Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (435)

Search Parameters:
Keywords = microwave dielectric property

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 618 KiB  
Article
Application of Microwaves to Reduce Checking in Low-Fat Biscuits: Impact on Sensory Characteristics and Energy Consumption
by Raquel Rodríguez, Xabier Murgui, Yolanda Rios, Eduardo Puértolas and Izaskun Pérez
Foods 2025, 14(15), 2693; https://doi.org/10.3390/foods14152693 - 30 Jul 2025
Viewed by 186
Abstract
The use of microwaves (MWs) has been proposed as an energy-efficient method for reducing checking. Along with understanding moisture distribution, it is essential to consider structural characteristics to explain how MWs reduce checking. The influence of MWs on these characteristics depends on the [...] Read more.
The use of microwaves (MWs) has been proposed as an energy-efficient method for reducing checking. Along with understanding moisture distribution, it is essential to consider structural characteristics to explain how MWs reduce checking. The influence of MWs on these characteristics depends on the food matrix’s dielectric and viscoelastic properties, which vary significantly between fresh and pre-baked dough. This study investigates the effects of MW treatment applied before (MW-O) or after conventional oven baking (O-MW) on low-fat biscuits that are prone to checking. Color (CIELab), thickness, moisture content and distribution, checking rate, texture, sensory properties, energy consumption and baking time were analyzed. The findings suggest that MWs reduce checking rate by eliminating internal moisture differences, while also changing structural properties, as evidenced by increased thickness and hardness. MW-O eliminated checking (control samples showed 100%) but negatively affected color, texture (increased hardness and breaking work), and sensory quality. The O-MW checking rate (3.41%) was slightly higher than in MW-O, probably due to the resulting different structural properties (less thickness, less hardness and breaking work). O-MW biscuits were the most preferred by consumers (54.76% ranked them first), with color and texture close to the control samples. MW-O reduced total energy consumption by 16.39% and baking time by 25.00%. For producers, these improvements could compensate for the lower biscuit quality. O-MW did not affect energy consumption but reduced baking time by 14.38%. The productivity improvement, along with the reduction in checking and the satisfactory sensory quality, indicates that O-MW could be beneficial for the bakery sector. Full article
(This article belongs to the Special Issue Cereal Processing and Quality Control Technology)
Show Figures

Figure 1

37 pages, 9111 KiB  
Article
Conformal On-Body Antenna System Integrated with Deep Learning for Non-Invasive Breast Cancer Detection
by Marwa H. Sharaf, Manuel Arrebola, Khalid F. A. Hussein, Asmaa E. Farahat and Álvaro F. Vaquero
Sensors 2025, 25(15), 4670; https://doi.org/10.3390/s25154670 - 28 Jul 2025
Viewed by 318
Abstract
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, [...] Read more.
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, size, and depth. This research begins with the evolutionary design of an ultra-wideband octagram ring patch antenna optimized for enhanced tumor detection sensitivity in directional near-field coupling scenarios. The antenna is fabricated and experimentally evaluated, with its performance validated through S-parameter measurements, far-field radiation characterization, and efficiency analysis to ensure effective signal propagation and interaction with breast tissue. Specific Absorption Rate (SAR) distributions within breast tissues are comprehensively assessed, and power adjustment strategies are implemented to comply with electromagnetic exposure safety limits. The dataset for the deep learning model comprises simulated self and mutual S-parameters capturing tumor-induced variations over a broad frequency spectrum. A core innovation of this work is the development of the Attention-Based Feature Separation (ABFS) model, which dynamically identifies optimal frequency sub-bands and disentangles discriminative features tailored to each tumor parameter. A multi-branch neural network processes these features to achieve precise tumor localization and size estimation. Compared to conventional attention mechanisms, the proposed ABFS architecture demonstrates superior prediction accuracy and interpretability. The proposed approach achieves high estimation accuracy and computational efficiency in simulation studies, underscoring the promise of integrating deep learning with conformal microwave imaging for safe, effective, and non-invasive breast cancer detection. Full article
Show Figures

Figure 1

17 pages, 1441 KiB  
Article
The Relaxation Behavior of Water Confined in AOT-Based Reverse Micelles Under Temperature-Induced Clustering
by Ivan V. Lunev, Alexander N. Turanov, Mariya A. Klimovitskaya, Artur A. Galiullin, Olga S. Zueva and Yuriy F. Zuev
Int. J. Mol. Sci. 2025, 26(15), 7152; https://doi.org/10.3390/ijms26157152 - 24 Jul 2025
Viewed by 258
Abstract
Relaxation behavior of water confined in reverse micelles under temperature-induced micelle clustering is undertaken using broadband dielectric spectroscopy in frequency range 1 Hz–20 GHz. All microemulsion systems with sufficiently noticeable micelle water pool (water/surfactant molar ratio W > 10) depict three relaxation processes, [...] Read more.
Relaxation behavior of water confined in reverse micelles under temperature-induced micelle clustering is undertaken using broadband dielectric spectroscopy in frequency range 1 Hz–20 GHz. All microemulsion systems with sufficiently noticeable micelle water pool (water/surfactant molar ratio W > 10) depict three relaxation processes, in low, high and microwave frequencies, anchoring with relaxation of shell (bound) water, orientation of surfactant anions at water-surfactant interface and relaxation of bulk water confined in reverse micelles. The analysis of dielectric relaxation processes in AOT-based w/o microemulsions under temperature induced clustering of reverse micelles were made according to structural information obtained in NMR and conductometry experiments. The “wait and switch” relaxation mechanism was applied for the explanation of results for water in the bound and bulk states under spatial limitation in reverse micelles. It was shown that surfactant layer predominantly influences the bound water. The properties of water close to AOT interface are determined by strong interactions between water and ionic AOT molecules, which perturb water H-bonding network. The decrease in micelle size causes a weakening of hydrogen bonds, deformation of its steric network and reduction in co-operative relaxation effects. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

32 pages, 4464 KiB  
Review
Multifunctional Polyimide for Packaging and Thermal Management of Electronics: Design, Synthesis, Molecular Structure, and Composite Engineering
by Xi Chen, Xin Fu, Zhansheng Chen, Zaiteng Zhai, Hongkang Miu and Peng Tao
Nanomaterials 2025, 15(15), 1148; https://doi.org/10.3390/nano15151148 - 24 Jul 2025
Viewed by 474
Abstract
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. [...] Read more.
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. Recent advances have focused on molecular design and composite engineering strategies to address these limitations. This review first summarizes the intrinsic properties of polyimides, followed by a systematic discussion of chemical synthesis, surface modification approaches, molecular design principles, and composite fabrication methods. We comprehensively examine both conventional polymerization synthetic routes and emerging techniques such as microwave-assisted thermal imidization and chemical vapor deposition. Special emphasis is placed on porous structure engineering via solid-template and liquid-template methods. Three key modification strategies are highlighted: (1) surface modifications for enhanced hydrophobicity, chemical stability, and tribological properties; (2) molecular design for optimized dielectric performance and thermal stability; and (3) composite engineering for developing high-thermal-conductivity materials with improved mechanical strength and electromagnetic interference (EMI) shielding capabilities. The dielectric constant of polyimide is reduced while chemical stability and wear resistance can be enhanced through the introduction of fluorine groups. Ultra-low dielectric constant and high-temperature resistance can be achieved by employing rigid monomers and porous structures. Furthermore, the incorporation of fillers such as graphene and boron nitride can endow the composite materials with high thermal conductivity, excellent EMI shielding efficiency, and improved mechanical properties. Finally, we discuss representative applications of polyimide and composites in electronic device packaging, EMI shielding, and thermal management systems, providing insights into future development directions. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Figure 1

25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 230
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

14 pages, 1039 KiB  
Article
Enhanced Magnetic and Dielectric Performance in Fe3O4@Li0.5Cr0.5Fe2O4 Core/Shell Nanoparticles
by Mohammed K. Al Turkestani
Nanomaterials 2025, 15(14), 1123; https://doi.org/10.3390/nano15141123 - 19 Jul 2025
Viewed by 324
Abstract
This study presents the first successful integration of Fe3O4 and Li0.5Cr0.5Fe2O4 into a well-defined core/shell nanostructure through a two-step synthesis that combines co-precipitation and sol–gel auto-combustion methods. Unlike conventional composites, the core/shell design [...] Read more.
This study presents the first successful integration of Fe3O4 and Li0.5Cr0.5Fe2O4 into a well-defined core/shell nanostructure through a two-step synthesis that combines co-precipitation and sol–gel auto-combustion methods. Unlike conventional composites, the core/shell design effectively suppresses the magnetic dead layer and promotes exchange coupling at the interface, leading to enhanced saturation magnetization, superior magnetic heating (specific absorption rate; SAR), and improved dielectric properties. Our research introduces a novel interfacial engineering strategy that simultaneously optimizes both magnetic and dielectric performance, offering a multifunctional platform for applications in magnetic hyperthermia, electromagnetic interference (EMI) shielding, and microwave devices. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

11 pages, 2553 KiB  
Article
Effect of Ni2+ Doping on the Crystal Structure and Properties of LiAl5O8 Low-Permittivity Microwave Dielectric Ceramics
by Xuekai Lan, Huatao Tang, Bairui Chen and Bin Tian
Ceramics 2025, 8(3), 85; https://doi.org/10.3390/ceramics8030085 - 4 Jul 2025
Viewed by 192
Abstract
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized [...] Read more.
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized via a solid-state reaction method to investigate the effects of Ni2+ substitution on crystal structure, microstructure, and dielectric properties. X-ray diffraction and Rietveld refinement reveal a phase transition from the P4332 to the Fd3m spinel structure at x ≈ 0.3, accompanied by a systematic increase in the lattice parameter (7.909–7.975 Å), attributed to the larger ionic radius of Ni2+ compared to Al3+. SEM analysis confirms dense microstructures with relative densities exceeding 95% and grain size increases from less than 1 μm at x = 0.1 to approximately 2 μm at x = 0.5. Dielectric measurements show a decrease in permittivity (εr) from 8.24 to 7.77 and in quality factor (Q × f) from 34,605 GHz to 20,529 GHz with increasing Ni content, while the temperature coefficient of the resonant frequency (τf) shifts negatively from −44.8 to −69.1 ppm/°C. Impedance spectroscopy indicates increased conduction losses and reduced activation energy with higher Ni2+ concentrations. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

9 pages, 1701 KiB  
Article
Effects of [Zn0.5Si0.5]3+ Substitution on Microwave Dielectric Properties of ZnAl2-x(Zn0.5Si0.5)xO4 Ceramics
by Xuekai Lan, Bairui Chen, Huatao Tang, Changzhi Yin, Bin Tian and Wen Lei
Crystals 2025, 15(7), 623; https://doi.org/10.3390/cryst15070623 - 4 Jul 2025
Viewed by 209
Abstract
Microwave dielectric ceramics are indispensable in modern communication technologies, playing a pivotal role in components such as filters, oscillators, and antennas. Among these materials, ZnAl2O4 ceramics have garnered attention for their excellent quality factor (Q × f) and [...] Read more.
Microwave dielectric ceramics are indispensable in modern communication technologies, playing a pivotal role in components such as filters, oscillators, and antennas. Among these materials, ZnAl2O4 ceramics have garnered attention for their excellent quality factor (Q × f) and low dielectric constant (εr). However, their high sintering temperature (~1650 °C) limits practical applications. This study investigates ZnAl2-x(Zn0.5Si0.5)xO4 (ZAZS) (x = 0.1–0.9) ceramics, where [Zn0.5Si0.5]3+ substitutes Al3+, to reduce sintering temperature while maintaining high-performance microwave dielectric properties. ZAZS ceramics were synthesized via the solid-state reaction method and characterized for their structural, morphological, and dielectric properties. X-ray diffraction analysis confirmed the formation of a single-phase solid solution up to x = 0.8, with minor secondary phases appearing at x = 0.9. The substitution increased lattice parameters and enhanced material densification, as observed through SEM and relative density calculations. Microwave dielectric measurements showed that ZAZS ceramics achieved a maximum Q × f of 20,200 GHz and a τf value reduced to −62 ppm/°C at x = 0.8, while εr decreased from 7.90 to 6.98. Bond-valence calculations reveal that the reduction of the average Al/Zn/Si–O bond valence weakens octahedral rigidity, systematically tuning τf toward zero. These results demonstrate that ZAZS ceramics, with a reduced sintering temperature of 1400 °C, exhibit excellent potential for application in low-loss microwave devices. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

20 pages, 4362 KiB  
Article
Ultra-Low Dielectric Constant Ca3(BO3)2 Microwave Ceramics and Their Performance Simulation in 5G Microstrip Patch Antennas
by Fangyuan Liu, Fuzhou Song, Wanghuai Zhu, Zhengpu Zhang, Zhonghua Yao, Hanxing Liu, Huaao Sun, Guangran Lin, Yue Xu, Lingcui Zhang, Yan Shen, Jinbo Zhao, Zeming Qi, Feng Shi and Jinghui Li
Crystals 2025, 15(7), 599; https://doi.org/10.3390/cryst15070599 - 25 Jun 2025
Viewed by 269
Abstract
Ca3(BO3)2 microwave dielectric ceramics with space group R-3c (#167) were prepared by cold sintering, and their properties were systematically investigated. Phonon density of state diagrams for the Ca3(BO3)2 lattice were obtained based on [...] Read more.
Ca3(BO3)2 microwave dielectric ceramics with space group R-3c (#167) were prepared by cold sintering, and their properties were systematically investigated. Phonon density of state diagrams for the Ca3(BO3)2 lattice were obtained based on first-principles calculations to provide a more comprehensive understanding of the lattice vibrational properties of the material. Raman scattering and infrared reflectance spectroscopy were employed to investigate the lattice vibrational characteristics, identifying two types of vibrational modes: internal modes associated with the planar bending and symmetric stretching vibrations of the [BO3] group, and external modes linked to the vibrations of the [CaO6] octahedron. The intrinsic dielectric properties were determined by fitting the experimental data using a four-parameter semi-quantum model. The results demonstrate that the dielectric properties of Ca3(BO3)2 ceramics are primarily influenced by the external vibrational modes. The sample under 800 MPa exhibits optimal dielectric performance, with a dielectric constant (εr) of 5.95, a quality factor (Q × f) of 11,836 GHz, and a temperature coefficient of resonant frequency (τf) of −39.89 ppm/°C. A simulation of this Ca3(BO3)2 sample as a dielectric substrate was conducted using HFSS to fabricate a microstrip patch antenna operating at 14.97 GHz, which exhibits a return loss (S11) of −25.5 dB and a gain of 7.15 dBi. Full article
Show Figures

Graphical abstract

16 pages, 3899 KiB  
Article
Uncooled Insulated Monopole Antenna for Microwave Ablation: Improved Performance with Coaxial Cable Annealing
by Federico Cilia, Lourdes Farrugia, Charles Sammut, Arif Rochman, Julian Bonello, Iman Farhat and Evan Joe Dimech
Appl. Sci. 2025, 15(12), 6616; https://doi.org/10.3390/app15126616 - 12 Jun 2025
Viewed by 293
Abstract
There is growing interest in measuring the temperature-dependent dielectric properties of bio-tissues using dual-mode techniques (scattering measurements and thermal treatment). Uncooled coaxial antennas are preferred for their direct contact with the measured medium and reduced complexity; however, they exhibit structural changes during ablation [...] Read more.
There is growing interest in measuring the temperature-dependent dielectric properties of bio-tissues using dual-mode techniques (scattering measurements and thermal treatment). Uncooled coaxial antennas are preferred for their direct contact with the measured medium and reduced complexity; however, they exhibit structural changes during ablation due to the thermal expansion of polytetrafluoroethylene (PTFE). This paper presents an experimental study on PTFE expansion in an uncooled coaxial insulated monopole antenna in response to changes in the tissue’s thermal environment. Furthermore, it presents a methodology to mitigate these effects through coaxial annealing. The investigation consists of two distinct experiments: characterising PTFE expansion and assessing the effects of annealing through microwave ablation. This was achieved by simulating the thermal effects experienced during ablation by immersing the test antenna in heated peanut oil. PTFE expansion was measured through camera monitoring and using a toolmaker’s microscope, revealing two expansion modalities: linear PTFE expansion and non-linear plastic deformation from manufacturing processes. The return loss during ablation and consequential changes in the ablated lesion were also assessed. Antenna pre-annealing increased resilience against structural changes in the antenna, improving lesion ellipticity. Therefore, this study establishes a fabrication method for achieving an uncooled thermally stable antenna, leading to an optimised dual-mode ablation procedure, enabling quasi-real-time permittivity measurement of the surrounding tissue. Full article
Show Figures

Figure 1

17 pages, 3352 KiB  
Article
Research on the Geometry Control and Microwave Absorption Performance of Auxetic Materials
by Yifei Wang, Zhuo Cai, Fuqiang Liu, Xinyu Wang, Dandan Li, Yifei Ma, Zhaomin Tong, Mei Wang, Jonghwan Suhr, Liantuan Xiao, Suotang Jia and Xuyuan Chen
Coatings 2025, 15(6), 689; https://doi.org/10.3390/coatings15060689 - 7 Jun 2025
Viewed by 489
Abstract
There is great potential for the development of microwave-absorbing materials (MAMs) for structural regulation. Auxetic structures have excellent mechanical properties, which can be applied to multifunctional MAMs in various fields. Here, the microwave absorption performances of the auxetic structures were simulated using the [...] Read more.
There is great potential for the development of microwave-absorbing materials (MAMs) for structural regulation. Auxetic structures have excellent mechanical properties, which can be applied to multifunctional MAMs in various fields. Here, the microwave absorption performances of the auxetic structures were simulated using the High-Frequency Structure Simulator (HFSS), by regulating the structure, dielectric constant, layer number, and pore size. The simulation results show that increasing the dielectric constant, layer number, or decreasing pore size will lead to a decrease in the frequency of minimum reflection loss (RLmin). The main purpose of this study is to elucidate the influence of structure, dielectric constant, layer number, and pore size on the absorption performance of auxetic structures and obtain practical auxetic MAMs with a performance of RLmin < −30 dB and effective absorption bandwidth (EAB) > 3 GHz. Finally, practical auxetic MAMs between 8 and 18 GHz and MAMs optimized in dielectric constant were obtained, which were proven to have the advantages of lightweight characteristics, high absorption, and wide bandwidth. The four structures exhibit great RLmin values of −51.09, −55.52, −47.09, and −54.98 dB with wide EAB values of 3.25, 3, 4.75, and 4.5 GHz, demonstrating the strong electromagnetic wave absorption performance of auxetic structures. This work provides theoretical guidance for the study of auxetic structures in the field of microwave absorption and provides an effective approach for multi-disciplinary research on MAMs. Full article
Show Figures

Figure 1

16 pages, 5574 KiB  
Article
Skin Hydration Monitoring Using a Microwave Sensor: Design, Fabrication, and In Vivo Analysis
by Shabbir Chowdhury, Amir Ebrahimi, Kamran Ghorbani and Francisco Tovar-Lopez
Sensors 2025, 25(11), 3445; https://doi.org/10.3390/s25113445 - 30 May 2025
Viewed by 858
Abstract
This article introduces a microwave sensor tailored for skin hydration monitoring. The design enables wireless operation by separating the sensing component from the reader, making it ideal for wearable devices like wristbands. The sensor consists of a semi-lumped LC resonator coupled to [...] Read more.
This article introduces a microwave sensor tailored for skin hydration monitoring. The design enables wireless operation by separating the sensing component from the reader, making it ideal for wearable devices like wristbands. The sensor consists of a semi-lumped LC resonator coupled to an inductive coil reader, where the capacitive part of the sensing tag is in contact with the skin. The variations in the skin hydration level alter the dielectric properties of the skin, which, in turn, modify the resonances of the LC resonator. Experimental in vivo measurements confirmed the sensor’s ability to distinguish between four hydration conditions: wet skin, skin treated with moisturizer, untreated dry skin, and skin treated with Vaseline, by measuring the resonance frequencies of the sensor. Measurement of the input reflection coefficient (S11) using a vector network analyzer (VNA) revealed distinct reflection poles and zeros for each condition, demonstrating the sensor’s effectiveness in detecting skin hydration levels. The sensing principle was analyzed using an equivalent circuit model and validated through measurements of a fabricated sensor prototype. The results confirm in vivo skin hydration monitoring by detecting frequency shifts in the reflection response within the 50–200 MHz range. The measurements and data analysis show less than 0.037% error in transmission zero (fz) together with less than 1.5% error in transmission pole (fp) while being used to detect skin hydration status on individual human subjects. The simplicity of the detection method, focusing on key frequency shifts, underscores the sensor’s potential as a practical and cost-effective solution for non-invasive skin hydration monitoring. This advancement holds significant potential for skincare and biomedical applications, enabling detection without complex signal processing. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

15 pages, 5629 KiB  
Article
Phase and Valence State Engineering of MOFs-Derived Iron Oxide@Carbon Polyhedrons for Advanced Microwave Absorption
by Xiaojiao Yang, Shuai Han, Hongna Xing, Yi Dong, Xia Deng, Yan Zong, Juan Feng, Xiuhong Zhu, Xinghua Li and Xinliang Zheng
Nanomaterials 2025, 15(11), 806; https://doi.org/10.3390/nano15110806 - 27 May 2025
Viewed by 389
Abstract
MOFs-derived magnetic carbon-based composites are considered to be valuable materials for the design of high-performance microwave absorbents. Regulating phase structures and introducing mixed-valence states within the composites is a promising strategy to enhance their charge transfer properties, resulting in improved microwave absorption performance. [...] Read more.
MOFs-derived magnetic carbon-based composites are considered to be valuable materials for the design of high-performance microwave absorbents. Regulating phase structures and introducing mixed-valence states within the composites is a promising strategy to enhance their charge transfer properties, resulting in improved microwave absorption performance. In this study, iron oxide components show a temperature-dependent phase evolution process (α-Fe2O3→Fe3O4→Fe3O4/FeO), during which the valence states of iron ions are regulated. The tunable phases modulate the magnetic Fe3O4 component, resulting in enhanced magnetic loss. The changed valence states affect the polarization relaxation by adjusting the electronic structure and tune the electron scattering by introducing defects, leading to enhanced dielectric loss. The microwave absorption properties of iron oxide@carbon composites display phase- and valence state-dependent characteristics. Especially, Fe3O4@C composites exhibit superior microwave absorption properties, ascribed to the improved magnetic/dielectric losses induced by good impedance matching and strong microwave attenuation capacity. The minimum reflection loss of Fe3O4@C composites reaches −73.14 dB at 10.35 GHz with an effective absorption bandwidth of 4.9 GHz (7.69–12.59 GHz) when the absorber thickness is 2.31 mm. This work provides new insights into the adjustment of electromagnetic parameters and microwave absorption properties by regulating the phase and valence state. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

20 pages, 3891 KiB  
Article
Breast Cancer Detection Using a High-Performance Ultra-Wideband Vivaldi Antenna in a Radar-Based Microwave Breast Cancer Imaging Technique
by Şahin Yıldız and Muhammed Bahaddin Kurt
Appl. Sci. 2025, 15(11), 6015; https://doi.org/10.3390/app15116015 - 27 May 2025
Viewed by 771
Abstract
In this study, a novel improved ultra-wideband (UWB) antipodal Vivaldi antenna suitable for breast cancer detection via microwave imaging was designed. The antenna was made more directional by adding three pairs of nestings to the antenna fins by adding elliptical patches. The frequency [...] Read more.
In this study, a novel improved ultra-wideband (UWB) antipodal Vivaldi antenna suitable for breast cancer detection via microwave imaging was designed. The antenna was made more directional by adding three pairs of nestings to the antenna fins by adding elliptical patches. The frequency operating range of the proposed antenna is UWB 3.6–13 GHz, its directivity is 11 dB, and its gain is 9.27 dB. The antenna is designed with FR4 dielectric material and dimensions of 34.6 mm × 33 mm × 1.6 mm. It was demonstrated that the bandwidth, gain, and directivity of the proposed antenna meet the requirements for UWB radar applications. The Vivaldi antenna was tested on an imaging system developed using the CST Microwave Studio (CST MWS) program. In CST MWS, a hemispherical heterogeneous breast model with a radius of 50 mm was created and a spherical tumor with a diameter of 0.9 mm was placed inside. A Gaussian pulse was sent through Vivaldi antennas and the scattered signals were collected. Then, adaptive Wiener filter and image formation algorithm delay-multiply-sum (DMAS) steps were applied to the reflected signals. Using these steps, the tumor in the breast model was scanned at high resolution. In the simulation application, the tumor in the heterogeneous phantom was detected and imaged in the correct position. A monostatic radar-based system was implemented for scanning a breast phantom in the prone position in an experimental setting. For experimental measurements, homogeneous (fat and tumor) and heterogeneous (skin, fat, glandular, and tumor) breast phantoms were produced according to the electrical properties of the tissues. The phantoms were designed as hemispherical with a diameter of 100 mm. A spherical tumor tissue with a diameter of 16 mm was placed in the phantoms produced in the experimental environment. The dynamic range of the VNA device used allowed us to image a 16 mm diameter tumor in the experimental setting. The developed microwave imaging system shows that it is suitable for the early-stage detection of breast cancer by scanning the tumor in the correct location in breast phantoms. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 9198 KiB  
Article
Microwave Antenna Sensing for Glucose Monitoring in a Vein Model Mimicking Human Physiology
by Youness Zaarour, Fatimazahrae El Arroud, Tomas Fernandez, Juan Luis Cano, Rafiq El Alami, Otman El Mrabet, Abdelouheb Benani, Abdessamad Faik and Hafid Griguer
Biosensors 2025, 15(5), 282; https://doi.org/10.3390/bios15050282 - 30 Apr 2025
Viewed by 1015
Abstract
Non-invasive glucose monitoring has become a critical area of research for diabetes management, offering a less intrusive and more patient-friendly alternative to traditional methods such as finger-prick tests. This study presents a novel approach using a semi-solid tissue-mimicking phantom designed to replicate the [...] Read more.
Non-invasive glucose monitoring has become a critical area of research for diabetes management, offering a less intrusive and more patient-friendly alternative to traditional methods such as finger-prick tests. This study presents a novel approach using a semi-solid tissue-mimicking phantom designed to replicate the dielectric properties of human skin and blood vessels. The phantom was simplified to focus solely on the skin layer, with embedded channels representing veins to achieve realistic glucose monitoring conditions. These channels were filled with D-(+)-Glucose solutions at varying concentrations (60 mg/dL to 200 mg/dL) to simulate physiological changes in blood glucose levels. A miniature patch antenna optimized to operate at 14 GHz with a penetration depth of approximately 1.5 mm was designed and fabricated. The antenna was tested in direct contact with the skin phantom, allowing for precise measurements of the changes in glucose concentration without interference from deeper tissue layers. Simulations and experiments demonstrated the antenna’s sensitivity to variations in glucose concentration, as evidenced by measurable shifts in the dielectric properties of the phantom. Importantly, the system enabled stationary measurements by injecting glucose solutions into the same blood vessels, eliminating the need to reposition the sensor while ensuring reliable and repeatable results. This work highlights the importance of shallow penetration depth in targeting close vessels for noninvasive glucose monitoring, and emphasizes the potential of microwave-based sensing systems as a practical solution for continuous glucose management. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

Back to TopTop