Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (579)

Search Parameters:
Keywords = microneedling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 1081 KiB  
Correction
Correction: Khalid et al. Development of Rapidly Dissolving Microneedles Integrated with Valsartan-Loaded Nanoliposomes for Transdermal Drug Delivery: In Vitro and Ex Vivo Evaluation. Pharmaceutics 2025, 17, 483
by Ramsha Khalid, Syed Mahmood, Zarif Mohamed Sofian, Zamri Chik and Yi Ge
Pharmaceutics 2025, 17(8), 1001; https://doi.org/10.3390/pharmaceutics17081001 - 31 Jul 2025
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

23 pages, 3128 KiB  
Review
Advances in Transdermal Delivery Systems for Treating Androgenetic Alopecia
by Shilong Xu, Lian Zhou, Haodong Zhao and Siwen Li
Pharmaceutics 2025, 17(8), 984; https://doi.org/10.3390/pharmaceutics17080984 - 30 Jul 2025
Viewed by 276
Abstract
Androgenetic alopecia (AGA) is the most prevalent form of alopecia areata. Traditional treatment options, including minoxidil, finasteride, and hair transplantation, have their limitations, such as skin irritation, systemic side effects, invasiveness, and high costs. The transdermal drug delivery system (TDDS) offers an innovative [...] Read more.
Androgenetic alopecia (AGA) is the most prevalent form of alopecia areata. Traditional treatment options, including minoxidil, finasteride, and hair transplantation, have their limitations, such as skin irritation, systemic side effects, invasiveness, and high costs. The transdermal drug delivery system (TDDS) offers an innovative approach for treating AGA by administering medications through the skin to achieve localized and efficient delivery while overcoming the skin barrier. This review systematically explores the application of TDDS in AGA treatment, highlighting emerging technologies such as microneedles (MNs), liposomes, ionic liquids (ILs), nanostructured lipid carriers (NLCs), and transporters (TFs). It analyzes the underlying mechanisms that enhance drug penetration through hair follicles. Finally, this review presents a forward-looking perspective on the future use of TDDS in the management of AGA, aiming to provide insights and references for designing effective transdermal drug delivery systems for this condition. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

49 pages, 8322 KiB  
Review
Research Progress on the Application of Novel Wound Healing Dressings in Different Stages of Wound Healing
by Lihong Wang, Xinying Lu, Yikun Wang, Lina Sun, Xiaoyu Fan, Xinran Wang and Jie Bai
Pharmaceutics 2025, 17(8), 976; https://doi.org/10.3390/pharmaceutics17080976 - 28 Jul 2025
Viewed by 295
Abstract
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have [...] Read more.
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have become a focal point in current clinical research. In recent years, hydrogels, microneedles, and electrospun nanofibers have emerged as three novel types of wound dressings. By influencing various stages of healing, they have notably enhanced chronic wound healing outcomes and hold considerable potential for wound repair applications. This review describes the preparation methods, classification, and applications of hydrogels, microneedles, and electrospun nanofibers around the various stages of wound healing, clarifying the healing-promoting mechanisms and characteristics of the three methods in different stages of wound healing. Building upon this foundation, we further introduce smart responsiveness, highlighting the application of stimuli-responsive wound dressings in dynamic wound management, aiming to provide insights for future research. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

38 pages, 12524 KiB  
Article
Therapeutic Efficacy of Plant-Derived Exosomes for Advanced Scar Treatment: Quantitative Analysis Using Standardized Assessment Scales
by Lidia Majewska, Agnieszka Kondraciuk, Iwona Paciepnik, Agnieszka Budzyńska and Karolina Dorosz
Pharmaceuticals 2025, 18(8), 1103; https://doi.org/10.3390/ph18081103 - 25 Jul 2025
Viewed by 424
Abstract
Background: Wound healing and scar management remain significant challenges in dermatology and aesthetic medicine. Recent advances in regenerative medicine have introduced plant-derived exosome-like nanoparticles (PDENs) as potential therapeutic agents due to their bioactive properties. This study examines the clinical application of rose [...] Read more.
Background: Wound healing and scar management remain significant challenges in dermatology and aesthetic medicine. Recent advances in regenerative medicine have introduced plant-derived exosome-like nanoparticles (PDENs) as potential therapeutic agents due to their bioactive properties. This study examines the clinical application of rose stem cell exosomes (RSCEs) in combination with established treatments for managing different types of scars. Methods: A case series of four patients with different scar etiologies (dog bite, hot oil burn, forehead trauma, and facial laser treatment complications) was treated with RSCEs in combination with microneedling (Dermapen 4.0, 0.2–0.4 mm depth) and/or thulium laser therapy (Lutronic Ultra MD, 8–14 J), or as a standalone topical treatment. All cases underwent sequential treatments over periods ranging from two to four months, with comprehensive photographic documentation of the progression. The efficacy was assessed through clinical photography and objective evaluation using the modified Vancouver Scar Scale (mVSS) and the Patient and Observer Scar Assessment Scale (POSAS), along with assessment of scar appearance, texture, and coloration. Results: All cases demonstrated progressive improvement throughout the treatment course. The dog bite scar showed significant objective improvement, with a 71% reduction in modified Vancouver Scar Scale score (from 7/13 to 2/13) and a 61% improvement in Patient and Observer Scar Assessment Scale scores after four combined treatments. The forehead trauma case exhibited similar outcomes, with a 71% improvement in mVSS score and 55–57% improvement in POSAS scores. The hot oil burn case displayed the most dramatic improvement, with a 78% reduction in mVSS score and over 70% improvement in POSAS scores, resulting in near-complete resolution without visible scarring. The facial laser complication case showed a 75% reduction in mVSS score and ~70% improvement in POSAS scores using only topical exosome application without device-based treatments. Clinical improvements across all cases included reduction in elevation, improved texture, decreased erythema, and better integration with surrounding skin. No adverse effects were reported in any of the cases. Conclusions: This preliminary case series suggests that plant-derived exosome-like nanoparticles, specifically rose stem cell exosomes (RSCEs), may enhance scar treatment outcomes when combined with microneedling and laser therapy, or even as a standalone topical treatment. The documented objective improvements, measured by standardized scar assessment scales, along with clinical enhancements in scar appearance, texture, and coloration across different scar etiologies—dog bite, burn, traumatic injury, and iatrogenic laser damage—suggest that this approach may offer a valuable addition to the current armamentarium of scar management strategies. Notably, the successful treatment of laser-induced complications using only topical exosome application demonstrates the versatility and potential of this therapeutic modality. Full article
Show Figures

Figure 1

39 pages, 1536 KiB  
Review
Transdermal Drug Delivery Systems: Methods for Enhancing Skin Permeability and Their Evaluation
by Elena O. Bakhrushina, Marina M. Shumkova, Yana V. Avdonina, Arsen A. Ananian, Mina Babazadeh, Ghazaleh Pouya, Viktoria V. Grikh, Irina M. Zubareva, Svetlana I. Kosenkova, Ivan I. Krasnyuk and Ivan I. Krasnyuk
Pharmaceutics 2025, 17(7), 936; https://doi.org/10.3390/pharmaceutics17070936 - 20 Jul 2025
Viewed by 731
Abstract
Transdermal drug delivery (TDD) is an increasingly important non-invasive method for administering active pharmaceutical ingredients (APIs) through the skin barrier, offering advantages such as improved therapeutic efficacy and reduced systemic side effects. As demand increases for patient-friendly and minimally invasive treatment options, TDD [...] Read more.
Transdermal drug delivery (TDD) is an increasingly important non-invasive method for administering active pharmaceutical ingredients (APIs) through the skin barrier, offering advantages such as improved therapeutic efficacy and reduced systemic side effects. As demand increases for patient-friendly and minimally invasive treatment options, TDD has attracted substantial attention in research and clinical practice. This review summarizes recent advances enhancing skin permeability through chemical enhancers (e.g., ethanol, fatty acids, terpenes), physical (e.g., iontophoresis, microneedles, sonophoresis), and nanotechnological methods (e.g., liposomes, ethosomes, solid lipid nanoparticles, and transferosomes). A comprehensive literature analysis, including scientific publications, regulatory guidelines, and patents, was conducted to identify innovative methods and materials used to overcome the barrier properties of the stratum corneum. Special emphasis was placed on in vitro, ex vivo, and in vivo evaluation techniques for such as Franz diffusion cells for assessing drug permeation and skin interactions. The findings highlight the importance of active physical methods, passive nanostructured systems, and chemical penetration enhancers. In conclusion, integrating multiple analytical techniques is essential for the rational design and optimization of effective transdermal drug delivery systems. Full article
(This article belongs to the Special Issue Dermal and Transdermal Drug Delivery Systems)
Show Figures

Graphical abstract

37 pages, 4317 KiB  
Review
Polymeric 3D-Printed Microneedle Arrays for Non-Transdermal Drug Delivery and Diagnostics
by Mahmood Razzaghi
Polymers 2025, 17(14), 1982; https://doi.org/10.3390/polym17141982 - 18 Jul 2025
Viewed by 326
Abstract
Microneedle arrays (MNAs) are becoming increasingly popular due to their ease of use and effectiveness in drug delivery and diagnostic applications. Improvements in three-dimensional (3D) printing techniques have made it possible to fabricate MNAs with high precision, intricate designs, and customizable properties, expanding [...] Read more.
Microneedle arrays (MNAs) are becoming increasingly popular due to their ease of use and effectiveness in drug delivery and diagnostic applications. Improvements in three-dimensional (3D) printing techniques have made it possible to fabricate MNAs with high precision, intricate designs, and customizable properties, expanding their potential in medical applications. While most studies have focused on transdermal applications, non-transdermal uses remain relatively underexplored. This review summarizes recent developments in 3D-printed MNAs intended for non-transdermal drug delivery and diagnostic purposes. It includes a literature review of studies published in the past ten years, organized by the target delivery site—such as the brain and central nervous system (CNS), oral cavity, eyes, gastrointestinal (GI) tract, and cardiovascular and reproductive systems, among other emerging areas. The findings show that 3D-printed MNAs are more adaptable than skin-based delivery, opening up exciting new possibilities for use in a variety of organs and systems. To guarantee the effective incorporation of polymeric non-transdermal MNAs into clinical practice, additional research is necessary to address current issues with materials, manufacturing processes, and regulatory approval. Full article
Show Figures

Figure 1

19 pages, 4194 KiB  
Article
3D-Printed PLA Hollow Microneedles Loaded with Chitosan Nanoparticles for Colorimetric Glucose Detection in Sweat Using Machine Learning
by Anastasia Skonta, Myrto G. Bellou and Haralambos Stamatis
Biosensors 2025, 15(7), 461; https://doi.org/10.3390/bios15070461 - 18 Jul 2025
Viewed by 359
Abstract
Biosensors play a central role in the early detection of abnormal glucose levels in individuals with diabetes; therefore, the development of less invasive systems is essential. Herein, a 3D-printed colorimetric biosensor combining microneedles and chitosan nanoparticles was developed for glucose detection in sweat [...] Read more.
Biosensors play a central role in the early detection of abnormal glucose levels in individuals with diabetes; therefore, the development of less invasive systems is essential. Herein, a 3D-printed colorimetric biosensor combining microneedles and chitosan nanoparticles was developed for glucose detection in sweat using machine learning. Briefly, hollow 3D-printed polylactic acid microneedles were constructed and loaded with chitosan nanoparticles encapsulating glucose oxidase, horseradish peroxidase, and the chromogenic substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), resulting in the formation of the chitosan nanoparticle−microneedle patches. Glucose detection was performed colorimetrically by first incubating the chitosan nanoparticle−microneedle patches with glucose samples of varying concentrations and then by using photographs of the top side of each microneedle and a color recognition application on a smartphone. The Random Sample Consensus algorithm was used to train a simple linear regression model to predict glucose concentrations in unknown samples. The developed biosensor system exhibited a good linear response range toward glucose (0.025−0.375 mM), a low limit of detection (0.023 mM), a limit of quantification (0.078 mM), high specificity, and recovery rates ranging between 86–112%. Lastly, the biosensor was applied to glucose detection in spiked artificial sweat samples, confirming the potential of the proposed methodology for glucose detection in real samples. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

34 pages, 2026 KiB  
Review
Review of Applications of Zeolites in Dermatology: Molecular Perspectives and Translational Potentials
by James Curtis Dring, Matthew Kaczynski, Rina Maria Zureikat, Michael Kaczynski, Alicja Forma and Jacek Baj
Int. J. Mol. Sci. 2025, 26(14), 6821; https://doi.org/10.3390/ijms26146821 - 16 Jul 2025
Viewed by 436
Abstract
Zeolites, microporous aluminosilicates with tuneable physicochemical properties, have garnered increasing attention in dermatology due to their antimicrobial, detoxifying, and drug delivery capabilities. This review evaluates the structural characteristics, therapeutic mechanisms, and clinical applications of zeolites—including clinoptilolite, ZSM-5, ZIF-8, and silver/zinc-functionalized forms—across skin infections, [...] Read more.
Zeolites, microporous aluminosilicates with tuneable physicochemical properties, have garnered increasing attention in dermatology due to their antimicrobial, detoxifying, and drug delivery capabilities. This review evaluates the structural characteristics, therapeutic mechanisms, and clinical applications of zeolites—including clinoptilolite, ZSM-5, ZIF-8, and silver/zinc-functionalized forms—across skin infections, wound healing, acne management, and cosmetic dermatology. Zeolites demonstrated broad-spectrum antibacterial and antifungal efficacy, enhanced antioxidant activity, and biocompatible drug delivery in various dermatological models. Formulations such as silver–sulfadiazine–zeolite composites, Zn–clinoptilolite for acne, and zeolite-integrated microneedles offer innovative avenues for targeted therapy. Zeolite-based systems represent a promising shift toward multifunctional, localized dermatologic treatments. However, further research into long-term safety, formulation optimization, and clinical validation is essential to transition these materials into mainstream therapeutic use. Full article
Show Figures

Figure 1

23 pages, 6291 KiB  
Article
Application of Standardized Rosa damascena Stem Cell-Derived Exosomes in Dermatological Wound Healing and Scar Management: A Retrospective Case-Series Study with Long-Term Outcome Assessment
by Lidia Majewska, Agnieszka Kondraciuk, Karolina Dorosz and Agnieszka Budzyńska
Pharmaceutics 2025, 17(7), 910; https://doi.org/10.3390/pharmaceutics17070910 - 14 Jul 2025
Cited by 2 | Viewed by 653
Abstract
Background: Scar formation and impaired wound healing represent significant challenges in dermatology and aesthetic medicine, with limited effective treatment options currently available. Objectives: To evaluate the efficacy and long-term outcomes of Damask rose stem-cell-derived exosome (RSCE) therapy in the management of [...] Read more.
Background: Scar formation and impaired wound healing represent significant challenges in dermatology and aesthetic medicine, with limited effective treatment options currently available. Objectives: To evaluate the efficacy and long-term outcomes of Damask rose stem-cell-derived exosome (RSCE) therapy in the management of diverse dermatological conditions, including traumatic wounds, surgical scars, and atrophic acne scars. Methods: We conducted a case series study from June 2023 to November 2024, documenting four cases with different types of skin damage treated with lyophilized RSCE products. Treatment protocols included a variety of delivery methods such as topical application, microneedling, and post-procedure care. Follow-up assessments were performed at intervals ranging from 7 days to 10 months. Results: All patients demonstrated significant improvements in scar appearance, skin elasticity, hydration, and overall tissue quality. In traumatic facial injury, RSCE therapy facilitated reduction in scar contracture and improved functional outcomes. For atrophic acne scars, comparative treatment of facial sides showed enhanced results with RSCE addition. Acute wounds exhibited accelerated healing with reduced inflammation, while chronic wounds demonstrated improved epithelialization and long-term scar quality. Conclusions: This case series provides preliminary evidence suggesting that RSCE therapy may offer significant benefits in wound healing and scar management. The observed improvements in tissue regeneration, inflammatory modulation, and long-term aesthetic outcomes warrant further investigation through controlled clinical trials. Full article
Show Figures

Figure 1

29 pages, 1189 KiB  
Review
Decoding Skin Aging: A Review of Mechanisms, Markers, and Modern Therapies
by Jorge Naharro-Rodriguez, Stefano Bacci, Maria Luisa Hernandez-Bule, Alfonso Perez-Gonzalez and Montserrat Fernandez-Guarino
Cosmetics 2025, 12(4), 144; https://doi.org/10.3390/cosmetics12040144 - 10 Jul 2025
Viewed by 1596
Abstract
Skin aging is a multifactorial process driven by both intrinsic mechanisms—such as telomere shortening, oxidative stress, hormonal decline, and impaired autophagy—and extrinsic influences including ultraviolet radiation, pollution, smoking, and diet. Together, these factors lead to the structural and functional deterioration of the skin, [...] Read more.
Skin aging is a multifactorial process driven by both intrinsic mechanisms—such as telomere shortening, oxidative stress, hormonal decline, and impaired autophagy—and extrinsic influences including ultraviolet radiation, pollution, smoking, and diet. Together, these factors lead to the structural and functional deterioration of the skin, manifesting as wrinkles, pigmentation disorders, thinning, and reduced elasticity. This review provides an integrative overview of the biological, molecular, and clinical dimensions of skin aging, emphasizing the interplay between inflammation, extracellular matrix degradation, and senescence-associated signaling pathways. We examine histopathological hallmarks and molecular markers and discuss the influence of genetic and ethnic variations on aging phenotypes. Current therapeutic strategies are explored, ranging from topical agents (e.g., retinoids, antioxidants, niacinamide) to procedural interventions such as lasers, intense pulsed light, photodynamic therapy, microneedling, and injectable biostimulators. Special attention is given to emerging approaches such as microneedle delivery systems, with mention of exosome-based therapies. The review underscores the importance of personalized anti-aging regimens based on biological age, phototype, and lifestyle factors. As the field advances, integrating mechanistic insights with individualized treatment selection will be key to optimizing skin rejuvenation and preserving long-term dermal health. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

24 pages, 886 KiB  
Review
Cosmeceutical and Dermatological Potential of Olive Mill Wastewater: A Sustainable and Eco-Friendly Source of Natural Ingredients
by Adriana Albini, Paola Corradino, Danilo Morelli, Francesca Albini and Douglas Noonan
Cosmetics 2025, 12(4), 142; https://doi.org/10.3390/cosmetics12040142 - 3 Jul 2025
Viewed by 1605
Abstract
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. [...] Read more.
Olive oil and its derivatives, particularly polyphenol-rich extracts, are valued for their antioxidant, anti-inflammatory, and regenerative properties. Olive mill wastewater (OMWW), a byproduct of olive oil production, traditionally seen as an environmental pollutant, has emerged as a promising source of high-value dermatological ingredients. Key polyphenols such as hydroxytyrosol, oleuropein, and tyrosol exhibit potent antioxidant, anti-inflammatory, antimicrobial, and photoprotective effects. These compounds mitigate oxidative stress, prevent collagen degradation, modulate NF-κB and MAPK signaling, and promote cellular repair and regeneration. Skin health is increasingly recognized as crucial to overall well-being, driving interest in cosmeceuticals that combine cosmetic benefits with dermatological activity. This review examines the cosmeceutical and dermatological potential of OMWW, highlighting its incorporation into innovative topical formulations like oil-in-water nanoemulsions, liposomes, and microneedles that enhance skin penetration and bioavailability. Additionally, OMWW fractions have shown selective antiproliferative effects on melanoma cells, suggesting potential for skin cancer prevention. Valorization of OMWW through biorefinery processes aligns with circular-economy principles, converting agro-industrial waste into sustainable cosmeceutical ingredients. This approach not only meets consumer demand for natural, effective products, but also reduces the ecological footprint of olive oil production, offering a scalable, eco-friendly strategy for next-generation dermatological applications. Full article
Show Figures

Figure 1

25 pages, 1263 KiB  
Review
Nanoneedle-Based Transdermal Gene Delivery: A Minimally Invasive Strategy for Gene Therapy
by Fatma Julide Akbuğa, Muhammet Davut Arpa and Emine Şalva
Int. J. Mol. Sci. 2025, 26(13), 6235; https://doi.org/10.3390/ijms26136235 - 27 Jun 2025
Viewed by 458
Abstract
Transdermal drug delivery systems have recently been explored as an alternative to oral systems, which have many challenges. Due to the limitations of first-generation transdermal systems, second- and third-generation systems have been developed, among which microneedles have been the most remarkable products. Building [...] Read more.
Transdermal drug delivery systems have recently been explored as an alternative to oral systems, which have many challenges. Due to the limitations of first-generation transdermal systems, second- and third-generation systems have been developed, among which microneedles have been the most remarkable products. Building on the advancements of nanotechnology, nanoneedles have recently been developed. Gene therapy molecules—such as DNA, RNA, siRNA, miRNA, and other nucleic acids—are typically delivered using viral or chemical carriers, but these methods face several challenges. In this context, nanoneedles offer a promising and efficient solution for delivering these large molecules. Nanoneedles are a biocompatible and reliable physical method for gene delivery, enabling transdermal administration by penetrating the skin barrier and delivering nucleic acids directly into cells. Their ability to penetrate cellular barriers with minimal invasiveness makes them advantageous for delivering genetic materials. This review will focus on the potential applications of nanoneedles in pharmaceutical contexts, especially in gene therapy. In addition, information on the properties, structure, and fabrication of nanoneedles is also provided. Full article
(This article belongs to the Special Issue Nanomedicine in Gene Therapy and Immunotherapy)
Show Figures

Figure 1

14 pages, 1059 KiB  
Systematic Review
Role of Hyaluronic Acid in Post-Blepharoplasty Volume Restoration and Complication Management: A Systematic Review
by Alaa Safia, Uday Abd Elhadi, Shlomo Merchavy, Ramzy Batheesh and Naji Bathish
J. Clin. Med. 2025, 14(13), 4572; https://doi.org/10.3390/jcm14134572 - 27 Jun 2025
Viewed by 457
Abstract
Background: Hyaluronic acid (HA) has emerged as a favored adjunct to restore volume after blepharoplasty and is very effective in the treatment of postoperative hollowness, sagging, and asymmetry. Its efficacy, rate of complications, and optimal injection technique are different in different clinical studies. [...] Read more.
Background: Hyaluronic acid (HA) has emerged as a favored adjunct to restore volume after blepharoplasty and is very effective in the treatment of postoperative hollowness, sagging, and asymmetry. Its efficacy, rate of complications, and optimal injection technique are different in different clinical studies. Hyaluronidase has been studied by diverse methods in the treatment of HA complications, including chronic edema and surgical distortion. This study critically evaluated the efficacy, safety, and technical aspects of HA in the context of blepharoplasty outcomes. Methods: A systematic review was performed to evaluate the use of HA and hyaluronidase for post-blepharoplasty volume rejuvenation and the treatment of complications. Studies describing HA injection technique, time interval between blepharoplasty and injection, volumetric maintenance, complication rates, esthetic and functional results, and patient satisfaction scores were considered. Risk of bias was estimated with the ROBINS-I tool. Results: Sample sizes across the five included studies ranged from 5 to 109 patients, and follow-up intervals ranged from 1 month to 7 years. The age of patients ranged from 31 to 76 years, and females accounted for 86% of the participants in some studies. Injection of HA successfully restored meaningful volume, with retention persisting for over 12 months in the majority of cases. HA preoperative injection caused significant patient satisfaction in a short duration and was not associated with severe complications; delayed injection caused slight distortions in some revision operations. Lipofilling showed a reduced rate of complications (12%) compared with isolated blepharoplasty (20%), suggesting its utility as an adjuvant procedure of volume restoration. Hyaluronidase successfully treated recalcitrant edema, with improvements ranging from 50% to 100%, while the application of adjuvant RF microneedling caused complete remission (100%) in subjects with multiple treatments. The application of ultrasound imaging made measurements more precise, although methods of clinical assessment were significantly heterogeneous among the studies. Conclusions: HA displayed efficacy in terms of efficient volume restoration after blepharoplasty, especially when technique, time, and filler selection are meticulously optimized. In comparison to lipofilling, HA is seen as somewhat safer because of its reversibility and lower likelihood of adverse vascular events. Nonetheless, considerable variability in filler type, amount, timing of administration, and result evaluation constrains conclusive clinical recommendations. The use of hyaluronidase is an effective remedial approach for overcorrection or ongoing edema. Full article
Show Figures

Figure 1

27 pages, 1432 KiB  
Review
Neurosteroids Progesterone and Dehydroepiandrosterone: Molecular Mechanisms of Action in Neuroprotection and Neuroinflammation
by Tatiana A. Fedotcheva and Nikolay L. Shimanovsky
Pharmaceuticals 2025, 18(7), 945; https://doi.org/10.3390/ph18070945 - 23 Jun 2025
Viewed by 827
Abstract
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic [...] Read more.
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic brain injury, fragile X syndrome, and chemical neurotoxicity. However, only the allopregnanolone analogs brexanolone and zuranolone have been recently approved by the FDA for the treatment of depression. The aim of this review was to evaluate whether the endogenous neurosteroids can be used in clinical practice as neuroprotectors. Neurosteroids are multitarget compounds with strong anti-inflammatory, immunomodulatory, and cytoprotective action; they stimulate the synthesis and release of BDNF and increase remyelination and regeneration. In addition to nuclear and membrane steroid hormone receptors, such as PR, mPR, PGRMC1,2, ER, AR, CAR, and PXR, they can bind to GABAA receptors, NMDA receptors, Sigma-1 and -2 receptors (σ1-R/σ2-R). Among these, mPRs, PGRMC1,2, sigma receptors, and mitochondrial proteins attract comprehensive attention because of strong binding with the P4 and DHEA, but subsequent signaling is poorly studied. Other plasma membrane and mitochondrial proteins are involved in the rapid nongenomic neuroprotective action of neurosteroids. P-glycoprotein, BCL-2 proteins, and the components of the mitochondrial permeability transition pore (mPTP) play a significant role in the defense against the injuries of the brain and the peripheral nervous system. The role of these proteins in the molecular mechanisms of action in neuroprotection and neuroinflammation has not yet been clearly established. The aspects of their participation in these pathological processes are discussed. New formulations, such as lipophilic emulsions, nanogels, and microneedle array patches, are attractive strategies to overcome the low bioavailability of these neurosteroids for the amelioration and treatment of various nervous disorders. Full article
Show Figures

Figure 1

16 pages, 3111 KiB  
Article
Parametric Rule-Based Intelligent System (PRISM) for Design and Analysis of High-Strength Separable Microneedles
by Sanghwi Ju, Seung-hyun Im, Kyungsun Seo, Junhyeok Lee, Seokjae Kim, Tongil Park, Taeksu Lee, Byungjeon Kang, Jayoung Kim, Ryong Sung, Jong-Oh Park and Doyeon Bang
Micromachines 2025, 16(7), 726; https://doi.org/10.3390/mi16070726 (registering DOI) - 21 Jun 2025
Viewed by 465
Abstract
Transdermal microneedle systems have received great attention due to their minimally invasive way of delivering biomolecules through the skin with reduced pain. However, designing high-strength separable microneedles, which enable easy skin penetration and easy patch detachment, is challenging. Here, we present a Parametric [...] Read more.
Transdermal microneedle systems have received great attention due to their minimally invasive way of delivering biomolecules through the skin with reduced pain. However, designing high-strength separable microneedles, which enable easy skin penetration and easy patch detachment, is challenging. Here, we present a Parametric Rule-based Intelligent System (PRISM), which generates the design of and analyzes high-strength separable microneedles. The PRISM platform integrates parametric 3D modeling, geometry-based structural analysis, and high-resolution micro-3D printing for the creation of high-strength separable microneedles. We fabricated prototype microneedle arrays via microscale stereolithographic printing (pµSL) and demonstrated separation of microneedle tips in a skin-mimicking phantom sample. Mechanical testing showed that the suggested design achieved 2.13 ± 0.51 N axial resistance and 73.92 ± 34.77 mN shear fracture force; this surpasses that of conventional designs. Finally, an experiment using a skin-mimicking artificial phantom sample confirmed that only the PRISM-designed separable microneedles could have been inserted and separated at the target depth, whereas conventional designs failed to detach. This approach addresses the development of microneedle systems, which achieve both robust skin phantom penetration and reliable separable delivery, presenting an efficient development tool in transdermal drug delivery technology. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop