molecules-logo

Journal Browser

Journal Browser

Advances in Energetic Materials and Associated Detection Methods

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Applied Chemistry".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 434

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
Interests: energetic materials; fire & explosion safety; process safety; “green” technologies; detection; sensors
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
Interests: gas sensors; energetic materials; detection

Special Issue Information

Dear Colleagues,

Recently, we have seen a significant increase in research devoted to energetic materials, as demonstrated by the large amount of published papers, awarded grants and special purpose contracts. Many of these studies have been conducted with an almost sole focus on practical aspects (e.g. performance benchmarks), even though those practical achievements arise from an extensive foundation in the molecular sciences.

Consequently, in this Special Issue, we would like to invite you to present your contributions in the field of energetic materials and in detection methods relevant to them (e.g. for use in analysis of post-blasting fumes).

Dr. Tomasz Jarosz
Guest Editor

Dr. Karolina Głosz
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • energetic materials
  • detection
  • sensors
  • fumes
  • risk assessment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 6653 KB  
Article
Abrupt Transition of Nanothermite Reactivity: The Roles of Loading Density, Microstructure and Ingredients
by Chengbo Ru, Yanchun Zhang, Aoyang Yu, Lihong Chen, Hongxing Wang, Hongguo Zhang, Yiming Shan and Yi Jin
Molecules 2025, 30(20), 4101; https://doi.org/10.3390/molecules30204101 - 15 Oct 2025
Viewed by 289
Abstract
Nanothermites are widely applied as specific power sources for microscale initiators and pyrotechnics. Increasing the charge density enhances energy storage within a confined combustion chamber, but it also alters the reaction kinetics. To systemically explore this phenomenon, the combustion and pressurization characteristics of [...] Read more.
Nanothermites are widely applied as specific power sources for microscale initiators and pyrotechnics. Increasing the charge density enhances energy storage within a confined combustion chamber, but it also alters the reaction kinetics. To systemically explore this phenomenon, the combustion and pressurization characteristics of electrosprayed nanothermite-based hybrid energetic materials (THEMs) with different metallic oxides (Fe2O3, CuO, and Bi2O3) and various energetic additives (nitrocellulose (NC), octogen (HMX), ammonium perchlorate (AP), and hexanitrohexaazaisowurtzitane (CL-20)) across various loading densities were tested. The results showed that increasing the loading density decreased the porosity of the loaded nanothermites and then rapidly decreased the convective heat transfer efficiency during the combustion propagation process. When the loading density exceeded a critical value, a dramatic decrease in the peak pressure, several orders-of-magnitude decrease in the pressurization rate, and an order-of-magnitude increase in the combustion duration occurred. Due to the dual effects of the porous microstructure on heat and mass transfer, the critical density of both the electrosprayed Al/CuO/NC/CL-20 composites and their physically mixed counterparts is between 37.9 and 43.9% theoretical maximum density (TMD). Because of the different synergistic catalytic effects, the fast reactivity at the high-loading-density maintaining capacity of the applied additives was AP > HMX ≈ CL-20 > NC. Owing to their intrinsic properties of low ignition temperature and high gas yield, the Bi2O3-THEMs could maintain high-speed reactivity even at 59.7% TMD. These results provide valuable insights into the rational design and tailoring of the reactivity of nanothermites for specific applications. Full article
(This article belongs to the Special Issue Advances in Energetic Materials and Associated Detection Methods)
Show Figures

Graphical abstract

Back to TopTop