Effects of [Zn0.5Si0.5]3+ Substitution on Microwave Dielectric Properties of ZnAl2-x(Zn0.5Si0.5)xO4 Ceramics
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bao, J.; Zhang, K.-H.; Wang, W.; Liu, Z.-Y.; Fang, Z.; Wang, X.; Wang, C.-H.; Li, Y.-C.; He, G.-Q.; Zhou, T.; et al. A series of ultra-low permittivity ALaP4O12 (A = Li, Na, K) metaphosphate microwave dielectric ceramics for ultra-wideband dielectric resonant antenna application. ACS Appl. Mater. Interfaces 2024, 16, 58898–58911. [Google Scholar] [CrossRef]
- Wan, Q.; Li, Z.; Wang, H.; Xiong, G.; Wang, G. Crystal Structure and Microwave Dielectric Characteristics of Novel Ba(Eu1/5Sm1/5Nd1/5Pr1/5La1/5)2Ti4O12 High-Entropy Ceramic. Crystals 2024, 14, 754. [Google Scholar] [CrossRef]
- Lu, X.; Wu, P.; Yang, H.; Yang, M.; Zheng, Y. Phase Compositions and Microwave Dielectric Properties of Na1+xSrB5O9+0.5x Ceramics. Crystals 2023, 13, 1042. [Google Scholar] [CrossRef]
- Huang, H.; Li, B.; Wang, F.; Lai, Y.; Jiang, G. The Structure and Microwave Dielectric Properties of MgTi1−x(Mn1/3Nb2/3)xO3 Ceramics. Crystals 2023, 13, 1050. [Google Scholar] [CrossRef]
- Li, C.; Xiang, H.; Yin, C.; Tang, Y.; Li, Y.; Fang, L. Ultra-low loss microwave dielectric ceramic Li2Mg2TiO5 and low-temperature firing via B2O3 addition. J Electron Mater. 2018, 47, 6383–6389. [Google Scholar] [CrossRef]
- Liu, C.-L.; Lu, L.; Wu, J.-M.; Wang, C.-A.; Shi, Y.-S. Preparation and properties of 0.79 ZnAl2O4-0.21 TiO2 microwave dielectric ceramics via digital light processing. J. Alloys Compd. 2022, 911, 165095. [Google Scholar] [CrossRef]
- Siragam, S.; Dubey, R.-S.; Pappula, L.; Babu, G.-S. Zinc aluminate-based composite nanoparticles for microwave applications. ACS Omega 2022, 7, 23393–23400. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Tseng, H.-T.; His, C.-S.; Juuti, J.; Hsiang, H.-I. Low dielectric loss ceramics in the Mg4Nb2O9-ZnAl2O4-TiO2 ternary system. J. Eur. Ceram. Soc. 2022, 42, 448–452. [Google Scholar] [CrossRef]
- Lei, W.; Lu, W.-Z.; Zhu, J.-H.; Wang, X.-H. Microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites. Mater. Lett. 2007, 61, 4066–4069. [Google Scholar] [CrossRef]
- Song, X.Q.; Lu, W.Z.; Wang, X.C.; Wang, X.H.; Fan, G.F.; Muhammad, R.; Lei, W. Sintering behaviour and microwave dielectric properties of BaAl2−2x(ZnSi)xSi2O8 ceramics. J. Eur. Ceram. Soc. 2018, 38, 1529–1534. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Pirvaram, A.; Taheri-Nassaj, E.; Taghipour-Armaki, H.; Lu, W.-Z.; Lei, W.; Bafrooei, H. Study on structure, microstructure and microwave dielectric characteristics of CaV2O6 and (Ca0.95M0.05)V2O6 (M = Zn, Ba) Ceramics. J. Am. Ceram. Soc. 2019, 102, 5213–5222. [Google Scholar] [CrossRef]
- Lee, C.-J.; Pezzotti, G.; Kang, S.-H.; Kim, D.-J.; Hong, K.-S. Quantitative analysis of lattice distortion in Ba(Zn1/3Ta2/3)O3 microwave dielectric ceramics with added B2O3 using Raman spectroscopy. J. Eur. Ceram. Soc. 2006, 26, 1385–1391. [Google Scholar] [CrossRef]
- Mohacek-Grosey, V.; Vrankic, M.; Maksimovic, A.; Mandic, V. Influence of titanium doping on the Raman spectra of nanocrystalline ZnAl2O4. J. Alloys Compd. 2017, 697, 90–95. [Google Scholar] [CrossRef]
- Dwibedi, D.; Murugesan, C.; Leskes, M.; Barpanda, P. Role of annealing temperature on cation ordering in hydrothermally prepared zinc aluminate (ZnAl2O4) spinel. Mater. Res. Bull. 2018, 98, 219–224. [Google Scholar] [CrossRef]
- Fang, C.-M.; Loong, C.-K.; With, G. Phonon spectrum of ZnAl2O4 spinel from inelastic neutron scattering and first-principles calculations. Phys. Rev. B 2002, 66, 144301. [Google Scholar] [CrossRef]
- Hakki, B.-W.; Coleman, P.-A. Dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory 1960, 8, 402–410. [Google Scholar] [CrossRef]
- Shannon, R.-D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Zhou, D.; Pang, L.-X.; Wang, H.; Guo, J.; Yao, X.; Randall, C. Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5xBi1−0.5x)(MoxV1−x)O4 solid solution ceramics with scheelite structures. J. Mater. Chem. 2011, 21, 18412–18420. [Google Scholar] [CrossRef]
- Liao, Q.; Li, L. Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: Crystal structure refinement and Raman spectra study. Dalton Trans. 2012, 41, 6963–6969. [Google Scholar] [CrossRef]
- Wu, S.; Jiang, C.; Mei, Y.; Tu, W. Synthesis and microwave dielectric properties of Sm2SiO5 ceramics. J. Am. Ceram. Soc. 2012, 95, 37–40. [Google Scholar] [CrossRef]
- Tamura, H. Microwave dielectric losses caused by lattice defects. J. Eur. Ceram. Soc. 2006, 26, 1775–1780. [Google Scholar] [CrossRef]
- Liu, S.; Tang, B.; Zhou, M.; Zhao, P.; Xiang, Q.; Zhang, X.; Fang, Z.; Zhang, S. Microwave dielectric characteristics of high permittivity Ca0.35Li0.25Nd0.35Ti1-x(Zn1/3Ta2/3)xO3 ceramics (x = 0.00–0.12). Ceram. Int. 2019, 45, 8600–8606. [Google Scholar] [CrossRef]
- Xiao, M.; He, S.; Lou, J.; Zhang, P. Influence of Ge4+ substitution for Zr4+ on the microwave dielectric properties of Mg(Zr1-xGex)Nb2O8 (0 ≤ x ≤ 0.4) ceramics. Ceram. Int. 2018, 44, 21585–21590. [Google Scholar] [CrossRef]
- Park, H.-S.; Yoon, K.-H.; Kim, E.-S. Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1−xCax)[Fe0.5(Nb1−yTay)0.5]O3. J. Am. Ceram. Soc. 2001, 84, 99–103. [Google Scholar] [CrossRef]
- Park, H.-S.; Yoon, K.-H.; Kim, E.-S. Effect of bond valence on microwave dielectric properties of complex perovskite ceramics. Mater. Chem. Phys. 2003, 79, 181–183. [Google Scholar] [CrossRef]
- Zuo, R.; Xu, Y.; Shi, M.; Li, W.; He, L. A new series of low-temperature cofirable Li3Ba2La3(1−x)Y3x(MoO4)8 microwave dielectric ceramics. J. Eur. Ceram. Soc. 2018, 38, 4677–4681. [Google Scholar] [CrossRef]
- Li, J.; Fang, L.; Luo, H.; Tang, Y.; Li, C. Structure and microwave dielectric properties of a novel temperature stable low-firing Ba2LaV3O11 ceramic. J. Eur. Ceram. Soc. 2016, 36, 2143–2148. [Google Scholar] [CrossRef]
- Brese, N.-E.; Okeeffe, M. Bond-valence parameters for solids. Acta Crystallogr. B 1991, 47, 192–197. [Google Scholar] [CrossRef]
x | Lattice Parameter a (Å) | Unit Cell Volume (Å3) | Calculated Density (g/cm3) | Relative Density (%) |
---|---|---|---|---|
0.1 | 8.083 | 528.092 | 4.662 | 93.8 |
0.2 | 8.086 | 528.608 | 4.706 | 94.0 |
0.3 | 8.090 | 529.402 | 4.749 | 94.2 |
0.4 | 8.093 | 529.974 | 4.793 | 94.3 |
0.5 | 8.094 | 530.273 | 4.841 | 95.1 |
0.6 | 8.098 | 531.059 | 4.883 | 95.5 |
0.7 | 8.109 | 533.120 | 4.912 | 95.7 |
0.8 | 8.119 | 535.275 | 4.943 | 96.1 |
x | RB (Å) | dB-O (Å) | b (Å) | VB-O |
---|---|---|---|---|
0.1 | 1.663 | 1.893 | 0.37 | 3.222 |
0.2 | 1.661 | 1.904 | 0.37 | 3.111 |
0.3 | 1.660 | 1.918 | 0.37 | 2.988 |
0.4 | 1.659 | 1.929 | 0.37 | 2.892 |
0.5 | 1.658 | 1.954 | 0.37 | 2.696 |
0.6 | 1.656 | 1.978 | 0.37 | 2.513 |
0.7 | 1.655 | 2.013 | 0.37 | 2.280 |
0.8 | 1.654 | 2.042 | 0.37 | 2.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, X.; Chen, B.; Tang, H.; Yin, C.; Tian, B.; Lei, W. Effects of [Zn0.5Si0.5]3+ Substitution on Microwave Dielectric Properties of ZnAl2-x(Zn0.5Si0.5)xO4 Ceramics. Crystals 2025, 15, 623. https://doi.org/10.3390/cryst15070623
Lan X, Chen B, Tang H, Yin C, Tian B, Lei W. Effects of [Zn0.5Si0.5]3+ Substitution on Microwave Dielectric Properties of ZnAl2-x(Zn0.5Si0.5)xO4 Ceramics. Crystals. 2025; 15(7):623. https://doi.org/10.3390/cryst15070623
Chicago/Turabian StyleLan, Xuekai, Bairui Chen, Huatao Tang, Changzhi Yin, Bin Tian, and Wen Lei. 2025. "Effects of [Zn0.5Si0.5]3+ Substitution on Microwave Dielectric Properties of ZnAl2-x(Zn0.5Si0.5)xO4 Ceramics" Crystals 15, no. 7: 623. https://doi.org/10.3390/cryst15070623
APA StyleLan, X., Chen, B., Tang, H., Yin, C., Tian, B., & Lei, W. (2025). Effects of [Zn0.5Si0.5]3+ Substitution on Microwave Dielectric Properties of ZnAl2-x(Zn0.5Si0.5)xO4 Ceramics. Crystals, 15(7), 623. https://doi.org/10.3390/cryst15070623