Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (484)

Search Parameters:
Keywords = micro-pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1372 KB  
Article
Energy Storage Systems in Micro-Grid of Hybrid Renewable Energy Solutions
by Helena M. Ramos, Oscar E. Coronado-Hernández, Mohsen Besharat, Armando Carravetta, Oreste Fecarotta and Modesto Pérez-Sánchez
Technologies 2025, 13(11), 527; https://doi.org/10.3390/technologies13110527 - 14 Nov 2025
Abstract
This research evaluates Battery Energy Storage Systems (BESS) and Compressed Air Vessels (CAV) as complementary solutions for enhancing micro-grid resilience, flexibility, and sustainability. BESS units ranging from 5 to 400 kWh were modeled using a Nonlinear Autoregressive Neural Network with Exogenous Inputs (NARX) [...] Read more.
This research evaluates Battery Energy Storage Systems (BESS) and Compressed Air Vessels (CAV) as complementary solutions for enhancing micro-grid resilience, flexibility, and sustainability. BESS units ranging from 5 to 400 kWh were modeled using a Nonlinear Autoregressive Neural Network with Exogenous Inputs (NARX) neural network, achieving high SOC prediction accuracy with R2 > 0.98 and MSE as low as 0.13 kWh2. Larger batteries (400–800 kWh) effectively reduced grid purchases and redistributed surplus energy, improving system efficiency. CAVs were tested in pumped-storage mode, achieving 33.9–57.1% efficiency under 0.5–2 bar and high head conditions, offering long-duration, low-degradation storage. Waterhammer-induced CAV storage demonstrated reliable pressure capture when Reynolds number ≤ 75,000 and Volume Fraction Ratio, VFR > 11%, with a prototype reaching 6142 kW and 170 kWh at 50% air volume. CAVs proved modular, scalable, and environmentally robust, suitable for both energy and water management. Hybrid systems combining BESS and CAVs offer strategic advantages in balancing renewable intermittency. Machine learning and hydraulic modeling support intelligent control and adaptive dispatch. Together, these technologies enable future-ready micro-grids aligned with sustainability and grid stability goals. Full article
(This article belongs to the Special Issue Innovative Power System Technologies)
19 pages, 2727 KB  
Article
Efflux-Mediated Macrolide Resistance in Clinical Streptococcus Isolates: A Comparative Molecular Study
by Salsabeel M. Moshewh, Salma E. Mohamed, Praveen Kumar, Abdelgadir E. Eltom, Supriya R. Jagdale, Einas A. Osman, Saher S. Ahmed, Nour A. M. Farajallah and Sara Ali
Antibiotics 2025, 14(11), 1148; https://doi.org/10.3390/antibiotics14111148 - 13 Nov 2025
Abstract
Background: Efflux-mediated macrolide resistance represents an emerging threat in Streptococcus infections globally. However, molecular epidemiological data from the Gulf region, particularly the United Arab Emirates (UAE), remain limited. This study addresses this knowledge gap by investigating efflux pump resistance mechanisms in clinical Streptococcus [...] Read more.
Background: Efflux-mediated macrolide resistance represents an emerging threat in Streptococcus infections globally. However, molecular epidemiological data from the Gulf region, particularly the United Arab Emirates (UAE), remain limited. This study addresses this knowledge gap by investigating efflux pump resistance mechanisms in clinical Streptococcus isolates. Methods: A cross-sectional study analyzed 100 clinical isolates (99 Streptococcus and 1 Enterococcus) from Thumbay Hospital, Ajman, UAE (October–December 2024). Antimicrobial susceptibility testing for minimum inhibitory concentration (MIC) determination was performed using the DxM 1096 MicroScan WalkAway system (Beckman Coulter Inc., Brea, CA, USA; LabProv4.42). PCR detected mef(A/E), msr(D), and tet(K) resistance genes with sequencing confirmation. Comparative genomic analysis was performed using a total of 30 publicly available Streptococcus genomes: 15 from India and 15 from Saudi Arabia. Statistical analysis employed chi-square tests, Fisher’s exact tests, and multivariate logistic regression with Bonferroni correction (α = 0.05). Results: Among the isolates, erythromycin resistance occurred in 39 isolates (39%, 95% CI: 29.4–49.2%) and clindamycin resistance in 31 isolates (31%, 95% CI: 22.1–40.9%). The mef(A/E) gene was detected in 31 isolates (31%, 95% CI: 22.1–40.9%), and msr(D) in 3 isolates (3%, 95% CI: 0.6–8.5%), with co-occurrence in 3 isolates (3%). No isolates harbored tet(K). Multivariate analysis identified mef(A/E) as the strongest predictor of macrolide resistance (OR = 18.7, 95% CI: 7.9–44.2, p < 0.001). Regional comparison revealed significant differences: mef(A/E) prevalence was 31% (UAE), 87% (India), and 0% (Saudi Arabia) (p < 0.001). Conclusions: This study provides the first molecular characterization of efflux-mediated macrolide resistance in UAE Streptococcus isolates. The predominance of mef(A/E)-mediated resistance with confirmed efflux activity highlights the clinical significance of active surveillance and targeted antimicrobial stewardship in the region. Full article
Show Figures

Figure 1

16 pages, 3989 KB  
Article
Integrating Fish-Friendly Hydropower Solutions with the Nature Restoration Policy Through River Barrier Modification
by Calvin Stephen, Brian Huxley, John A. Byrne, Patrick Morrissey, Mary Kelly-Quinn and Aonghus McNabola
Energies 2025, 18(22), 5931; https://doi.org/10.3390/en18225931 - 11 Nov 2025
Viewed by 160
Abstract
The recently adopted EU Nature Restoration law emphasises the urgent need to address the ecological impacts of river barriers, which fragment habitats and disrupt natural flows. However, efforts to remove barriers are often constrained by prohibitive costs, regulatory hurdles, and public opposition. In [...] Read more.
The recently adopted EU Nature Restoration law emphasises the urgent need to address the ecological impacts of river barriers, which fragment habitats and disrupt natural flows. However, efforts to remove barriers are often constrained by prohibitive costs, regulatory hurdles, and public opposition. In Ireland, barrier removal costs range between EUR 200,000 and EUR 500,000 per structure, representing a substantial financial burden given that more than 73,000 barriers are identified nationwide. Although removal would restore ecological function, it would also eliminate the potential to repurpose these structures for hydropower, thereby reducing opportunities to contribute to the national target of 80% renewable electricity generation by 2030. This study outlines the development of a river barrier modification system to serve the dual purposes of upstream and downstream fish lift over barriers and generation of electricity for local consumption using a fish-friendly pump-as-turbine unit. Under normal flows, the unit generates electricity while during low flows it operates in pumping mode to enable fish passage. A prototype was fabricated and tested at a fish farm using both artificial and live fish. An assessment of the regional potential was also extrapolated from preliminary results suggesting that the BMS offers a cost-effective alternative to full barrier removal, potentially offsetting costs by 50–85% while contributing to both EU restoration targets and national renewable energy goals. Full article
Show Figures

Figure 1

23 pages, 6692 KB  
Article
Internal Flow Characteristics and Modal Analysis of an Ultra-Low Specific Speed Pump as Turbine
by Wang Zheng, Yingxiao Shi, Bochen Wan, Yueyang Wang and Jianping Yuan
Water 2025, 17(21), 3180; https://doi.org/10.3390/w17213180 - 6 Nov 2025
Viewed by 291
Abstract
With the growing global demand for renewable energy, the pump as turbine (PAT) exhibits significant potential in the micro-hydropower sector. To reveal its internal unsteady flow characteristics and energy loss mechanisms, this study analyzes the internal flow field of an ultra-low specific speed [...] Read more.
With the growing global demand for renewable energy, the pump as turbine (PAT) exhibits significant potential in the micro-hydropower sector. To reveal its internal unsteady flow characteristics and energy loss mechanisms, this study analyzes the internal flow field of an ultra-low specific speed pump as turbine (USSPAT) by employing a combined approach of entropy generation theory and dynamic mode decomposition (DMD). The results indicate that the outlet pressure pulsation characteristics are highly dependent on the flow rate. Under low flow rate conditions, pulsations are dominated by low-frequency vortex bands induced by rotor-stator interaction (RSI), whereas at high flow rates, the blade passing frequency (BPF) becomes the absolute dominant frequency. Energy losses within the PAT are primarily composed of turbulent and wall dissipation, concentrated in the impeller and volute, particularly at the impeller inlet, outlet, and near the volute tongue. DMD reveals that the flow field is governed by a series of stable modes with near-zero growth rates, whose frequencies are the shaft frequency (25 Hz) and its harmonics (50 Hz, 75 Hz, 100 Hz). These low-frequency modes, driven by RSI, contain the majority of the fluctuation energy. Therefore, this study confirms that RSI between the impeller and the volute is the root cause of the dominant pressure pulsations and periodic energy losses. This provides crucial theoretical and data-driven guidance for the design optimization, efficient operation, and stability control of PAT. Full article
Show Figures

Figure 1

18 pages, 7247 KB  
Article
Design and Research of a Neodymium Magnetic Ball Plug Ferrofluid Micropump
by Jie Su, Zhenggui Li, Baozhu Han, Qingsong Wang, Zhichao Qing and Qingyu Chen
Actuators 2025, 14(11), 537; https://doi.org/10.3390/act14110537 - 5 Nov 2025
Viewed by 194
Abstract
Due to the limitations of traditional micropumps in terms of miniaturization and integration, ferrofluid micropumps, as emerging microfluidic driving devices, exhibit significant application potential due to their unique pumping mechanism. Research on ferrofluid micropumps can advance micro/nano technology, meet biomedical needs, and facilitate [...] Read more.
Due to the limitations of traditional micropumps in terms of miniaturization and integration, ferrofluid micropumps, as emerging microfluidic driving devices, exhibit significant application potential due to their unique pumping mechanism. Research on ferrofluid micropumps can advance micro/nano technology, meet biomedical needs, and facilitate micro-electro-mechanical system (MEMS) integration. As traditional structural improvement methods struggle to meet increasingly stringent application conditions, under the action of the motion and mechanism of magnetic fluids, a new method of using neodymium magnetic ball plugs instead of traditional magnetic fluid plungers has been developed, aiming to enhance the pumping performance. In this study, the influence of the magnetic field (MF) generated by permanent magnets (PM) on the magnetic properties inside the micropump cavity was first determined. Furthermore, it was revealed in this research that the neodymium magnetic ball plug enhances the pumping flow rate and maximum pumping height of the ferrofluid plug and the pumping stability of the neodymium magnetic ball plug ferrofluid micropump is significantly improved. Additionally, the rotational speed (Rev) of the dynamic neodymium magnetic ball type magnetic fluid plug driven by the motor and the magnetic strength created by the PM are the main aspects influencing the result in this experiment. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

27 pages, 7870 KB  
Review
Direct vs. Indirect Charge Transfer: A Paradigm Shift in Phase-Spanning Triboelectric Nanogenerators Focused on Liquid and Gas Interfaces
by Jee Hwan Ahn, Quang Tan Nguyen, Tran Buu Thach Nguyen, Md Fajla Rabbi, Van Hien Nguyen, Yoon Ho Lee and Kyoung Kwan Ahn
Energies 2025, 18(21), 5709; https://doi.org/10.3390/en18215709 - 30 Oct 2025
Viewed by 372
Abstract
Triboelectric nanogenerators (TENGs) have emerged as a promising technology for harvesting mechanical energy via contact electrification (CE) at diverse interfaces, including solid–liquid, liquid–liquid, and gas–liquid phases. This review systematically explores fluid-based TENGs (Flu-TENGs), introducing a foundational and novel classification framework based on direct [...] Read more.
Triboelectric nanogenerators (TENGs) have emerged as a promising technology for harvesting mechanical energy via contact electrification (CE) at diverse interfaces, including solid–liquid, liquid–liquid, and gas–liquid phases. This review systematically explores fluid-based TENGs (Flu-TENGs), introducing a foundational and novel classification framework based on direct versus indirect charge transfer to the charge-collecting electrode (CCE). This framework addresses a critical gap by providing the first unified analysis of charge transfer mechanisms across all major fluid interfaces, establishing a clear design principle for future device engineering. We comprehensively compare the underlying mechanisms and performance outcomes, revealing that direct charge transfer consistently delivers superior energy conversion—with specific studies achieving up to 11-fold higher current and 8.8-fold higher voltage in solid–liquid TENGs (SL-TENGs), 60-fold current and 3-fold voltage gains in liquid–liquid TENGs (LL-TENGs), and 34-fold current and 10-fold voltage enhancements in gas–liquid TENGs (GL-TENGs). Indirect mechanisms, relying on electrostatic induction, provide stable Alternating Current (AC) output ideal for low-power, long-term applications such as environmental sensors and wearable bioelectronics, while direct mechanisms enable high-efficiency Direct Current (DC) output suitable for energy-intensive systems including soft actuators and biomedical micro-pumps. This review highlights a paradigm shift in Flu-TENG design, where the deliberate selection of charge transfer pathways based on this framework can optimize energy harvesting and device performance across a broad spectrum of next-generation sensing, actuation, and micro-power systems. By bridging fundamental charge dynamics with application-driven engineering, this work provides actionable insights for advancing sustainable energy solutions and expanding the practical impact of TENG technology. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

26 pages, 18639 KB  
Article
Comparison of Two Miniaturized, Rectifiable Aerosol Photometers for Personal PM2.5 Monitoring in a Dusty Occupational Environment
by James D. Johnston, Scott C. Collingwood, James D. LeCheminant, Neil E. Peterson, Andrew J. South, Clifton B. Farnsworth, Ryan T. Chartier, Mary E. Thiel, Tanner P. Brown, Elisabeth S. Goss, Porter K. Jones, Seshananda Sanjel, Jayson R. Gifford and John D. Beard
Atmosphere 2025, 16(11), 1233; https://doi.org/10.3390/atmos16111233 - 25 Oct 2025
Viewed by 447
Abstract
Wearable, rectifiable aerosol photometers (WRAPs), instruments with combined nephelometer and on-board filter-based sampling capabilities, generally show strong correlations with reference instruments across a range of ambient and household PM2.5 concentrations. However, limited data exist on their performance when challenged by mixed aerosol [...] Read more.
Wearable, rectifiable aerosol photometers (WRAPs), instruments with combined nephelometer and on-board filter-based sampling capabilities, generally show strong correlations with reference instruments across a range of ambient and household PM2.5 concentrations. However, limited data exist on their performance when challenged by mixed aerosol exposures, such as those found in dusty occupational environments. Understanding how these instruments perform across a spectrum of environments is critical, as they are increasingly used in human health studies, including those in which concurrent PM2.5 and coarse dust exposures occur simultaneously. The authors collected co-located, ~24 h. breathing zone gravimetric and nephelometer PM2.5 measures using the MicroPEM v3.2A (RTI International) and the UPAS v2.1 PLUS (Access Sensor Technologies). Samples were collected from adult brick workers (n = 93) in Nepal during work and non-work activities. Median gravimetric/arithmetic mean (AM) PM2.5 concentrations for the MicroPEM and UPAS were 207.06 (interquartile range [IQR]: 216.24) and 737.74 (IQR: 1399.98) µg/m3, respectively (p < 0.0001), with a concordance correlation coefficient (CCC) of 0.26. The median stabilized inverse probability-weighted nephelometer PM2.5 concentrations, after gravimetric correction, for the MicroPEM and UPAS were 169.16 (IQR: 204.98) and 594.08 (IQR: 1001.00) µg/m3, respectively (p-value < 0.0001), with a CCC of 0.31. Digital microscope photos and electron micrographs of filters confirmed large particle breakthrough for both instruments. A possible explanation is that the miniaturized pre-separators were overwhelmed by high dust exposures. This study was unique in that it evaluated personal PM2.5 monitors in a high dust occupational environment using both gravimetric and nephelometer-based measures. Our findings suggest that WRAPs may substantially overestimate personal PM2.5 exposures in environments with concurrently high PM2.5 and coarse dust levels, likely due to large particle breakthrough. This overestimation may obscure associations between exposures and health outcomes. For personal PM2.5 monitoring in dusty environments, the authors recommend traditional pump and cyclone or impaction-based sampling methods in the interim while miniaturized pre-separators for WRAPs are designed and validated for use in high dust environments. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

10 pages, 1407 KB  
Article
Sensitive Displacement Sensor Based on a Flexible Grating Random Laser
by Guang Dai, Yan Liu, Zhenzhen Shang, Yangjun Yan, Hui Peng and Heng Zhang
Nanomaterials 2025, 15(21), 1605; https://doi.org/10.3390/nano15211605 - 22 Oct 2025
Viewed by 266
Abstract
This study proposes and demonstrates a highly sensitive displacement sensor based on a flexible random laser. The sensor utilizes a polydimethylsiloxane (PDMS) film where a self-assembled surface grating structure is formed via oxygen plasma surface treatment combined with bending prestress. This structure acts [...] Read more.
This study proposes and demonstrates a highly sensitive displacement sensor based on a flexible random laser. The sensor utilizes a polydimethylsiloxane (PDMS) film where a self-assembled surface grating structure is formed via oxygen plasma surface treatment combined with bending prestress. This structure acts as a photon-trapping microcavity and multiple scattering feedback center, integrated with embedded laser dye PM597 as the gain medium to form a flexible grating random laser. Experiments show that the device generates random lasing emission under 532 nm pumping (threshold ~21 mJ/cm2) with a linewidth of ~0.25 nm and a degree of polarization of ~0.82. Applying micro-displacement alters the PDMS film curvature, subsequently changing the grating morphology (height, angle). This modifies photon trapping efficiency and geometric deflection loss within the equivalent resonator cavity, leading to significant modulation of the random laser output intensity. A linear correspondence between displacement and lasing intensity was established (R2 ≈ 0.91), successfully demonstrating displacement sensing functionality. This scheme not only provides a low-cost method for fabricating flexible grating random lasers but also leverages the extreme sensitivity of random lasing modes to local disordered structural changes, paving the way for novel high-sensitivity mechanical sensors and on-chip integrated photonic devices. Full article
(This article belongs to the Special Issue Laser–Nanostructure Interactions: From Fundamentals to Applications)
Show Figures

Figure 1

18 pages, 6513 KB  
Article
Analysis of Grain Growth Behavior of Intermetallic Compounds on Plated Pure Sn for Micropump Solder Caps
by Hwa-Sun Park, Chang-Yun Na, Jong-Wook Kim, Woon-Seok Jung, Jae-Hyuk Park, Jong-Woo Lim and Youn-Goo Yang
Materials 2025, 18(19), 4602; https://doi.org/10.3390/ma18194602 - 3 Oct 2025
Viewed by 752
Abstract
We evaluated for the morphology and growth behavior of IMC grain according to number of reflows of solder cap pure Sn microbumps. In the structure of Ni barrier/Cu layer between Cu pillar and pure Sn, solder cap pure Sn on the top layer [...] Read more.
We evaluated for the morphology and growth behavior of IMC grain according to number of reflows of solder cap pure Sn microbumps. In the structure of Ni barrier/Cu layer between Cu pillar and pure Sn, solder cap pure Sn on the top layer was analyzed for the behavior change of IMC grain according to the number of reflows. The height and diameter of the bumps on the wafer were designed to be 40 μm and 30 μm, respectively. The vertical structure of the microbump consisted of Ti/Cu (1000 Å/2000 Å), Cu pillar (20 µm), Ni barrier (3 µm), and Cu (1 µm). The overall height of the bump is about 40 μm. Additionally, the height of the solder cap pure Sn as the last layer is 20 μm. The diameter of the bump is 30 μm. It was formed using plating. After plating to solder cap Sn, it was finally formed for the microbump using reflow. Samples were prepared according to the number of reflows (1, 3, 5, 7, and 9). To observe the grain morphology of the IMC, the pure Sn on the upper layer (solder cap) was removed using SupraBond RO-22 etchant. In the removed state, the morphology of the IMC grain was evaluated to the inside surface of bump using SEM and a 3D scope. The average number of IMC grains decreased linearly during reflow cycles 1 to 5 and then gradually decreased during reflow cycles 7 to 10. The average surface area of IMC grains was 18.243 μm when reflow was performed once. The average surface area of IMC grains increased proportionally for reflow cycles 1 to 10. Based on the experimental results, when the count of reflow was performed more than 10 times, it was confirmed that the solder cap pure Sn was reduced by more than 50% due to the increase in the area of IMC grain. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

9 pages, 1208 KB  
Article
Mutation of p53 Acetylation Protects Against Angiotensin-II-Induced Cardiac Dysfunction and Fibrosis
by Aubrey C. Cantrell, Quinesha A. Williams, Jian-Xiong Chen and Heng Zeng
Int. J. Mol. Sci. 2025, 26(19), 9668; https://doi.org/10.3390/ijms26199668 - 3 Oct 2025
Viewed by 484
Abstract
Hypertension is a major risk factor for heart failure. Acetylation of p53 is known to regulate its activities. We have previously identified that p53 acetylation is required for cardiac remodeling in a mouse model of pressure overload-induced heart failure. Acetylation mutant p53 (p53aceKO) [...] Read more.
Hypertension is a major risk factor for heart failure. Acetylation of p53 is known to regulate its activities. We have previously identified that p53 acetylation is required for cardiac remodeling in a mouse model of pressure overload-induced heart failure. Acetylation mutant p53 (p53aceKO) mice have been shown to have the ability to regulate SIRT3 KO-induced cardiac fibrosis. In the present study, we hypothesized that p53aceKO mice would exhibit cardiac protection and blunt cardiac fibrosis when subjected to Ang-II-induced hypertension. Control and p53aceKO mice received either a micro-osmotic pump implant administering Ang-II for 28 days or a sham procedure. Blood pressure was measured weekly, and echocardiography was performed every two weeks. Mice were euthanized and hearts were processed for histological analysis. While both control and p53aceKO mice receiving Ang-II exhibit increased systolic and diastolic blood pressures, control mice also demonstrate increases in ejection fraction and fractional shortening compared to the sham, while p53aceKO mice do not. Furthermore, control mice receiving Ang-II exhibit decreased left ventricular diameter and volume at end-systole and end-diastole, as well as thickening of both the anterior and posterior walls, while p53aceKO mice exhibit no significant changes in any of these parameters. Additionally, p53aceKO mice do not exhibit the Ang-II infusion-induced cardiac fibrosis seen in control mice treated with Ang-II. Mutation of p53 acetylation is protective against Ang-II infusion-induced cardiac fibrosis and dysfunction in mice. Acetylated p53 may, therefore, be a novel therapeutic target to address complications in the heart associated with hypertension. Full article
(This article belongs to the Special Issue Cardioimmunology: Inflammation and Immunity in Cardiovascular Disease)
Show Figures

Figure 1

32 pages, 4787 KB  
Review
Performance Comparison of Mechanical and Ferrofluidic Micropumps: Structural and Operational Perspectives
by Xing Zhou, Zhenggui Li, Baozhu Han, Qinkui Guo and Zhichao Qing
Actuators 2025, 14(9), 460; https://doi.org/10.3390/act14090460 - 20 Sep 2025
Viewed by 3203
Abstract
Since the successful implementation of microfluidic technology in biomedical applications, research on micropumps—the central component of these systems—has gained significant momentum. Benefiting from advancements in pump materials and corresponding fabrication methods, micropumps have evolved from structurally complex mechanical designs to simpler non-mechanical configurations. [...] Read more.
Since the successful implementation of microfluidic technology in biomedical applications, research on micropumps—the central component of these systems—has gained significant momentum. Benefiting from advancements in pump materials and corresponding fabrication methods, micropumps have evolved from structurally complex mechanical designs to simpler non-mechanical configurations. This paper reviews well-developed mechanical micropumps, discussing their diaphragms, pump chambers, materials, and other aspects to outline their developmental trajectory and current applications, while also highlighting their limitations. After identifying the shortcomings of traditional micropumps, we introduce the concept of ferrofluid-based micropumps, emphasizing their structural simplicity, self-sealing capability, and recoverability. Previous research on ferrofluidic micropumps is summarized, demonstrating their superior performance in certain aspects. Finally, we provide an outlook on their potential applications in biomedicine and specialized fields. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

14 pages, 3255 KB  
Article
Droplet Diameter Variability Induced by Flow Oscillations in a Micro Cross-Junction
by Filippo Azzini, Beatrice Pulvirenti, Gian Luca Morini and Cesare Biserni
Appl. Sci. 2025, 15(18), 10107; https://doi.org/10.3390/app151810107 - 16 Sep 2025
Viewed by 423
Abstract
This study investigates the stochastic variation in droplet size generated within a microfluidic flow-focusing cross-junction. A commercial micro cross-junction was used to experimentally analyze droplet formation under fixed flow rate conditions. An in-house machine learning-based algorithm was developed to automatically detect and measure [...] Read more.
This study investigates the stochastic variation in droplet size generated within a microfluidic flow-focusing cross-junction. A commercial micro cross-junction was used to experimentally analyze droplet formation under fixed flow rate conditions. An in-house machine learning-based algorithm was developed to automatically detect and measure droplet dimensions from high-speed video recordings. Despite constant flow rates, the analysis revealed fluctuations in droplet size, attributed to velocity oscillations induced by syringe pumps. To explore this phenomenon, micro-Particle Image Velocimetry (micro-PIV) was employed to capture velocity profiles, which were then used to define time-dependent boundary conditions for numerical simulations. Simulations were conducted using the OpenFOAM solver interFoam and validated against experimental data. The results demonstrate good agreement and confirm that velocity fluctuations significantly influence droplet formation. This combined experimental and numerical approach provides an innovative, robust framework for understanding and predicting droplet behavior in microfluidic systems. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

26 pages, 9137 KB  
Article
Synergistic Effects of Sediment Size and Concentration on Performance Degradation in Centrifugal Irrigation Pumps: A Southern Xinjiang Case Study
by Rui Xu, Shunjun Hong, Zihai Yang, Xiaozhou Hu, Yang Jiang, Yuqi Han, Chungong Gao and Xingpeng Wang
Agriculture 2025, 15(17), 1843; https://doi.org/10.3390/agriculture15171843 - 29 Aug 2025
Viewed by 673
Abstract
Centrifugal irrigation pumps in Southern Xinjiang face severe performance degradation due to high fine-sediment loads in canal water. This study combines Eulerian multiphase simulations with experimental validation to investigate the coupled effects of sediment size (0.05~0.8 mm) and concentration (5~20%) on hydraulic performance. [...] Read more.
Centrifugal irrigation pumps in Southern Xinjiang face severe performance degradation due to high fine-sediment loads in canal water. This study combines Eulerian multiphase simulations with experimental validation to investigate the coupled effects of sediment size (0.05~0.8 mm) and concentration (5~20%) on hydraulic performance. Numerical models incorporating Realizable kε turbulence closure and discrete phase tracking reveal two critical thresholds: (1) particle sizes ≥ 0.4 mm trigger a phase transition from localized disturbance to global flow disorder, expanding low-pressure zones by 37% at equivalent concentrations; (2) concentrations exceeding 13% accelerate nonlinear pressure decay through collective particle interactions. Velocity field analysis demonstrates size-dependent attenuation mechanisms: fine sediments (≤0.2 mm) cause gradual dissipation via micro-scale drag, while coarse sediments (≥0.6 mm) induce “cliff-like” velocity drops through inertial impact-blockade chains. Experimental wear tests confirm simulation accuracy in predicting erosion hotspots at impeller inlets/outlets. The identified synergistic thresholds provide critical guidelines for anti-wear design in sediment-laden irrigation systems. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 13580 KB  
Article
Investigation of the Lubrication Performance of Petal-Shaped Micro-Pit Texture on the Surface of Stator Rubber in Screw Pumps
by Xiaoming Wu, Xinfu Liu, Guoqing Han, Xiangzhi Shi, Jiuquan An, Xiaoli Yin and Li Geng
Lubricants 2025, 13(9), 379; https://doi.org/10.3390/lubricants13090379 - 26 Aug 2025
Viewed by 775
Abstract
This study proposed a surface modification method, based on petal-shaped micro-pit texture, allowing to solve the problem of significant wear of the stator caused by the oil film rupture in the metal-rubber friction pair of the screw pump under complex conditions in the [...] Read more.
This study proposed a surface modification method, based on petal-shaped micro-pit texture, allowing to solve the problem of significant wear of the stator caused by the oil film rupture in the metal-rubber friction pair of the screw pump under complex conditions in the later stages of oilfield extraction. A geometric model of the petal-shaped micro-pit texture on the stator rubber surface and a mathematical model of the hydrodynamic lubrication flow field based on the Reynolds equation were developed. Computational Fluid Dynamics (CFD) simulations and friction tests were conducted to systematically study the influence of the medium flow direction, texture area ratio, and texture size on the lubrication performance. The obtained results showed that compared with the flow in the x-direction, the load-carrying capacity of the oil film was increased by more than 0.93% when the medium flowed in y-direction, and it reached its optimal value at an area of 10%. When the area ratio reached 60%, the interference effect of the flow field reduced the pressure by 6.98%. The increase of the size of the petals allowed to expand the positive pressure zone and increase the net load-carrying capacity. Furthermore, friction tests demonstrated that the friction coefficient was decreased with the increase of the texture size and increased with the increase of the texture area ratio. The petal-shaped micro-pit texture with size of 350 μm and an area ratio of 10% demonstrated the lowest friction coefficient and highest wear resistance. Full article
Show Figures

Figure 1

14 pages, 521 KB  
Article
A Machine Learning Approach to Predict Successful Trans-Ventricular Off-Pump Micro-Invasive Mitral Valve Repair
by Alessandro Vairo, Caterina Russo, Andrea Saglietto, Rino Andrea Cimino, Marco Pocar, Cristina Barbero, Andrea Costamagna, Gaetano Maria De Ferrari, Mauro Rinaldi and Stefano Salizzoni
J. Clin. Med. 2025, 14(16), 5863; https://doi.org/10.3390/jcm14165863 - 19 Aug 2025
Viewed by 671
Abstract
Background: The NeoChord procedure is a trans-ventricular, echo-guided, beating-heart mitral valve (MV) repair technique used to treat degenerative mitral regurgitation (MR) caused by leaflet prolapse and/or flail. Objectives: This study aimed to develop a machine learning (ML) scoring system using pre-procedural [...] Read more.
Background: The NeoChord procedure is a trans-ventricular, echo-guided, beating-heart mitral valve (MV) repair technique used to treat degenerative mitral regurgitation (MR) caused by leaflet prolapse and/or flail. Objectives: This study aimed to develop a machine learning (ML) scoring system using pre-procedural clinical and echocardiographic variables to predict the success of the NeoChord procedure—defined as less than moderate MR at follow-up. Methods: A total of 80 patients were included. Preoperative MV anatomical parameters were assessed using three-dimensional (3D) transesophageal echocardiography and analyzed with dedicated post-processing software (QLAB software, version 15.0, Philips Healthcare, Amstelveen, NL, The Netherlands). Two supervised ML models (random forest and decision tree) were trained on the dataset, with hyperparameters optimized via 10-fold cross-validation. The random forest model also provided a variable importance ranking using a filter-based method. Key predictors identified by the models included age, flail gap, early systolic mitral valve area, and indexed left atrial volume. Results: The mean and median cross-validated area under the curve of the ML models were 0.79 and 0.83 for the random forest model and 0.72 and 0.77 for the decision tree model, respectively. Conclusions: A machine learning approach integrating clinical and 3D echocardiographic parameters can effectively predict mid-term procedural success of the NeoChord technique. This method may support future preoperative patient selection, pending validation in larger cohorts. Full article
(This article belongs to the Special Issue Mitral Valve Surgery: Current Status and Future Challenges)
Show Figures

Figure 1

Back to TopTop