GO) to make reduced GO [...] Read more.
Green chemistry seeks to find alternative synthesis routes that are less harsh to living organisms and the environment. In this communication, a microwave-assisted hydrothermal technique and a thermal annealing method were used in the reduction of graphene oxide (GO) to make reduced GO (rGO). Graphite powder was oxidised using the Improved Hummers’ method, exfoliated, and freeze-dried. Thereafter, an aqueous suspension of GO was reduced under microwave (MW) irradiation for 10 min at 600 W with and without the help of a reducing agent (hydrazine hydrate). Thermal annealing reduction was also conducted under a nitrogen atmosphere at 300 °C for 1 h. Prepared samples were analysed using Raman laser spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, and X-ray photoelectron spectroscopy (XPS). A successful reduction in the GO functional groups between the sheets was established using XRD. In the Raman analysis, the ratio of the intensity of the D and G band (ID/IG) in graphene sheets assisted in assessing the quality of the graphene films. An estimation of the number of structural defects was calculated using the ID/IG ratio. The Raman analysis showed an increase in the ID/IG ratio after both oxidation and reduction processes. The defect densities of both MW-treated samples were comparable while an increased defect density was evident in the thermally annealed sample. TEM micrographs confirmed the sheet-like morphology of the samples. The rGO sheets obtained from the MW-treated method appeared to be smaller when compared to the rGO ones obtained by thermal treatment. It was also evident from XRD analysis that thermal treatment promoted the coalition of graphitic layers, such that the estimated number of layers was larger than that of GO. The elemental analysis showed that the C/O ratio of GO increased from 2 to 7.8 after MW hydrazine reduction. Full article
(This article belongs to the Special Issue Microwave Conversion Technique Intensification, 2nd Edition)
Show Figures

Figure 1

Back to TopTop