Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = microscale heat transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 13236 KB  
Article
Influence of Initial Stress on Wave Propagation in Microelongated Thermo-Elastic Media Under the Refined Fractional Dual Phase Lag Model
by Mohamed F. Ismail, Hamdy M. Ahmed, Taha Radwan, Soliman Alkhatib, M. Elsaid Ramadan and Eslam Nabil Shawki El-Ganzoury
Fractal Fract. 2026, 10(1), 30; https://doi.org/10.3390/fractalfract10010030 - 4 Jan 2026
Viewed by 214
Abstract
This paper focuses on analyzing how initial stress influences wave propagation phenomena in a microelongated thermoelastic medium described within the framework of fractional conformable derivative, considering both the dual phase lag (DPL) and refined dual phase lag (RDPL) theories. The fundamental governing equations [...] Read more.
This paper focuses on analyzing how initial stress influences wave propagation phenomena in a microelongated thermoelastic medium described within the framework of fractional conformable derivative, considering both the dual phase lag (DPL) and refined dual phase lag (RDPL) theories. The fundamental governing equations for heat transfer, mechanical motion, and microelongation are established to incorporate finite thermal wave speed and microelongation effects. Through an appropriate non-dimensionalization procedure and the application of the normal mode analysis technique, the coupled partial differential system is transformed into a form that admits explicit analytical solutions. These solutions provide expressions for displacement, microelongation, temperature distribution, and stress components, allowing a comprehensive examination of the thermomechanical wave behavior within the medium. To better comprehend the theoretical results, numerical evaluations are performed to emphasize the comparison of DPL and RDPL in the presence and absence of initial stress, as well as the influence of the fractional-order parameter and different times on wave properties. The results show that initial stress has a considerable effect on wave propagation characteristics such as amplitude modulation, propagation speed, and attenuation rate. Furthermore, the use of fractional conformable derivatives and the RDPL formulation allows for more precise modeling and control of the thermal relaxation dynamics. The current study contributes to a better understanding of the linked microelongated and thermal effects in thermoelastic media, as well as significant insights for designing and modeling advanced microscale thermoelastic systems. Full article
(This article belongs to the Special Issue Feature Papers for Mathematical Physics Section 2026)
Show Figures

Figure 1

19 pages, 7095 KB  
Review
Experimental Research Progress on Gas–Liquid Flow and Heat Transfer Characteristics in Micro Pulsating Heat Pipes
by Jun Chen, Hao Tian, Wanli Xu, Huangdong Guo, Chao Wang, Jincheng Gu and Yichao Cao
Micromachines 2026, 17(1), 37; https://doi.org/10.3390/mi17010037 - 29 Dec 2025
Viewed by 479
Abstract
As the power density of microelectronic devices and components continues to increase, thermal management has become a critical bottleneck limiting their performance and reliability. With its advantages of effective heat dissipation, no need for external power, and good safety, the micro pulsating heat [...] Read more.
As the power density of microelectronic devices and components continues to increase, thermal management has become a critical bottleneck limiting their performance and reliability. With its advantages of effective heat dissipation, no need for external power, and good safety, the micro pulsating heat pipe (MPHP) exhibits unique application advantages and enormous development potential when compared to other cutting-edge thermal management solutions, such as embedded microchannel cooling technology, which has complicated manufacturing processes and is prone to leakage, or thermoelectric material cooling technology, which is limited by material efficiency and self-heating. However, a pulsating heat pipe (PHP) is vulnerable to the combined impacts of several elements (scale effects, wall effects, and interfacial effects) at the micro-scale, which can lead to highly variable heat transfer characteristics and complex two-phase flow behavior. There are still few thorough experimental reviews on this subject, despite the fact that many researchers have concentrated on the MPHP and carried out in-depth experimental investigations on their flow and heat transmission mechanisms. In order to provide strong theoretical support for optimizing the design of the MPHP cooling devices, this paper reviews previous experimental research on the MPHP with the goal of thoroughly clarifying the mechanisms of gas–liquid two-phase flow and heat/mass transfer within them. The definition of MPHP is first explained, along with its internal energy transmission principles and structural features. The motion states of gas–liquid two-phase working fluids in the MPHP from previous experimental investigations are then thoroughly examined, highlighting their distinctive flow patterns and evolution mechanisms. Lastly, the variations in thermal performance between different kinds of MPHPs are examined, along with the factors that affect them. Full article
Show Figures

Figure 1

33 pages, 10610 KB  
Article
Impact of Fluid Sloshing on BOG Generation in Type B LNG Tanks During Ship Emergency Stops
by Haikang Zhao, Gang Wu, Jiachen Chen, Xigang Pu, Sicong Wang, Yuhao Yuan and Ang Sun
J. Mar. Sci. Eng. 2025, 13(11), 2100; https://doi.org/10.3390/jmse13112100 - 4 Nov 2025
Viewed by 833
Abstract
The safe and efficient transport of Liquefied Natural Gas (LNG) is critically dependent on understanding fluid dynamics within cargo tanks, which directly influence structural integrity and operational safety. Study employs the Volume of Fluid (VOF) method to simulate fluid sloshing and phase change [...] Read more.
The safe and efficient transport of Liquefied Natural Gas (LNG) is critically dependent on understanding fluid dynamics within cargo tanks, which directly influence structural integrity and operational safety. Study employs the Volume of Fluid (VOF) method to simulate fluid sloshing and phase change dynamics in Type B LNG cargo tanks during emergency stop conditions. The transient simulations employ a time step of 5 × 10−3 s, a model with 46,840 grids, and the analysis focuses on impact forces on tank walls, their dependence on filling levels. Results show that the flow disturbance caused by vessel rolling increases BOG generation fluctuations by approximately 35%. Sloshing significantly increases BOG generation, particularly after a 10 s relaxation period, as the initial shock enhances heat transfer and mixing, accelerating vapor production. Original components of LNG are sensitive to BOG generation and impact forces on the front bulkhead are significantly higher than on the rear, with peak impacts occurring. The filling rate is a critical parameter influencing fluid dynamics and safety in LNG transportation. Impact magnitude increases with fill level up while at about 80% it declines; impact timing shortens at higher fill ratios. A BOG generation mechanism in which microscale turbulence and ongoing thermal imbalance govern the kinetics of evaporation phase transitions was proposed. It was discovered that the impact forces and BOG production exhibit rise–fall–rise patterns driven by impact dynamics, condensation, and evaporation processes. The findings highlight the critical role of fluid sloshing in affecting tank safety and operational efficiency, offering insights into designing more resilient LNG cargo tanks and optimizing transportation safety and economy. Full article
(This article belongs to the Special Issue Advanced Studies in Ship Fluid Mechanics)
Show Figures

Figure 1

18 pages, 6653 KB  
Article
Abrupt Transition of Nanothermite Reactivity: The Roles of Loading Density, Microstructure and Ingredients
by Chengbo Ru, Yanchun Zhang, Aoyang Yu, Lihong Chen, Hongxing Wang, Hongguo Zhang, Yiming Shan and Yi Jin
Molecules 2025, 30(20), 4101; https://doi.org/10.3390/molecules30204101 - 15 Oct 2025
Viewed by 702
Abstract
Nanothermites are widely applied as specific power sources for microscale initiators and pyrotechnics. Increasing the charge density enhances energy storage within a confined combustion chamber, but it also alters the reaction kinetics. To systemically explore this phenomenon, the combustion and pressurization characteristics of [...] Read more.
Nanothermites are widely applied as specific power sources for microscale initiators and pyrotechnics. Increasing the charge density enhances energy storage within a confined combustion chamber, but it also alters the reaction kinetics. To systemically explore this phenomenon, the combustion and pressurization characteristics of electrosprayed nanothermite-based hybrid energetic materials (THEMs) with different metallic oxides (Fe2O3, CuO, and Bi2O3) and various energetic additives (nitrocellulose (NC), octogen (HMX), ammonium perchlorate (AP), and hexanitrohexaazaisowurtzitane (CL-20)) across various loading densities were tested. The results showed that increasing the loading density decreased the porosity of the loaded nanothermites and then rapidly decreased the convective heat transfer efficiency during the combustion propagation process. When the loading density exceeded a critical value, a dramatic decrease in the peak pressure, several orders-of-magnitude decrease in the pressurization rate, and an order-of-magnitude increase in the combustion duration occurred. Due to the dual effects of the porous microstructure on heat and mass transfer, the critical density of both the electrosprayed Al/CuO/NC/CL-20 composites and their physically mixed counterparts is between 37.9 and 43.9% theoretical maximum density (TMD). Because of the different synergistic catalytic effects, the fast reactivity at the high-loading-density maintaining capacity of the applied additives was AP > HMX ≈ CL-20 > NC. Owing to their intrinsic properties of low ignition temperature and high gas yield, the Bi2O3-THEMs could maintain high-speed reactivity even at 59.7% TMD. These results provide valuable insights into the rational design and tailoring of the reactivity of nanothermites for specific applications. Full article
(This article belongs to the Special Issue Advances in Energetic Materials and Associated Detection Methods)
Show Figures

Graphical abstract

24 pages, 774 KB  
Article
Electrical Analogy Approach to Fractional Heat Conduction Models
by Slobodanka Galovic, Marica N. Popovic and Dalibor Chevizovich
Fractal Fract. 2025, 9(10), 653; https://doi.org/10.3390/fractalfract9100653 - 9 Oct 2025
Viewed by 934
Abstract
Fractional heat conduction models extend classical formulations by incorporating fractional differential operators that capture multiscale relaxation effects. In this work, we introduce an electrical analogy that represents the action of these operators via generalized longitudinal impedance and admittance elements, thereby clarifying their physical [...] Read more.
Fractional heat conduction models extend classical formulations by incorporating fractional differential operators that capture multiscale relaxation effects. In this work, we introduce an electrical analogy that represents the action of these operators via generalized longitudinal impedance and admittance elements, thereby clarifying their physical role in energy transfer: fractional derivatives account for the redistribution of heat accumulation and dissipation within micro-scale heterogeneous structures. This analogy unifies different classes of fractional models—diffusive, wave-like, and mixed—as well as distinct fractional operator types, including the Caputo and Atangana–Baleanu forms. It also provides a general computational methodology for solving heat conduction problems through the concept of thermal impedance, defined as the ratio of surface temperature variations (relative to ambient equilibrium) to the applied heat flux. The approach is illustrated for a semi-infinite sample, where different models and operators are shown to generate characteristic spectral patterns in thermal impedance. By linking these spectral signatures of microstructural relaxation to experimentally measurable quantities, the framework not only establishes a unified theoretical foundation but also offers a practical computational tool for identifying relaxation mechanisms through impedance analysis in microscale thermal transport. Full article
Show Figures

Figure 1

18 pages, 7904 KB  
Article
Microscopic Insight into Knudsen and Electromagnetic Effects on Thermal Conductivity of Closed Mesoporous Metal Gels
by Haiyan Yu, Ning Guo, Anqi Chen, Mingdong Li, Haochun Zhang and Mu Du
Gels 2025, 11(9), 739; https://doi.org/10.3390/gels11090739 - 15 Sep 2025
Viewed by 868
Abstract
Accurate thermal characterization of closed mesoporous metal gels is vital for high-temperature uses, yet microscale effects often ignored in macroscopic models significantly impact heat transfer. This study introduces a new predictive method based on an equivalent Voronoi model, accounting for the Knudsen effect [...] Read more.
Accurate thermal characterization of closed mesoporous metal gels is vital for high-temperature uses, yet microscale effects often ignored in macroscopic models significantly impact heat transfer. This study introduces a new predictive method based on an equivalent Voronoi model, accounting for the Knudsen effect and microscale electromagnetic interactions. Predicted thermal conductivity closely matched experimental results, with an average error of 5.35%. The results demonstrate that thermal conductivity decreases with porosity, increases with temperature, and varies with pore size, with a minimum of 17.47 W/(m·K) observed at ~1 μm. Variations in refractive index, extinction coefficient, and specific surface area exert negligible influence. Conductive heat transfer is suppressed under Knudsen-dominated conditions at small pore sizes. Electromagnetic analysis around the pore size corresponding to minimum conductivity reveals localized surface plasmon resonances and magnetic coupling at the gas–solid interface, which enhance radiative dissipation and further reduce thermal conductivity. Radiation dissipation efficiency increases with decreasing porosity and pore size. This model thus serves as a predictive tool for designing high-performance thermal insulation systems for elevated-temperature applications. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Figure 1

39 pages, 3629 KB  
Review
Radiative Heat Transfer Properties of Fiber–Aerogel Composites for Thermal Insulation
by Mohanapriya Venkataraman, Sebnem Sözcü and Jiří Militký
Gels 2025, 11(7), 538; https://doi.org/10.3390/gels11070538 - 11 Jul 2025
Cited by 6 | Viewed by 2711
Abstract
Fiber–aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times [...] Read more.
Fiber–aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times lower than that of still air (0.026 W/m·K). Their brittle skeleton and high infrared transparency, however, restrict how well they insulate, particularly at high temperatures (>300 °C). Incorporating microscale fibers into the aerogel matrix enhances mechanical strength and reduces radiative heat transfer by increasing scattering and absorption. For instance, it has been demonstrated that adding glass fibers reduces radiative heat transmission by around 40% because of increased infrared scattering. This review explores the fundamental mechanisms governing radiative heat transfer in fiber–aerogel composites, emphasizing absorption, scattering, and extinction coefficients. We discuss recent advancements in fiber-reinforced aerogels, focusing on material selection, structural modifications, and predictive heat transfer models. Recent studies indicate that incorporating fiber volume fractions as low as 10% can reduce the thermal conductivity of composites by up to 30%, without compromising their mechanical integrity. Key analytical and experimental methods for determining radiative properties, including Fourier transform infrared (FTIR) spectroscopy and numerical modeling approaches, are examined. The emissivity and transmittance of fiber–aerogel composites have been successfully measured using FTIR spectroscopy; tests show that fiber reinforcement at high temperatures reduces emissivity by about 15%. We conclude by outlining the present issues and potential avenues for future research to optimize fiber–aerogel composites for high-temperature applications, including energy-efficient buildings (where long-term thermal stability is necessary), electronics thermal management systems, and aerospace (where temperatures may surpass 1000 °C), with a focus on improving the materials’ affordability and scalability for industrial applications. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel (2nd Edition))
Show Figures

Figure 1

20 pages, 4557 KB  
Article
Assessment of the Feasibility of Using Additive Manufacturing from Metal Powder to Produce Compact Heat Exchangers
by Katarzyna Chliszcz, Dorota Laskowska, Waldemar Kuczyński, Błażej Bałasz, Maciej Kasperowaicz and Kevin Moj
Materials 2025, 18(13), 3035; https://doi.org/10.3390/ma18133035 - 26 Jun 2025
Cited by 1 | Viewed by 1409
Abstract
The miniaturization of heat exchangers requires advanced manufacturing methods, as conventional techniques such as milling or casting are insufficient for producing complex microscale geometries. This study investigates the feasibility of using selective laser melting (SLM) with 316L stainless steel powder to fabricate compact [...] Read more.
The miniaturization of heat exchangers requires advanced manufacturing methods, as conventional techniques such as milling or casting are insufficient for producing complex microscale geometries. This study investigates the feasibility of using selective laser melting (SLM) with 316L stainless steel powder to fabricate compact heat exchangers with minichannels. The exchanger was designed using Autodesk Inventor 2023.3 software and produced under optimized process parameters. Measurements using a hydrostatic balance demonstrated that the applied process parameters resulted in a relative material density of 99.5%. The average microhardness in the core region of the SLM-fabricated samples was 255 HV, and the chemical composition of the final material differed only slightly from that of the feedstock material (stainless steel powder). Dimensional accuracy, surface quality, and internal structure integrity were assessed using computed tomography, optical microscopy, and contact profilometry. The fabricated component demonstrated high geometric fidelity and channel permeability, with local surface deformations associated with the absence of support structures. The average surface roughness (Ra) of the minichannels was 11.11 ± 1.63 µm. The results confirm that SLM technology enables the production of functionally viable heat exchangers with complex geometries. However, limitations remain regarding dimensional accuracy, powder removal, and surface roughness. These findings highlight the potential of metal additive manufacturing for heat transfer applications while emphasizing the need for further research on performance testing under real operating conditions, especially involving two-phase flow. Full article
Show Figures

Figure 1

18 pages, 9739 KB  
Article
Fractal-Based Thermal Conductivity Prediction Modeling for Closed Mesoporous Polymer Gels
by Haiyan Yu, Mingdong Li, Ning Guo, Anqi Chen, Haochun Zhang and Mu Du
Gels 2025, 11(6), 391; https://doi.org/10.3390/gels11060391 - 26 May 2025
Cited by 2 | Viewed by 1034
Abstract
The closed mesoporous polymer gels have garnered significant attention as advanced thermal insulation materials due to their superior lightweight characteristics and excellent thermal management capabilities. To accurately predict their thermal performance, this study develops a novel mathematical model that integrates fractal geometry theory, [...] Read more.
The closed mesoporous polymer gels have garnered significant attention as advanced thermal insulation materials due to their superior lightweight characteristics and excellent thermal management capabilities. To accurately predict their thermal performance, this study develops a novel mathematical model that integrates fractal geometry theory, Kirchhoff’s thermal conduction principles, comprehensive Rosseland diffusion approximation, and Mie scattering theory. The conductive thermal conductivity component was formulated based on a diagonal cross fractal structure, while the radiative component was derived considering microscale radiative effects. Model predictions exhibit strong agreement with experimental results from various mesoporous polymer gels, achieving a prediction error of less than 11.2%. Furthermore, a detailed parametric analysis was conducted, elucidating the influences of porosity, cell size, temperature, refractive index, and extinction coefficient. The findings identify a critical cell size range (1–100 µm) and porosity range (0.74–0.97) where minimum thermal conductivity occurs. This proposed modeling approach offers a robust and efficient theoretical tool for designing and optimizing the thermal insulation characteristics of closed mesoporous polymer gels, thereby advancing their application in diverse energy conversion and management systems. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Figure 1

23 pages, 8261 KB  
Article
Flow Boiling Heat Transfer Enhancement via Femtosecond Laser-Textured Inclined Microfeatures
by Frederik Mertens, Thomas Ponnet, Balasubramanian Nagarajan, Senthil Kumar Parimalanathan, Johan Steelant, Sylvie Castagne and Maria Rosaria Vetrano
Energies 2025, 18(11), 2732; https://doi.org/10.3390/en18112732 - 24 May 2025
Cited by 3 | Viewed by 1279
Abstract
This work addresses enhancing flow boiling heat transfer via the use of engineered surfaces possessing specific novel geometries created via femtosecond laser texturing. Surface functionalization can result in improved, more controlled, and denser nucleation as well as controlled surface rewetting, leading to reduced [...] Read more.
This work addresses enhancing flow boiling heat transfer via the use of engineered surfaces possessing specific novel geometries created via femtosecond laser texturing. Surface functionalization can result in improved, more controlled, and denser nucleation as well as controlled surface rewetting, leading to reduced incipient superheats, higher heat transfer coefficients, reduced flow instabilities, and increased critical heat fluxes with respect to a non-modified reference surface. Specifically, this study investigates how bubble dynamics and heat transfer performance are affected by three different surface textures fabricated on 200 µm thick 316L stainless steel foils using a femtosecond (fs) laser. The examined textures consist of inclined (=45°) microgrooves, inclined (=45°) conical microholes, and laser-induced periodic surface structures (LIPSSs). Each textured surface’s degree of heat transfer enhancement is assessed with respect to a plain reference surface in identical operating conditions. The working fluid is PP1, a replacement of 3M™ FC-72 in heat transfer applications. Among the tested surfaces, submicron-scale LIPSSs contribute to the rewetting of the surface but only show a slight improvement when not combined with bigger microscale structures. The inclined grooves result in the most gradual onset, showing almost no incipient overshoot. The inclined conical microholes achieve superior results, improving heat transfer coefficients up to 70% and reducing the incipient temperature up to 13.5 °C over a plain reference surface. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

25 pages, 7110 KB  
Article
Regenerative and Connective Green Cells to Address Fragmentation and Climate Change in Cities: The TALEA Project Integrated Solution
by Rossella Roversi and Danila Longo
Sustainability 2025, 17(7), 3175; https://doi.org/10.3390/su17073175 - 3 Apr 2025
Cited by 4 | Viewed by 1446
Abstract
Cities are facing the combined effects of multiple challenges, e.g., climate change, biodiversity, pollution, and lacking resources. Synergic innovative solutions are required to simultaneously address them while also considering their social impacts. In this context, the TALEA—Green Cells Leading the Green Transition project, [...] Read more.
Cities are facing the combined effects of multiple challenges, e.g., climate change, biodiversity, pollution, and lacking resources. Synergic innovative solutions are required to simultaneously address them while also considering their social impacts. In this context, the TALEA—Green Cells Leading the Green Transition project, funded by the European Urban Initiative, called Greening Cities (EUI02-064)—aims to tackle urban climate challenges in Bologna (Italy) by mitigating Urban Heat Islands (UHI) and Urban Heat Waves (UHW) through an innovative, nature-based, and data-driven approach. TALEA introduces the TALEA Green Cells (TGCs) concept, modular spatial units that integrate nature-based solutions, creative technological innovation, real-time environmental monitoring, and citizen-science-driven data collection within a broader green infrastructure strategy (Bologna Verde project). TGCs bridge the physical and digital dimensions of urban planning: at the macroscale, they contribute to restoring a continuous urban green corridor; at the microscale, they regenerate underused urban spaces, transforming them into climate shelters and hubs for community engagement. A key feature of TALEA is its digital innovation ecosystem, which integrates data from different sources, including remote sensing, sensors, and citizen-generated inputs, within the Systemic Urban Observation Atlas, the Smart Innovation Package and the Digital Twin that the city of Bologna is developing. These tools enable data-driven decision-making, supporting both urban planners and local communities in designing resilient, adaptive, and inclusive urban environments. The scalability and transferability potential of this integrated approach is tested through its real implementation in three Bologna urban pilots. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
Show Figures

Figure 1

20 pages, 9558 KB  
Article
Enhancing Thermal Performance Investigations of a Methane-Fueled Planar Micro-Combustor with a Counter-Flow Flame Configuration
by Liaoliao Li, Yuze Sun, Xinyu Huang, Lixian Guo and Xinyu Zhao
Energies 2025, 18(1), 195; https://doi.org/10.3390/en18010195 - 5 Jan 2025
Viewed by 1252
Abstract
To enhance the performance of combustors in micro thermophotovoltaic systems, this study employs numerical simulations to investigate a planar microscale combustor featuring a counter-flow flame configuration. The analysis begins with an evaluation of the effects of (1) equivalence ratio Φ and (2) inlet [...] Read more.
To enhance the performance of combustors in micro thermophotovoltaic systems, this study employs numerical simulations to investigate a planar microscale combustor featuring a counter-flow flame configuration. The analysis begins with an evaluation of the effects of (1) equivalence ratio Φ and (2) inlet flow rate Vi on key thermal and combustion parameters, including the average temperature of the combustor main wall (T¯w), wall temperature non-uniformity (R¯Tw) and radiation efficiency (ηr). The findings indicate that increasing Φ causes these parameters to initially increase and subsequently decrease. Similarly, increasing the inlet flow rate leads to a monotonic decline in ηr, while the T¯w and R¯Tw exhibit a rise-then-fall trend. A comparative study between the proposed combustor and a conventional planar combustor reveals that, under identical inlet flow rate and equivalence ratio conditions, the use of the counterflow flame configuration can increase the T¯w while reducing the R¯Tw. The Nusselt number analysis shows that the counter-flow flame configuration micro-combustor achieves a larger area with positive Nusselt numbers and higher average Nusselt numbers, which highlights improved heat transfer from the fluid to the solid. Furthermore, the comparison of blow-off limits shows that the combustor with counter-flow flame configuration exhibits superior flame stability and a broader flammability range. Overall, this study provides a preliminary investigation into the use of counter-flow flame configurations in microscale combustors. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Exhaust Emissions)
Show Figures

Figure 1

20 pages, 6868 KB  
Article
Aluminum Micropillar Surfaces with Hierarchical Micro- and Nanoscale Features for Enhancement of Boiling Heat Transfer Coefficient and Critical Heat Flux
by Armin Hadžić, Matic Može, Matevž Zupančič and Iztok Golobič
Nanomaterials 2024, 14(8), 667; https://doi.org/10.3390/nano14080667 - 11 Apr 2024
Cited by 10 | Viewed by 2978
Abstract
The rapid progress of electronic devices has necessitated efficient heat dissipation within boiling cooling systems, underscoring the need for improvements in boiling heat transfer coefficient (HTC) and critical heat flux (CHF). While different approaches for micropillar fabrication on copper or silicon substrates have [...] Read more.
The rapid progress of electronic devices has necessitated efficient heat dissipation within boiling cooling systems, underscoring the need for improvements in boiling heat transfer coefficient (HTC) and critical heat flux (CHF). While different approaches for micropillar fabrication on copper or silicon substrates have been developed and have shown significant boiling performance improvements, such enhancement approaches on aluminum surfaces are not broadly investigated, despite their industrial applicability. This study introduces a scalable approach to engineering hierarchical micro-nano structures on aluminum surfaces, aiming to simultaneously increase HTC and CHF. One set of samples was produced using a combination of nanosecond laser texturing and chemical etching in hydrochloric acid, while another set underwent an additional laser texturing step. Three distinct micropillar patterns were tested under saturated pool boiling conditions using water at atmospheric pressure. Our findings reveal that microcavities created atop pillars successfully facilitate nucleation and micropillars representing nucleation site areas on a microscale, leading to an enhanced HTC up to 242 kW m−2 K−1. At the same time, the combination of the surrounding hydrophilic porous area enables increased wicking and pillar patterning, defining the vapor–liquid pathways on a macroscale, which leads to an increase in CHF of up to 2609 kW m−2. Full article
Show Figures

Figure 1

22 pages, 9924 KB  
Article
Numerical Investigation of Flow Boiling in Interconnected Microchannels at Varying Mass Fluxes
by Yuanhua Li, Zhanxiu Chen, Cang Huhe, Yao Su and Hewei Xing
Energies 2024, 17(7), 1674; https://doi.org/10.3390/en17071674 - 1 Apr 2024
Cited by 3 | Viewed by 2400
Abstract
Interconnected microchannels (IMCs) in flow boiling have the advantages of optimized heat transfer performance, energy savings and high efficiency, compact size, and strong customizability. They provide new solutions for thermal management and heat transfer at the microscale and have broad application prospects. To [...] Read more.
Interconnected microchannels (IMCs) in flow boiling have the advantages of optimized heat transfer performance, energy savings and high efficiency, compact size, and strong customizability. They provide new solutions for thermal management and heat transfer at the microscale and have broad application prospects. To further investigate the effect of microchannels with different numbers of transverse sections on the flow boiling heat transfer, we performed numerical simulations on a rectangular microchannel (RMC) and IMCs with 3, 5, and 7 transverse microchannels at high and low mass flux. It was found that fluid experiences similar bubble and slug flow in different numbers of IMCs and the RMC at low mass flux. At a heat flux of q = 90 W/cm2, the downstream regions of the IMCs produce vapor films that span the channels, obstructing the cross-section and weakening the flow exchange between the channels, which lead the heat transfer performance factor of IMC-3, reaching 148.43%, 110.04%, and 116.92% of the RMC, IMC-5, and IMC-7. Under high-quality flux, as the heat flux increases, the heat transfer coefficient increases and the pressure drop decreases due to the existence of lateral microchannels introduced in the interconnected microchannels. Whether at high or low mass flux, structural reasons pertaining to the RMC can easily lead to the accumulation of bubbles and the occurrence of slugs, and the flow boiling instability increases with the increase of heat flux, which leads to a pressure drop and heat transfer performance generally lower than that of IMCs under the same conditions. At q = 120 W/cm2, IMC-7 showed the best heat transfer enhancement. Its heat transfer performance factor was 129.37%, 120.594% and 107.98% of the RMC, IMC-3, and IMC-5, respectively. This article provides theoretical support for the design of interconnected microchannels in thermal management. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

13 pages, 5144 KB  
Article
Microstructure, Mechanical Property and Thermal Conductivity of Porous TiCO Ceramic Fabricated by In Situ Carbothermal Reduction of Phenolic Resin and Titania
by Xiaoyu Cao, Chenhuan Wang, Yisheng Li, Zehua Zhang and Lei Feng
Nanomaterials 2024, 14(6), 515; https://doi.org/10.3390/nano14060515 - 13 Mar 2024
Cited by 2 | Viewed by 2413
Abstract
The porous TiCO ceramic was synthesized through a one-step sintering method, utilizing phenolic resin, TiO2 powder, and KCl foaming agent as raw materials. Ni(NO3)2·6H2O was incorporated as a catalyst to facilitate the carbothermal reaction between the [...] Read more.
The porous TiCO ceramic was synthesized through a one-step sintering method, utilizing phenolic resin, TiO2 powder, and KCl foaming agent as raw materials. Ni(NO3)2·6H2O was incorporated as a catalyst to facilitate the carbothermal reaction between the pyrolytic carbon and TiO2 powder. The influence of Ni(NO3)2·6H2O catalyst content (0, 5, 10 wt.% of the TiO2 powder) on the microstructure, compressive strength, and thermal conductivity of the resultant porous TiCO ceramic was examined. X-ray diffraction and X-ray photoelectron spectroscopy results confirmed the formation of TiC and TiO in all samples, with an increase in the peak of TiC and a decrease in that of TiO as the Ni(NO3)2·6H2O content increased from 0% to 10%. Scanning electron microscopy results demonstrated a morphological change in the pore wall, transforming from a honeycomb-like porous structure composed of well-dispersed carbon and TiC-TiO particles to rod-shaped TiC whiskers, interconnected with each other as the catalyst content increased from 0% to 10%. Mercury intrusion porosimetry results proved a dual modal pore-size distribution of the samples, comprising nano-scale pores and micro-scale pores. The micro-scale pore size of the samples minorly changed, while the nano-scale pore size escalated from 52 nm to 138 nm as the catalyst content increased from 0 to 10%. The morphology of the pore wall and nano-scale pore size primarily influenced the compressive strength and thermal conductivity of the samples by affecting the load-bearing capability and solid heat-transfer conduction path, respectively. Full article
Show Figures

Figure 1

Back to TopTop