Microwave Conversion Technique Intensification, 2nd Edition

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Chemical Processes and Systems".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 3073

Special Issue Editor

Special Issue Information

Dear Colleagues,

Over the last few decades, the increased accountability of companies with regard to the environment has represented an astonishing driving force for the development of innovative industrial processes.

Since the assessment of green chemistry principles, the use of microwaves as a valuable tool for sustainable and effective conversion technology has increased. Microwave-based processes have played a very relevant role in many technological fields, proving their feasibility. Furthermore, microwave heating has been proved to be a breakthrough approach in the thermochemical conversion of polymeric materials. Additionally, the food and pharmaceutical sectors have adopted microwave processes as a common production stage in many industrial platforms. Finally, the manufacture of inorganic materials has also included microwave processing such as the performance approach in several productions.

This Special Issue aims to provide an up-to-date picture of recent advances and outstanding innovations in the field of microwave technology. Studies on the intensification of industrial microwave procedures at a lab scale and with solid proof of concept about microwave conversions will be reported.

Dr. Mattia Bartoli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microwave pyrolysis
  • microwave assisted organic synthesis
  • food processing
  • inorganics production
  • process intensification
  • microwave reactors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2591 KiB  
Article
Microwave-Assisted Reduction of Graphene Oxide to Reduced Graphene Oxide
by Jessica T. Mhlongo, Boitumelo Tlhaole, Linda Z. Linganiso, Tshwafo E. Motaung and Ella C. Linganiso-Dziike
Processes 2025, 13(1), 216; https://doi.org/10.3390/pr13010216 - 14 Jan 2025
Viewed by 907
Abstract
Green chemistry seeks to find alternative synthesis routes that are less harsh to living organisms and the environment. In this communication, a microwave-assisted hydrothermal technique and a thermal annealing method were used in the reduction of graphene oxide (GO) to make reduced GO [...] Read more.
Green chemistry seeks to find alternative synthesis routes that are less harsh to living organisms and the environment. In this communication, a microwave-assisted hydrothermal technique and a thermal annealing method were used in the reduction of graphene oxide (GO) to make reduced GO (rGO). Graphite powder was oxidised using the Improved Hummers’ method, exfoliated, and freeze-dried. Thereafter, an aqueous suspension of GO was reduced under microwave (MW) irradiation for 10 min at 600 W with and without the help of a reducing agent (hydrazine hydrate). Thermal annealing reduction was also conducted under a nitrogen atmosphere at 300 °C for 1 h. Prepared samples were analysed using Raman laser spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, and X-ray photoelectron spectroscopy (XPS). A successful reduction in the GO functional groups between the sheets was established using XRD. In the Raman analysis, the ratio of the intensity of the D and G band (ID/IG) in graphene sheets assisted in assessing the quality of the graphene films. An estimation of the number of structural defects was calculated using the ID/IG ratio. The Raman analysis showed an increase in the ID/IG ratio after both oxidation and reduction processes. The defect densities of both MW-treated samples were comparable while an increased defect density was evident in the thermally annealed sample. TEM micrographs confirmed the sheet-like morphology of the samples. The rGO sheets obtained from the MW-treated method appeared to be smaller when compared to the rGO ones obtained by thermal treatment. It was also evident from XRD analysis that thermal treatment promoted the coalition of graphitic layers, such that the estimated number of layers was larger than that of GO. The elemental analysis showed that the C/O ratio of GO increased from 2 to 7.8 after MW hydrazine reduction. Full article
(This article belongs to the Special Issue Microwave Conversion Technique Intensification, 2nd Edition)
Show Figures

Figure 1

21 pages, 5758 KiB  
Article
Innovative Solution for Invasive Species and Water Pollution: Hydrochar Synthesis from Pleco Fish Biomass
by Marisol Castro-Cárdenas, Nahum Andrés Medellín-Castillo, Lázaro Adrián González-Fernández, Roberto Leyva-Ramos, Cesar Fernando Azael Gómez-Duran, Yvan Gariepy, K. R. Jolvis Pou and Vijaya Raghavan
Processes 2024, 12(6), 1158; https://doi.org/10.3390/pr12061158 - 4 Jun 2024
Cited by 1 | Viewed by 1684
Abstract
In recent years, the invasive pleco fish has emerged as a global concern due to its adverse effects on ecosystems and economic activities, particularly in various water bodies in Mexico. This study introduces an innovative solution, employing microwave-assisted hydrothermal carbonization (MHTC) to synthesize [...] Read more.
In recent years, the invasive pleco fish has emerged as a global concern due to its adverse effects on ecosystems and economic activities, particularly in various water bodies in Mexico. This study introduces an innovative solution, employing microwave-assisted hydrothermal carbonization (MHTC) to synthesize hydrochar from pleco fish biomass. The research aimed to optimize synthesis conditions to enhance hydrochar yield, calorific value, and adsorption capacities for fluoride and cadmium in water. MHTC, characterized by low energy consumption, high reaction rates, and a simple design, was employed as a thermochemical process for hydrochar production. Key findings revealed that through response surface analysis, the study identified the optimal synthesis conditions for hydrochar production, maximizing yield and adsorption capacities while minimizing energy consumption. Physicochemical characterization demonstrated that hydrochars derived from pleco fish biomass exhibited mesoporous structures with fragmented surfaces, resembling hydroxyapatite, a major component of bone. Hydrochars derived from pleco fish biomass exhibited promising adsorption capacities for fluoride and cadmium in water, with hydrochar from Exp. 1 (90 min, 160 °C) showing the highest adsorption capacity for fluoride (4.16 mg/g), while Exp. 5 (90 min, 180 °C) demonstrated superior adsorption capacity for cadmium (98.5 mg/g). Furthermore, the utilization of pleco fish biomass for hydrochar production not only offers an eco-friendly disposal method for invasive species but also addresses fluoride and cadmium contamination issues, contributing to sustainable waste management and water treatment solutions. The resulting hydrochar, rich in solid fuel content with low pollutant emissions, presents a promising approach for waste management and carbon sequestration. Moreover, the optimized synthesis conditions pave the way for sustainable applications in energy production, addressing critical environmental and public health concerns. This research provides valuable insights into the potential of microwave-assisted hydrothermal carbonization for transforming invasive species into valuable resources, thereby mitigating environmental challenges and promoting sustainable development. Full article
(This article belongs to the Special Issue Microwave Conversion Technique Intensification, 2nd Edition)
Show Figures

Figure 1

Back to TopTop