A Rapid and Green Method for the Preparation of Solketal Carbonate from Glycerol
Abstract
1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Synthesis of Solketal from Glycerol
2.3. Synthesis of Solketal Carbonate Under Conventional Heating Condition
2.4. Microwave-Assisted Synthesis of Solketal Carbonate
2.5. Characterization of Solketal Carbonate
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, F.; Hanna, M.A.; Sun, R. Value-added uses for crude glycerol-a by-product of biodiesel production. Biotechnol. Biofuels 2012, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Sarma, A.K.; Jha, M.K.; Gera, P. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol. Rep. 2020, 27, e00487. [Google Scholar] [CrossRef] [PubMed]
- Sandid, A.; Spallina, V.; Esteban, J. Glycerol to value-added chemicals: State of the art and advances in reaction engineering and kinetic modelling. Fuel Process. Technol. 2024, 253, 108008. [Google Scholar] [CrossRef]
- Sahani, S.; Upadhyay, S.N.; Sharma, Y.C. Critical review on production of glycerol carbonate from byproduct glycerol through transesterification. Ind. Eng. Chem. Res. 2021, 60, 67–88. [Google Scholar] [CrossRef]
- Ilham, Z.; Saka, S. Conversion of glycerol as by-product from biodiesel production to value-added glycerol carbonate. In Zero-Carbon Energy Kyoto 2011; Green Energy and Technology; Yao, T., Ed.; Springer: Tokyo, Japan, 2012. [Google Scholar] [CrossRef]
- Ilham, Z.; Saka, S. Esterification of glycerol from biodiesel production to glycerol carbonate in non-catalytic supercritical dimethyl carbonate. Springer Plus 2016, 5, 923. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Bio-based routes to synthesize cyclic carbonates and polyamines precursors of non-isocyanate polyurethanes: A review. Eur. Polym. J. 2019, 118, 668–684. [Google Scholar] [CrossRef]
- García, J.I.; García-Marín, H.; Pires, E. Glycerol based solvents: Synthesis, properties and applications. Green Chem. 2014, 16, 1007–1033. [Google Scholar] [CrossRef]
- Zhou, C.H.C.; Beltramini, J.N.; Fan, Y.-X.; Lu, G.Q.M. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 2008, 37, 527–549. [Google Scholar] [CrossRef]
- Pagliaro, M.; Ciriminna, R.; Kimura, H.; Pina, C.D. From glycerol to value-added products. Angew. Chem. Int. Ed. 2007, 46, 4434–4440. [Google Scholar] [CrossRef]
- Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina, C.D. Recent advances in the conversion of bioglycerol into value-added products. Eur. J. Lipid Sci. Technol. 2009, 111, 788–799. [Google Scholar] [CrossRef]
- Kenar, J.A. Glycerol as a platform chemical: Sweet opportunities on the horizon? Lipid Technol. 2007, 19, 249–253. [Google Scholar] [CrossRef]
- Budavari, S. Merck Index, 11th ed.; Merck & Co. Inc.: Rahway, NJ, USA, 1989. [Google Scholar]
- Nanda, M.R.; Zhang, Y.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Xu, C. Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review. Renew. Sustain. Energ. Rev. 2016, 56, 1022–1031. [Google Scholar] [CrossRef]
- Zahid, I.; Ayoub, M.; Abdullah, B.B.; Nazir, M.H.; Ameen, M.; Zulqarnain; Yusoff, M.H.M.; Inayat, A.; Danish, M. Production of fuel additive solketal via catalytic conversion of biodiesel-derived glycerol. Ind. Eng. Chem. Res. 2020, 59, 20961–20978. [Google Scholar] [CrossRef]
- Cychy, S.; Lechler, S.; Muhler, M. Selective anodic oxidation of solketal as acetal-protected glycerol over nickel boride in alkaline media to glyceric acid. ChemElectroChem 2022, 9, e202101214. [Google Scholar] [CrossRef]
- Schwarz, K.-H.; Kleiner, K.; Ludwig, R.; Schrötter, E.; Schick, H. Synthesis of methyl (±)-2,3-O-isopropylideneglycerate by electrochemical oxidation of (±)-1,2-O-isopropylideneglycerol. Liebigs Ann. Chem. 1991, 1991, 503–504. [Google Scholar] [CrossRef]
- Karmee, S.K. Chemo-enzymatic reaction sequence for the synthesis of dihydroxyacetone phosphate (DHAP) stock material. Synth. Commun. 2013, 43, 450–455. [Google Scholar] [CrossRef]
- Machado, A.C.O.; Da Silva, A.A.T.; Borges, C.P.; Simas, A.B.C.; Freire, D.M.G. Kinetic resolution of (R,S)-1,2-isopropylidene glycerol (solketal) ester derivatives by lipases. J. Mol. Catal. B Enzym. 2011, 69, 42–46. [Google Scholar] [CrossRef]
- Romano, D.; Ferrario, V.; Molinari, F.; Gardossi, L.; Montero, J.M.S.; Torre, P.; Converti, A. Kinetic resolution of (R, S)-1,2-O-isopropylideneglycerol by esterification with dry mycelia of moulds. J. Mol. Catal. B Enzym. 2006, 41, 71–74. [Google Scholar] [CrossRef]
- Nitbani, F.O.; Angwarmasse, L.S.; Bessy, E.Y.; Wogo, H.E.; Detha, A.I.R.; Tjitda, P.J.P. Improved synthesis of α-glycerol monolaurate using Lipozyme TL IM. J. Oleo Sci. 2022, 71, 1013–1020. [Google Scholar] [CrossRef]
- Kowalska-Kus, J.; Malaika, A.; Held, A.; Jankowska, A.; Janiszewska, E.; Zielinski, M.; Nowinska, K.; Kowalak, S.; Konska, K.; Wróblewski, K. Synthesis of solketal catalyzed by acid-modified pyrolytic carbon black from waste tires. Molecules 2024, 29, 4102. [Google Scholar] [CrossRef]
- Kenar, J.A.; Knothe, G. 1,2-Isopropylidene glycerol carbonate: Preparation, characterization, and hydrolysis. J. Am. Oil. Chem. Soc. 2008, 85, 365–372. [Google Scholar] [CrossRef]
- Prete, P.; Trano, S.; Zaccagnini, P.; Fagiolari, L.; Amici, J.; Lamberti, A.; Proto, A.; Bella, F.; Cucciniello, R. Glycerolcarbonate and solketalcarbonate as circular economy bricks for supercapacitors and potassium batteries. ChemSusChem 2024, 16, e202401636. [Google Scholar] [CrossRef] [PubMed]
- Selva, M.; Benedet, V.; Fabris, M. Selective catalytic etherification of glycerol formal and solketal with dialkyl carbonates and K2CO3. Green Chem. 2012, 14, 188–200. [Google Scholar] [CrossRef]
- Karmee, S.K. Can glycerol carbonate be synthesized without a catalyst? Lett. Org. Chem. 2024, 21, 563–567. [Google Scholar] [CrossRef]
- Das, A.; Shi, D.; Halder, G.; Rokhum, S.L. Microwave-assisted synthesis of glycerol carbonate by transesterification ofglycerol using Mangifera indica peel calcined ash as catalyst. Fuel 2022, 330, 125511. [Google Scholar] [CrossRef]
- Sarkar, A.; Santra, S.; Kundu, S.K.; Hajra, A.; Zyryanov, G.V.; Chupakhin, O.N.; Charushin, V.N.; Majee, A. A decade update on solvent and catalyst-free neat organic reactions: A step forward towards sustainability. Green Chem. 2016, 18, 4475–4525. [Google Scholar] [CrossRef]
- Li, M.-Y.; Li, J.; Gu, A.; Nong, X.-M.; Zhai, S.; Yue, Z.-Y.; Feng, C.-G.; Liu, Y.; Lin, G.-Q. Solvent-free and catalyst-free direct alkylation of alkenes. Green Chem. 2023, 25, 7073–7078. [Google Scholar] [CrossRef]
- Goswami, U.J.; Xalxo, A.; Khan, A.T. Catalyst- and solvent-free synthesis of pentacyclic-dionederivatives from 4-hydroxythiocoumarin and aldehyde using pseudo-three-component reaction. ChemistrySelect 2023, 8, e202302520. [Google Scholar] [CrossRef]
- Kumari, G.; Soni, B.; Karmee, S.K. Synthesis of activated carbon from groundnut shell via chemical activation. J. Inst. Eng. India Ser. E 2022, 103, 15–22. [Google Scholar] [CrossRef]
- Soni, B.; Karmee, S.K. Towards a continuous pilot scale pyrolysis based biorefinery for production of biooil and biochar from sawdust. Fuel 2020, 271, 117570. [Google Scholar] [CrossRef]
- Karmee, S.K.; Kumari, G.; Soni, B. Pilot scale oxidative fast pyrolysis of sawdust in a fluidized bed reactor: A biorefinery approach. Bioresour. Technol. 2020, 318, 124071. [Google Scholar] [CrossRef] [PubMed]
- Pyo, S.-H.; Hatti-Kaul, R. Chlorine-free synthesis of organic alkyl carbonates and five-and six-membered cyclic carbonates. Adv. Synth. Catal. 2016, 385, 834–839. [Google Scholar] [CrossRef]
- Kowalska-Kuś, J.; Held, A.; Nowińska, K.; Góra-Marek, K. LTA zeolites as catalysts for transesterification of glycerol with dimethyl carbonate. Fuel 2024, 362, 130757. [Google Scholar] [CrossRef]
- Algoufi, Y.T.; Hameed, B.H. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over K-zeolite derived from coal fly ash. Fuel Process. Technol. 2014, 126, 5–11. [Google Scholar] [CrossRef]
- Gonçalves, A.R.P.; Ribeiro, A.P.C.; Orišková, S.; Martins, L.M.D.R.S.; Cristino, A.F.; Dos Santos, R.G. Glycerol valorization-The role of biochar catalysts. Molecules 2022, 27, 5634. [Google Scholar] [CrossRef]
- Kenar, J.A.; Knothe, G.; Copes, A.L. Synthesis and characterization of dialkyl carbonates prepared from mid-, long-chain, and guerbet alcohols. J. Am. Oil. Chem. Soc. 2004, 81, 285–291. [Google Scholar] [CrossRef]
Entry | Catalyst (g) | Time (min) | Yield (%) a |
---|---|---|---|
1 | 0 | 45 | 93 |
2 | 0 | 35 | 92 |
3 | 0 | 30 | 90 |
4 | 0 | 15 | 81 |
5 | 0.5 b | 15 | 92 |
6 | 0.5 c | 15 | 96 |
7 | 0.5 d | 15 | 94 |
8 | 0.5 e | 15 | 97 |
9 | 0.5 f | 15 | 90 |
10 | 0.5 g | 15 | 86 |
Yield (%) | Raw Material Cost * (USD) | Cost of Solketal Carbonate (USD/kg) | |
---|---|---|---|
Scheme 2 (Solketal synthesis) | 86 | 15.87 | |
Scheme 3 (Solketal carbonate synthesis) | |||
Microwave ** | 90 | 0.84 | 17.04 |
Conventional heating *** | 65 | 2.21 | 24.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmee, S.K.; Gundekari, S.; Muller, L.C.; Hable, A. A Rapid and Green Method for the Preparation of Solketal Carbonate from Glycerol. Reactions 2025, 6, 15. https://doi.org/10.3390/reactions6010015
Karmee SK, Gundekari S, Muller LC, Hable A. A Rapid and Green Method for the Preparation of Solketal Carbonate from Glycerol. Reactions. 2025; 6(1):15. https://doi.org/10.3390/reactions6010015
Chicago/Turabian StyleKarmee, Sanjib Kumar, Sreedhar Gundekari, Louis C. Muller, and Ajinkya Hable. 2025. "A Rapid and Green Method for the Preparation of Solketal Carbonate from Glycerol" Reactions 6, no. 1: 15. https://doi.org/10.3390/reactions6010015
APA StyleKarmee, S. K., Gundekari, S., Muller, L. C., & Hable, A. (2025). A Rapid and Green Method for the Preparation of Solketal Carbonate from Glycerol. Reactions, 6(1), 15. https://doi.org/10.3390/reactions6010015