Direct vs. Indirect Charge Transfer: A Paradigm Shift in Phase-Spanning Triboelectric Nanogenerators Focused on Liquid and Gas Interfaces
Abstract
1. Introduction
2. Fundamentals of Contact Electrification and Charge Transfer
3. Solid–Liquid Triboelectric Nanogenerators (SL-TENGs)
3.1. Working Principles of SL-TENGs
3.2. Indirect vs. Direct Charge Transfer Comparison
3.2.1. Droplet-Based SL-TENGs: Indirect vs. Direct Mechanisms
3.2.2. Streaming Flow-Based SL-TENGs: Indirect vs. Direct Mechanisms
3.3. Comparative Electrical Performance Analysis of SL-TENGs
4. Liquid–Liquid Triboelectric Nanogenerators (LL-TENGs)
4.1. Working Principles of LL-TENGs
4.2. Comparative Electrical Performance Analysis of LL-TENGs
5. Gas–Liquid TENGs
5.1. Working Principles of Gas–Liquid TENGs
5.2. Comparative Electrical Performance Analysis of GL-TENGs
6. Simulation and Analysis
6.1. SL TENG Simulation Result Analysis
6.2. LL-TENG Simulation Result Analysis
6.3. GL TENG Simulation Result Analysis
7. Application and Future
8. Conclusions and Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dincer, F. The analysis on wind energy electricity generation status, potential and policies in the world. Renew. Sustain. Energy Rev. 2011, 15, 5135–5142. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Li, S.; Wang, Y.; Xiao, W. Reliability assessment of photovoltaic power systems: Review of current status and future perspectives. Appl. Energy 2013, 104, 822–833. [Google Scholar] [CrossRef]
- Yüksel, I. Hydropower for sustainable water and energy development. Renew. Sustain. Energy Rev. 2010, 14, 462–469. [Google Scholar] [CrossRef]
- Fridleifsson, I.B.; Bertani, R.; Huenges, E.; Lund, J.W.; Ragnarsson, A.; Rybach, L. The possible role and contribution of geothermal energy to the mitigation of climate change. In Proceedings of the IPCC Scoping Meeting on Renewable Energy Sources, Luebeck, Germany, 21–25 January 2008. [Google Scholar]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- O’Rourke, F.; Boyle, F.; Reynolds, A. Tidal energy update 2009. Appl. Energy 2010, 87, 398–409. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Yang, Y.; Guo, W.; Pradel, K.C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z.L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef]
- Zhao, F.; Liang, Y.; Cheng, H.; Jiang, L.; Qu, L. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 2016, 9, 912–916. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Cheng, G.; Lee, S.; Pradel, K.C.; Wang, Z.L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696. [Google Scholar] [CrossRef]
- Nie, J.; Wang, Z.; Ren, Z.; Li, S.; Chen, X.; Wang, Z.L. Power generation from the interaction of a liquid droplet and a liquid membrane. Nat. Commun. 2019, 10, 2264. [Google Scholar] [CrossRef]
- Guo, X.; He, J.; Zheng, Y.; Wu, J.; Pan, C.; Zi, Y.; Cui, H.; Li, X. High-performance triboelectric nanogenerator based on theoretical analysis and ferroelectric nanocomposites and its high-voltage applications. Nano Res. Energy 2023, 2, e9120074. [Google Scholar] [CrossRef]
- Sheng, F.; Zhang, Y.; Wang, J.; Wang, X.; Wang, F.; Wang, Z.L. Wearable energy harvesting-storage hybrid textiles as on-body self-charging power systems. Nano Res. Energy 2023, 2, e9120079. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137. [Google Scholar] [CrossRef]
- Lin, S.; Xu, L.; Wang, A.C.; Wang, Z.L. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat. Commun. 2020, 11, 399. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, A.C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Schrödinger, E. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 1926, 28, 1049. [Google Scholar] [CrossRef]
- Xu, C.; Zi, Y.; Wang, A.C.; Zou, H.; Dai, Y.; He, X.; Wang, P.; Wang, Y.-c.; Feng, P.; Li, D.; et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790. [Google Scholar] [CrossRef]
- Li, S.; Zhou, Y.; Zi, Y.; Zhang, G.; Wang, Z.L. Excluding contact electrification in surface potential measurement using kelvin probe force microscopy. ACS Nano 2016, 10, 2528–2535. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Niu, S.; Wang, S.; Lin, L.; Liu, Y.; Zhou, Y.S.; Hu, Y.; Wang, Z.L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583. [Google Scholar] [CrossRef]
- Li, Y.; Lau, T.H.; Guan, D.; Zi, Y. A universal method for quantitative analysis of triboelectric nanogenerators. J. Mater. Chem. A 2019, 7, 19485–19494. [Google Scholar] [CrossRef]
- Li, A.; Zi, Y.; Guo, H.; Wang, Z.L.; Fernández, F.M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 2017, 12, 481–487. [Google Scholar] [CrossRef]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Paria, S.; Si, S.K.; Karan, S.K.; Das, A.K.; Maitra, A.; Bera, R.; Halder, L.; Bera, A.; De, A.; Khatua, B.B. A strategy to develop highly efficient TENGs through the dielectric constant, internal resistance optimization, and surface modification. J. Mater. Chem. A 2019, 7, 3979–3991. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Wang, Z.; He, W.; Tang, Q.; Xi, Y.; Wang, X.; Guo, H.; Hu, C. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 2020, 11, 1599. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Li, Z.; Shen, F.; Zhang, Q.; Gong, Y.; Guo, H.; Peng, Y.; Wang, Z.L. Progress on techniques for improving output performance of triboelectric nanogenerators. Energy Environ. Sci. 2024, 17, 3546–3592. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Y.; Li, Y.; Chen, X.; Shen, H. A review: Contact electrification on special interfaces. Front. Mater. 2022, 9, 909746. [Google Scholar] [CrossRef]
- Li, C.; Bai, Y.; Shao, J.; Meng, H.; Li, Z. Strategies to improve the output performance of triboelectric nanogenerators. Small Methods 2024, 8, 2301682. [Google Scholar] [CrossRef]
- Ahn, J.H.; Hwang, J.Y.; Kim, C.G.; Nam, G.H.; Ahn, K.K. Unsteady streaming flow based TENG using hydrophobic film tube with different charge affinity. Nano Energy 2020, 67, 104269. [Google Scholar] [CrossRef]
- Zhu, G.; Su, Y.; Bai, P.; Chen, J.; Jing, Q.; Yang, W.; Wang, Z.L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031–6037. [Google Scholar] [CrossRef]
- Nam, G.H.; Ahn, J.H.; Lee, G.H.; Vo, C.P.; Ahn, K.K. A new pathway for liquid–solid Triboelectric Nanogenerator using streaming flow by a novel direct charge transfer. Adv. Energy Sustain. Res. 2020, 1, 2000031. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, T.; Wu, J.; Xu, T.; Wang, X.; Han, X.; Cui, H.; Xu, X.; Pan, C.; Li, X. Energy conversion analysis of multilayered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Adv. Mater. 2022, 34, 2202238. [Google Scholar] [CrossRef]
- Munirathinam, K.; Kim, D.-S.; Shanmugasundaram, A.; Park, J.; Jeong, Y.J.; Lee, D.-W. Flowing water-based tubular triboelectric nanogenerators for sustainable green energy harvesting. Nano Energy 2022, 102, 107675. [Google Scholar] [CrossRef]
- Jiang, D.; Xu, M.; Dong, M.; Guo, F.; Liu, X.; Chen, G.; Wang, Z.L. Water–solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renew. Sustain. Energy Rev. 2019, 115, 109366. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Zhou, L.; Yin, X.; Wei, X.; Zhang, C.; Hu, W.; Wang, J.; Wang, Z.L. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. ACS Nano 2020, 14, 7092–7100. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, Y.; Ma, Y.; Wang, C. Enhanced Energy Harvesting Performance of Triboelectric Nanogenerators via Dielectric Property Regulation. ACS Appl. Mater. Interfaces 2023, 15, 31795–31802. [Google Scholar] [CrossRef]
- Zhang, R.; Lin, H.; Shum, A.H.C. Liquid–liquid contact electrification for microfluidics–based triboelectric nanogenerator. In Proceedings of the 26th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2022), Hangzhou, China, 23–27 October 2022; Chemical and Biological Microsystems Society: San Diego, CA, USA, 2022; pp. 1171–1172. [Google Scholar]
- Lu, Y.; Jiang, L.; Yu, Y.; Wang, D.; Sun, W.; Liu, Y.; Yu, J.; Zhang, J.; Wang, K.; Hu, H.; et al. Liquid–liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two–phase system. Nat. Commun. 2022, 13, 5316. [Google Scholar] [CrossRef] [PubMed]
- Bockris, J.O.M.; Devanathan, M.A.V.; Müller, K. On the Structure of Charged Interfaces. In Modern Aspects of Electrochemistry; Bockris, J.O.M., Conway, B.E., Eds.; Butterworths: London, UK, 1964; Volume 3, pp. 832–863. [Google Scholar]
- Dai, K.; Wang, Y.; Li, B.; Li, P.; Wang, X.; Gao, L. Advancements in Solid–Liquid Nanogenerators: A Comprehensive Review and Future Prospects. Molecules 2024, 29, 5716. [Google Scholar] [CrossRef]
- Reymond, F.; Girault, H.H. Liquid/Liquid Interfaces, Electrochemistry at. In Encyclopedia of Analytical Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Zhang, R.; Wang, X.; Chen, S.; Lin, H.; Tian, Y.; Shum, A.H.C. Liquid–Liquid Triboelectric Nanogenerator for Harvesting Distributed Energy. Adv. Funct. Mater. 2022, 32, 2208393. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, C.; Zhang, C.; Zhang, N.; Wang, Z.; Wu, Z.; Nie, S.; Wang, Z.L. Studying of contact electrification and electron transfer at liquid–liquid interface. Nano Energy 2021, 87, 106186. [Google Scholar] [CrossRef]
- Manojkumar, K.; Muthuramalingam, M.; Sateesh, D.; Hajra, S.; Panda, S.; Kim, H.J.; Sundaramoorthy, A.; Vivekananthan, V. Advances in triboelectric energy harvesting at liquid–liquid interfaces. ACS Appl. Energy Mater. 2025, 8, 659–682. [Google Scholar] [CrossRef]
- Wang, D.; Liu, T.; Wang, X.; Xu, T.; He, W.; Zhang, Y.; Li, X. Ethylene chlorotrifluoroethylene/hydrogel-based liquid-solid triboelectric nanogenerator driven self-powered MXene-based sensor system for marine environmental monitoring. Nano Energy 2022, 100, 107519. [Google Scholar] [CrossRef]
- Dong, Y.; Shan, C.; Luo, J.; He, W.; Liu, W.; Hu, C. Ring-shaped single-electrode triboelectric nanogenerator (RSE-TENG) for energy harvesting and liquid flow rate monitoring of gas-liquid two-phase flow. Nano Energy 2024, 119, 109083. [Google Scholar] [CrossRef]
- Dong, Y.; Luo, J.; Shan, C.; He, W.; Liu, W.; Hu, C. Gas-liquid two-phase flow-based triboelectric nanogenerator with ultrahigh output power. Sci. Adv. 2022, 8, eadd0464. [Google Scholar] [CrossRef]
- Shan, C.; Luo, J.; Dong, Y.; He, W.; Liu, W.; Hu, C. Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nat. Commun. 2023, 14, 127. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458. [Google Scholar] [CrossRef]
- Li, C.; Wu, Q.; Wang, W.; Wang, X.; Wang, Z.L. Gas-driven triboelectric nanogenerator for mechanical energy harvesting and displacement monitoring. Nano Energy 2024, 126, 109681. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Zhu, G.; Zhou, Y.S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z.L. Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem. Int. Ed. 2013, 52, 12545–12549. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Long, Y.; Guo, H.; Gao, Q.; Wang, Z.L. Solid-liquid triboelectric nanogenerator based on vortex-induced resonance. Nat. Commun. 2023, 14, 1036. [Google Scholar]
- Chen, B.D.; Yang, Y.; Chen, J.; Li, Y.L.; Zhang, L.; Wang, Z.L. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater. Today 2018, 21, 88–97. [Google Scholar] [CrossRef]
- Jiang, F.; Zhan, L.; Lee, J.P.; Lee, P.S. Triboelectric nanogenerators based on fluid medium: From fundamental mechanisms toward multifunctional applications. Adv. Mater. 2024, 36, 2308197. [Google Scholar] [CrossRef]
- Xu, M.; Wang, S.; Zhang, S.L.; Ding, W.; Li, X.; Zheng, P.; Pan, X.; Wang, Z.L. A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 2019, 57, 574–580. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, G.; Yang, W.; Jing, Q.; Bai, P.; Yang, Y.; Hou, T.-C.; Wang, Z.L. Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics. ACS Nano 2016, 10, 8104–8112. [Google Scholar] [CrossRef]
- Ling, Z.; Wu, H.; Zheng, H.; Jin, Y.; Zhang, Z.; Zhang, Y.; Zhang, C. Influence of Molecular Structure and Material Properties on the Output Performance of Liquid-Solid Triboelectric Nanogenerators. ACS Appl. Mater. Interfaces 2023, 15, 1825. [Google Scholar] [CrossRef]
- Fan, C.; Wu, C.; Wen, G. Development of gas-liquid two-phase flow pattern sensor of coalbed methane based on the principle of triboelectric nanogenerator. Nanotechnology 2020, 31, 195501. [Google Scholar] [CrossRef]
- Wang, P.; Pan, L.; Wang, J.; Xu, M.; Dai, G.; Zou, H.; Dong, K.; Wang, Z.L. Non-contact and liquid-liquid interfacing triboelectric nanogenerator for self-powered water/liquid level sensing. Nano Energy 2020, 72, 104703. [Google Scholar] [CrossRef]
- Jo, I.-S.; Yoon, H.J.; Lee, S.K.; Sim, J.Y.; Lee, J.H.; Kim, S.J.; Choi, H. Recent progress in self-powered sensors for structural and human monitoring systems using thermoelectric energy harvesters. J. Korean Soc. Adv. Compos. Struct. 2024, 15, 67–78. [Google Scholar] [CrossRef]
- Karlen, W.; Ansermino, J.M.; Dumont, G. Adaptive pulse segmentation and artifact detection in photoplethysmography for mobile applications. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 3131–3134. [Google Scholar]
- Schäfer, A.; Vagedes, J. Estimation of breathing rate from respiratory sinus arrhythmia: Comparison of various methods. Ann. Biomed. Eng. 2013, 41, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Ardila, C.M. Advancing healthcare through laboratory on a chip technology: Transforming microorganism identification and diagnostics. World J. Clin. Cases 2025, 13, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, D.; Li, S.; Zhang, Z.; Zhang, Q.; Li, H.; Wang, Z.L. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, M.; Ma, L.; Zheng, H.; Liu, S.; Wang, Z.L. Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation. Nano Energy 2020, 75, 104894. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Yin, J.; Xu, Y.; Fei, W.; Xue, M.; Wang, Q.; Chen, J.; Wang, Z.L. A portable triboelectric nanogenerator for real-time respiration monitoring. Nanoscale Adv. 2019, 1, 1459–1467. [Google Scholar] [CrossRef]
- Su, Y.; Chen, G.; Chen, C.; Gong, Q.; Wang, Z.L. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. Sci. Adv. 2020, 6, eaay9899. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Jiang, T.; Chen, J.; Zhang, L.; Han, X.; Chen, B.; Tang, W.; Wang, Z.L. Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel. Adv. Mater. Technol. 2018, 3, 1700317. [Google Scholar] [CrossRef]
- Mogera, U.; Kumar, A.; Kurungot, S.; Kulkarni, G.U. Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow. Sci. Rep. 2014, 4, 4103. [Google Scholar] [CrossRef]
- Goumopoulos, C. An autonomous wireless sensor/actuator network for precision irrigation in greenhouses. In Proceedings of the International Conference on Information and Communication Technologies for Sustainable Agri-production and Environment, Omoku, Nigeria, 3–7 September 2012; pp. 1–20. [Google Scholar]
- Mahnama, A.; Nourbakhsh, A.; Ghorbaniasl, G. A survey on the applications of implantable micropump systems in drug delivery. Curr. Drug Deliv. 2014, 11, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Hines, L.; Petersen, K.; Lum, G.Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef]
- Coyle, S.; Majidi, C.; LeDuc, P.; Hsia, K.J. Bio-inspired soft robotics: Material selection, actuation, and design. Adv. Mater. 2018, 30, 1706695. [Google Scholar] [CrossRef]
- Gu, G.-Y.; Zou, J.; Zhao, J.; Zhao, X.; Zhu, J. A survey on dielectric elastomer actuators for soft robots. Bioinspiration Biomim. 2017, 12, 011003. [Google Scholar] [CrossRef] [PubMed]
- Mohith, S.; Karanth, P.N.; Kulkarni, S. Recent trends in mechanical micropumps and their applications: A review. Mechatronics 2019, 60, 34–55. [Google Scholar] [CrossRef]
- Geipel, A.; Doll, A.; Jantscheff, P.; Esser, N.; Massing, U.; Woias, P.; Goldschmidtboeing, F. A novel two-stage backpressure-independent micropump: Modeling and characterization. J. Micromechanics Microengineering 2007, 17, 949. [Google Scholar] [CrossRef]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Xu, X.; Chen, C.; Wang, Y.; Shrestha, S.; Li, J.; Yu, J.; Wang, Z.; Wu, H.; et al. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Mallick, A.N.; Roy, S.; Ghosh, A.; Pal, S. A Review on the Role of Soft Robotics in Medical Assistive Devices. Micromachines 2023, 14, 2416. [Google Scholar]
- Bogue, R. Underwater robots: A review of technologies and applications. Ind. Robot 2015, 42, 186–191. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, J.; Tao, X.; Zhang, N.; Wang, Z.L. Maximizing the energy scavenging capability of droplet triboelectric nanogenerators through surface engineering. Nano Energy 2024, 127, 109773. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, S.; Wang, J.; Wang, Z.L. Enhancing the Output of Liquid–Solid Triboelectric Nanogenerators through Surface Roughness Optimization. ACS Appl. Mater. Interfaces 2024, 16, 4763–4771. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Zhang, J.; Tao, X.; Zhang, N.; Wang, Z.L. A New Single-Electrode Generator for Water Droplet Energy Harvesting with A 3 mA Current Output. Adv. Energy Mater. 2024, 14, 2303298. [Google Scholar] [CrossRef]
- Liao, M.; Wang, Y.; Liu, T.; Wang, D.; Xu, T.; Wu, J.; Li, X. An integrated electricity generator harnessing water and solar energy featuring common-electrode configuration. Nano Energy 2023, 116, 108831. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Chen, S.; Lin, H.; Tian, Y.; Shum, A.H.C. All-Fiber-Based Superhydrophobic Wearable Self-Powered Triboelectric Nanogenerators for Biomechanical and Droplet Energy Harvesting. ACS Appl. Nano Mater. 2023, 6, 23279–23291. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Liao, M.; Xu, T.; Wang, D.; Wu, J.; Li, X. Liquid–Solid Triboelectric Probes for Real-Time Monitoring of Sucrose Fluid Status. Adv. Funct. Mater. 2023, 33, 2305597. [Google Scholar] [CrossRef]
- Zhang, N.; Tao, X.; Chen, X.; Wang, Z.L. A droplet-based electricity generator with ultrahigh instantaneous output and short charging time. Droplet 2022, 1, 56–64. [Google Scholar] [CrossRef]
- Yoo, D.; Lee, J.; Kim, D. Lotus leaf-inspired droplet-based electricity generator with low-adhesive superhydrophobicity for a wide operational droplet volume range and boosted electricity output. Nano Energy 2022, 99, 107361. [Google Scholar] [CrossRef]
- Vu, D.L.; Le, C.D.; Ahn, K.K. Functionalized graphene oxide/polyvinylidene fluoride composite membrane acting as a triboelectric layer for hydropower energy harvesting. Int. J. Energy Res. 2022, 46, 9549–9559. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, X.; Zhang, S.; Yuan, H.; Li, T.; Zhang, L.; Liu, Y.; Wang, Z.L. Interfacial Laser-Induced Graphene Enabling High-Performance Liquid-Solid Triboelectric Nanogenerator. Adv. Mater. 2021, 33, 2104290. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Z.; Mao, Y.; Wang, D.; Wang, Z.L. A leaf-mimic rain energy harvester by liquid-solid contact electrification and piezoelectricity. Nano Energy 2021, 90, 106573. [Google Scholar] [CrossRef]
- Ye, C.; Dong, S.; Ren, J.; Chen, S.; Zhang, Z.; Chen, Y.; Zhou, Y.; Peng, Y.; Wang, Z.L. A hydrophobic self-repairing power textile for effective water droplet energy harvesting. ACS Nano 2021, 15, 18172–18181. [Google Scholar] [CrossRef]
- Zhang, N.; Tao, X.; Huang, X.; Chen, X.; Wu, Z.; Wang, Z.L. A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting. Nano Energy 2021, 82, 105760. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; He, M.; Peng, R.; Gao, Y.; Liu, L.; Wang, Z.L. A Single-Droplet Electricity Generator Achieves an Ultrahigh Output Over 100 V Without Pre-Charging. Adv. Mater. 2021, 33, 2105761. [Google Scholar]
- Xu, W.; Zheng, H.; Liu, Y.; Zhou, X.; Zhang, C.; Song, Y.; Deng, X.; Leung, M.; Yang, Z.; Xu, R.X.; et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396. [Google Scholar] [CrossRef]
- Kam, D.; Lee, D.; Kim, S.; Lee, S.; Kim, D. Advancing Energy Harvesting Efficiency from a Single Droplet: A Mechanically Guided 4D Printed Elastic Hybrid Droplet-Based Electricity Generator. Adv. Funct. Mater. 2023, 33, 2303681. [Google Scholar]
- Zhang, C.; Zhou, L.; Cheng, P.; Yin, X.; Zhang, C.; Li, C.; Pan, C.; Wang, Z.L. Seawater-based triboelectric nanogenerators for marine anticorrosion. ACS Nano 2022, 16, 8605–8612. [Google Scholar] [CrossRef]
- Yun, S.; Kim, S.; Kim, D. Reversible switching performance of water droplet-driven triboelectric nanogenerators using a magnetocontrollable lubricant-infused surface for sustainable power generation. Nano Energy 2022, 103, 107775. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Liao, M.; Xu, T.; Wu, J.; Li, X. Semitransparent polymer solar cell/triboelectric nanogenerator hybrid systems: Synergistic solar and raindrop energy conversion for window-integrated applications. Nano Energy 2022, 103, 107851. [Google Scholar]
- Peng, J.; Kang, X.; Chen, S.; Yuan, Z.; Zhang, W.; Zhang, C. High-efficiency droplet triboelectric nanogenerators based on arc-surface and organic coating material for self-powered anti-corrosion. Appl. Mater. Today 2022, 29, 101614. [Google Scholar] [CrossRef]
- Fuwad, A.; Khan, A.A.; Elahi, H.; Khan, M.U.; Mabrouki, M.; El Fatni, M.; Tariq, M. Hybrid film for liquid-solid contact-based energy harvesting systems. Int. J. Energy Res. 2022, 46, 1672–1682. [Google Scholar] [CrossRef]
- Vu, D.L.; Le, C.D.; Nguyen, V.A.; Ahn, K.K. Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator. Compos. Part B Eng. 2021, 223, 109151. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, Z.; Zhang, C.; Yuan, W.; Wu, Z.; Wang, J.; Wang, Z.L. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting. ACS Nano 2021, 15, 13200–13208. [Google Scholar] [CrossRef]
- Jang, S.; Kim, H.; Kim, Y.; Kang, B.J.; Lee, J.H.; Jeon, J.; Choi, D. Monocharged electret based liquid-solid interacting triboelectric nanogenerator for its boosted electrical output performance. Nano Energy 2020, 70, 104541. [Google Scholar] [CrossRef]
- Liang, F.; Zhang, C.; Yan, Z.; Zhang, S.; Li, J.; Li, X.; Zhang, Y. Stretchable shape-adaptive liquid-solid interface nanogenerator enabled by in-situ charged nanocomposite membrane. Nano Energy 2020, 69, 104434. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Pan, L.; Liu, G.; Zhang, Y.; Yuan, Z.; Wang, Z.L. Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis. ACS Nano 2019, 13, 2587–2598. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, J.; Zhang, X.; Yin, X.; Zhang, C.; Wang, J.; Wang, Z.L. Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy. Adv. Energy Mater. 2018, 8, 1800705. [Google Scholar] [CrossRef]
- Zhao, X.J.; Kuang, S.Y.; Wang, Z.L.; Zhu, G. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 2018, 12, 4280–4285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, R.; He, M.; Peng, R.; Gao, Y.; Liu, L.; Wang, Z.L. An Amphiphobic Hydraulic Triboelectric Nanogenerator for a Self-Cleaning and Self-Charging Power System. Adv. Funct. Mater. 2018, 28, 1801833. [Google Scholar] [CrossRef]
- Xiong, J.; Cui, P.; Chen, X.; Wang, J.; Parida, K.; Lin, M.-F.; Lee, P.S. Wearable all-fabric-based triboelectric generator for water energy harvesting. Adv. Energy Mater. 2017, 7, 1701243. [Google Scholar]
- Kil Yun, B.; Kim, J.; Kim, K.; Park, B.; Kim, J.; Myoung, J.M. Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water. Nano Energy 2017, 36, 233–240. [Google Scholar] [CrossRef]
- Zhao, X.J.; Zheng, L.; Yuan, W.; Wang, Z.L.; Zhu, G. Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection. ACS Nano 2015, 9, 7671–7677. [Google Scholar] [PubMed]
- Li, B.; Zhou, Y.; Wu, Q.; Wang, W.; Wang, Z.L. Gas discharge tubes for significantly boosting the instantaneous current and active power of load driven by triboelectric nanogenerators. Nano Energy 2023, 108, 108226. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, W.; Li, B.; Zhou, Y.; Wang, Z.L. High-output pulsed water flow and gas-liquid two-phase flow triboelectric nanogenerator based on induction electrification. Nano Energy 2024, 126, 109679. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Q.; Li, B.; Zhou, Y.; Wang, Z.L. Gas-solid two-phase flow triboelectric generator for powder triboelectrification energy collection and road early warning. Nano Energy 2024, 120, 109121. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Zhou, L.; Wu, H.; Wang, Z.L. A new strategy for tube leakage and blockage detection using bubble motion-based solid-liquid triboelectric sensor. Sens. Actuators A Phys. 2022, 335, 113379. [Google Scholar] [CrossRef]
- Yan, X.; Wang, M.; Zhao, Y.; Zhao, Y.; Wang, Z.L. Bubble energy generator. Sci. Adv. 2022, 8, eabo7698. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wang, J.; Thangavel, G.; Chen, X.; Jiang, C.; Lee, P.S. Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci. Adv. 2020, 6, eabb4246. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, G.; Wu, H.; Zi, Y.; Zhang, B.; Wang, Z.L. Achieving Ultrahigh Output Energy Density of Triboelectric Nanogenerators in High-Pressure Gas Environment. Adv. Sci. 2020, 7, 2001757. [Google Scholar] [CrossRef]












| Type | Methods | Voltage (V) | Current (μA) | Power Density (W/m2) | Charge Transfer (nC) | Tribo-Materials | Year | Refs. |
|---|---|---|---|---|---|---|---|---|
| S-L | Direct | 400 | 2000 | ~ | ~ | Water/PDMS | 2024 | [86] |
| 250 | 50 | ~ | 73 | Water/FEP | 2024 | [87] | ||
| 298.27 | 3510 | ~ | ~ | Water/PTFE | 2023 | [88] | ||
| 600 | 1720 | 48,700 | ~ | Water/FEP | 2023 | [89] | ||
| 270 | 80 | 1.79 | ~ | Water/PVDF (PA-coated carbon) | 2023 | [90] | ||
| 52 | 4.5 | ~ | 1.2 | DI Water/FEP | 2023 | [91] | ||
| 344 | 6160 | 357 | ~ | water/PTFE | 2022 | [92] | ||
| 56.66 | 294.9 | ~ | 609.80 | Raindrops/nanoimprinted FEP | 2022 | [93] | ||
| 16.5 | 18.1 | ~ | 33.2 | DI Water/F-GO/PVDF | 2022 | [94] | ||
| 198 | 268.9 | 47.5 | 71.8 | Water/FEP | 2021 | [95] | ||
| 280.8 | 298 | 82.66 | 101 | Water/FEP | 2021 | [96] | ||
| 22 | 3.5 | ~ | 7.5 | Water/PVDF-HFP/FDTS | 2021 | [97] | ||
| 230.1 | 282.7 | 47.5 | 71.8 | DI Water/FEP | 2021 | [97] | ||
| 62.2 | 95.2 | ~ | 46 | Water/PTFE | 2021 | [98] | ||
| 100 | 37 | 0.02 | 46 | DI water/FEP | 2021 | [99] | ||
| 143.5 | 270 | 50.1 | ~ | Water/PTFE | 2020 | [100] | ||
| Indirect | 96 | 6.86 | 1.98 | 17.8 | Water/FEP | 2023 | [101] | |
| 78 | 0.07 | ~ | 300 | Seawater/FEP | 2022 | [102] | ||
| 210 | 0.268 | ~ | 742 | DI water/FEP | 2022 | [102] | ||
| 1.35 | 0.69 | ~ | ~ | DI water/PDMS MCMws | 2022 | [103] | ||
| 100 | 120 | 2.62 | 60 | DI Water/FEP | 2022 | [104] | ||
| 80 | 18 | ~ | ~ | DI Water/FEVE | 2022 | [105] | ||
| 50 | 0.28 | 0.675 | ~ | DI water/PDMS-PTFE | 2021 | [106] | ||
| 28.3 | 5.79 | 0.42 | 152.2 | DI water/FOTS-SiNPs-PVDF | 2021 | [107] | ||
| 77 | 0.052 | ~ | 30.7 | DI water/FEP | 2021 | [108] | ||
| 132 | 30 | ~ | ~ | Water/CYTOP | 2020 | [109] | ||
| 120 | 18 | ~ | ~ | DI water/PTFE-TPU | 2020 | [110] | ||
| 228 | 11.5 | ~ | ~ | Water/FEP | 2019 | [111] | ||
| 400 | 40 | ~ | ~ | Water/PTFE | 2018 | [112] | ||
| 300 | 12 | 0.015 | ~ | Water/PTFE nanowires | 2018 | [113] | ||
| 100 | 200 | 0.2452 | ~ | DI water/PTFE-FSCs | 2018 | [114] | ||
| 22 | 3.1 | 0.3 | ~ | Water/HCOENP)-coated PET fabric | 2017 | [115] | ||
| 23.5 | 0.553 | ~ | ~ | DI water/PTFE | 2017 | [116] | ||
| 230 | 13 | ~ | ~ | Water/PTFE nanoparticles | 2015 | [117] | ||
| 9.3 | 17 | 0.091 | ~ | Water/nanostructured PTFE | 2014 | [13] | ||
| 160 | 3 | 0.067 | ~ | Water/FEP | 2014 | [34] | ||
| 52 | 18.87 | 0.13 | ~ | Water/pyramid PDMS | 2013 | [55] |
| Type | Methods | Voltage (V) | Current (μA) | Power Density (W/m2) | Charge Transfer (nC) | Tribo-Materials | Year | Refs. |
|---|---|---|---|---|---|---|---|---|
| G-L | Direct | 150 | 40 | ~ | ~ | Argon/Ceramic shell/Carbon fiber | 2023 | [118] |
| 3789 | 867 | ~ | ~ | Air/DI Water/PTFE | 2022 | [51] | ||
| Indirect | 2270 | 141 | 120 | Air/Water/PTFE | 2024 | [119] | ||
| 130 | 20 | 8.2 | Air/Water/PTFE/nylon | 2024 | [120] | |||
| 15.9 | 0.0109 | ~ | ~ | Air/Water/PTFE | 2024 | [54] | ||
| 344 | 24 | ~ | 47 | Air/Water/PTFE | 2024 | [54] | ||
| 3 | 0.040 | ~ | 2.2 | Air bubble/PTFE | 2022 | [121] | ||
| 40.3 | 2.4 | ~ | 20 | Air bubble/PTFE | 2022 | [122] | ||
| 5.2 | 0.450 | ~ | 27 | Air/PDPU | 2020 | [123] | ||
| ~ | ~ | ~ | ~ | Atomized water/Kapton | 2020 | [124] | ||
| 0.035 | ~ | ~ | ~ | Air bubble/water/PTFE | 2016 | [59] | ||
| L–L | Direct | 0.47 | 0.720 | ~ | 129 | polyethylene glycol (PEG)/dextran (DEX) | 2022 | [42] |
| 4 | 0.06 | ~ | 1 | Water/sugar-SDS liquid membrane | 2019 | [14] | ||
| Indirect | 1.3 | 0.012 | ~ | ~ | Ferrofluid/lubricant oil | 2020 | [65] | |
| ~ | 0.000032 | ~ | 3 | HFE/Rainwater | 2022 | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.H.; Nguyen, Q.T.; Nguyen, T.B.T.; Rabbi, M.F.; Nguyen, V.H.; Lee, Y.H.; Ahn, K.K. Direct vs. Indirect Charge Transfer: A Paradigm Shift in Phase-Spanning Triboelectric Nanogenerators Focused on Liquid and Gas Interfaces. Energies 2025, 18, 5709. https://doi.org/10.3390/en18215709
Ahn JH, Nguyen QT, Nguyen TBT, Rabbi MF, Nguyen VH, Lee YH, Ahn KK. Direct vs. Indirect Charge Transfer: A Paradigm Shift in Phase-Spanning Triboelectric Nanogenerators Focused on Liquid and Gas Interfaces. Energies. 2025; 18(21):5709. https://doi.org/10.3390/en18215709
Chicago/Turabian StyleAhn, Jee Hwan, Quang Tan Nguyen, Tran Buu Thach Nguyen, Md Fajla Rabbi, Van Hien Nguyen, Yoon Ho Lee, and Kyoung Kwan Ahn. 2025. "Direct vs. Indirect Charge Transfer: A Paradigm Shift in Phase-Spanning Triboelectric Nanogenerators Focused on Liquid and Gas Interfaces" Energies 18, no. 21: 5709. https://doi.org/10.3390/en18215709
APA StyleAhn, J. H., Nguyen, Q. T., Nguyen, T. B. T., Rabbi, M. F., Nguyen, V. H., Lee, Y. H., & Ahn, K. K. (2025). Direct vs. Indirect Charge Transfer: A Paradigm Shift in Phase-Spanning Triboelectric Nanogenerators Focused on Liquid and Gas Interfaces. Energies, 18(21), 5709. https://doi.org/10.3390/en18215709

