A Machine Learning Approach to Predict Successful Trans-Ventricular Off-Pump Micro-Invasive Mitral Valve Repair
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort and Procedure Indication
2.2. Inclusion and Exclusion Criteria
- Six patients died from non-cardiac causes (e.g., cancer, leukemia, respiratory failure);
- Eleven patients underwent mitral valve reoperation due to recurrent severe MR;
- Twenty-nine patients had not yet reached the 3-year follow-up mark, as they underwent the procedure more recently.
- Type A: Isolated central posterior mitral leaflet disease.
- Type B: Lateral, medial, or multi-segment posterior mitral leaflet disease.
- Type C: Anterior mitral leaflet disease or bi-leaflet involvement.
2.3. Predictive Variables and Data Collection
- -
- Age;
- -
- Gender;
- -
- Comorbidities: hypertension, diabetes, dyslipidemia, coronary artery disease, atrial fibrillation;
- -
- Smoking status;
- -
- Surgical risk scores: EuroSCORE II and STS.
- -
- Mitral valve anatomical classification (Types A, B, C);
- -
- Scallop involvement;
- -
- Presence of clefts;
- -
- Left ventricular ejection fraction (LVEF, %);
- -
- Indexed left atrial volume (LAVi, mL/m2);
- -
- Left ventricular end-diastolic diameter (LVEDD, mm);
- -
- Left ventricular end-diastolic volume (LVEDV, mL);
- -
- Left ventricular end-systolic volume (LVESV, mL);
- -
- Tricuspid regurgitation (TR);
- -
- Systolic pulmonary artery pressure (PAPs, mmHg);
- -
- Mitral annular calcification;
- -
- Flail gap and flail width;
- -
- Prolapse/flail area;
- -
- Anterior (LAM) and posterior (LPM) leaflet heights;
- -
- Total leaflet area;
- -
- Anteroposterior (AP) and intercommissural (IC) annular diameters (2D and 3D);
- -
- Leaflet-to-annulus index (LAI) in 2D and 3D;
- -
- End-systolic, early-systolic, and end-diastolic annular areas;
- -
- End-systolic annular height;
- -
- Annular circumference at end-systole;
- -
- Annular area fractional change (%);
- -
- Annular circumference fractional change (%).
- -
- A general dataset, including clinical and standard echocardiographic variables;
- -
- A morphological dataset, focused on dynamic 3D annular measurements.
2.4. Data Analysis: Statistical Methods and Machine Learning Approaches
- -
- AUC ≤ 0.6: poor.
- -
- AUC ≈ 0.8: good.
- -
- AUC = 1.0: excellent.
3. Results
3.1. Feature Selection for ML Models
- -
- In the full variable set (Figure 1), which included both clinical and echocardiographic parameters, the following features were retained: Procedural Age, Left Atrial Volume Index (LAVi), Flail Gap, Protosystolic Area, Telesystolic Area, Protosystolic Circumference, 3D Leaflet Area, and Leaflet Protosystolic Area.
- -
- In the reduced set (Figure 2), which included only echocardiographic variables, the Boruta algorithm identified the following: Left Atrial Volume Index (LAVi), Flail Gap, Telesystolic Area, Protosystolic Circumference, 3D Leaflet Area, and Leaflet Protosystolic Area.
3.2. ML Models Based on Both Clinical and Echocardiographic Parameters
3.3. ML Models Based on Echocardiographic Parameters Only
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCarthy, K.P.; Ring, L.; Rana, B.S. Anatomy of the mitral valve: Understanding the mitral valve complex in mitral regurgitation. Eur. J. Echocardiogr. 2010, 11, i3–i9. [Google Scholar] [CrossRef] [PubMed]
- Dal-Bianco, J.P.; Levine, R.A. Anatomy of the Mitral Valve Apparatus. Role of 2D and 3D Echocardiography. Cardiol. Clin. 2013, 31, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Garbi, M.; Monaghan, M.J. Quantitative mitral valve anatomy and pathology. Echo Res. Pr. 2015, 2, R63–R72. [Google Scholar] [CrossRef] [PubMed]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, A.; Fiocco, A.; Nadali, M.; Gerosa, G. Transapical mitral valve repair procedures: Primetime for microinvasive mitral valve surgery. J. Card. Surg. 2022, 37, 4053–4061. [Google Scholar] [CrossRef] [PubMed]
- Seeburger, J.; Rinaldi, M.; Nielsen, S.L.; Salizzoni, S.; Lange, R.; Schoenburg, M.; Alfieri, O.; Borger, M.A.; Mohr, F.W.; Aidietis, A. Off-Pump Transapical Implantation of Artificial Neo-Chordae to Correct Mitral Regurgitation: The tact trial (transapical artificial chordae tendinae) proof of concept. J. Am. Coll. Cardiol. 2014, 63, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Colli, A.; Manzan, E.; Rucinskas, K.; Janusauskas, V.; Zucchetta, F.; Zakarkaitė, D.; Aidietis, A.; Gerosa, G. Acute safety and efficacy of the NeoChord procedure. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Fiocco, A.; Nadali, M.; Speziali, G.; Colli, A. Transcatheter Mitral Valve Chordal Repair: Current Indications and Future Perspectives. Front. Cardiovasc. Med. 2019, 6, 128. [Google Scholar] [CrossRef] [PubMed]
- Colli, A.; Manzan, E.; Aidietis, A.; Rucinskas, K.; Bizzotto, E.; Besola, L.; Pradegan, N.; Pittarello, D.; Janusauskas, V.; Zakarkaite, D.; et al. An early European experience with transapical off-pump mitral valve repair with NeoChord implantation. Eur. J. Cardio-Thorac. Surg. 2018, 54, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Gerosa, G.; Nadali, M.; Longinotti, L.; Ponzoni, M.; Caraffa, R.; Fiocco, A.; Pradegan, N.; Besola, L.; D’oNofrio, A.; Bizzotto, E.; et al. Transapical off-pump echo-guided mitral valve repair with neochordae implantation mid-term outcomes. Ann. Cardiothorac. Surg. 2021, 10, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Durst, R.; Gilon, D. Imaging of Mitral Valve Prolapse: What Can We Learn from Imaging about the Mechanism of the Disease? J. Cardiovasc. Dev. Dis. 2015, 2, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, G.A.; Fishbein, M.C. Mitral Valve Pathology. Curr. Cardiol. Rep. 2019, 21, 61. [Google Scholar] [CrossRef] [PubMed]
- Colli, A.; Besola, L.; Montagner, M.; Azzolina, D.; Soriani, N.; Manzan, E.; Bizzotto, E.; Zucchetta, F.; Bellu, R.; Pittarello, D.; et al. Prognostic impact of leaflet-to-annulus index in patients treated with transapical off-pump echo-guided mitral valve repair with NeoChord implantation. Int. J. Cardiol. 2018, 257, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Maisano, F.; La Canna, G.; Grimaldi, A.; Viganò, G.; Blasio, A.; Mignatti, A.; Colombo, A.; Maseri, A.; Alfieri, O. Annular-to-Leaflet Mismatch and the Need for Reductive Annuloplasty in Patients Undergoing Mitral Repair for Chronic Mitral Regurgitation Due to Mitral Valve Prolapse. Am. J. Cardiol. 2007, 99, 1434–1439. [Google Scholar] [CrossRef] [PubMed]
- Manzan, E.; Azzolina, D.; Gregori, D.; Bizzotto, E.; Colli, A.; Gerosa, G. Combining echocardiographic and anatomic variables to predict outcomes of mitral valve repair with the NeoChord procedure. Ann. Cardiothorac. Surg. 2021, 10, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Vairo, A.; Gaiero, L.; Marro, M.; Russo, C.; Bolognesi, M.; Soro, P.; Gallone, G.; Fioravanti, F.; Desalvo, P.; D’ascenzo, F.; et al. New Echocardiographic Parameters Predicting Successful Trans-Ventricular Beating-Heart Mitral Valve Repair with Neochordae at 3 Years: Monocentric Retrospective Study. J. Clin. Med. 2023, 12, 1748. [Google Scholar] [CrossRef] [PubMed]
- Colli, A.; Bagozzi, L.; Banchelli, F.; Besola, L.; Bizzotto, E.; Pradegan, N.; Fiocco, A.; Manzan, E.; Zucchetta, F.; Bellu, R.; et al. Learning curve analysis of transapical NeoChord mitral valve repair. Eur. J. Cardio-Thorac. Surg. 2018, 54, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Colli, A.; Fiocco, A.; Nadali, M.; Besola, L.; Pradegan, N.; Folino, G.; Kliger, C.; Pirelli, L.; Gerosa, G. Chapter 21—Transcatheter mitral valve therapies for degenerative and functional mitral regurgitation. In Emerging Technologies for Heart Diseases; Nussinovitch, U., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 417–461. [Google Scholar] [CrossRef]
- Liu, T.; Krentz, A.; Lu, L.; Curcin, V. Machine learning based prediction models for cardiovascular disease risk using electronic health records data: Systematic review and meta-analysis. Eur. Hearth J. Digit. Health 2025, 6, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.A.; Rizk, R.; Chiu, C.; Zhang, J.J.; Scholl, J.L.; Bosch, T.J.; Singh, A.; Baugh, L.A.; McGough, J.S.; Santosh, K.; et al. The Heart of Transformation: Exploring Artificial Intelligence in Cardiovascular Disease. Biomedicines 2025, 13, 427. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Lai, Y.; Luo, X.; Peng, D.; Li, Q.; Zhou, H.; Xue, Y.; Guo, H.; Zhao, J.; Yang, H.; et al. Acetyltransferase p300 regulates atrial fibroblast senescence and age-related atrial fibrosis through p53/Smad3 axis. Aging Cell 2023, 22, e13743. [Google Scholar] [CrossRef] [PubMed]
- Gorcsan, J. Can Left Atrial Strain Forecast Future Fibrillation? JACC Cardiovasc. Imaging 2021, 14, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Cameli, M.; Mandoli, G.E.; Loiacono, F.; Sparla, S.; Iardino, E.; Mondillo, S. Left atrial strain: A useful index in atrial fibrillation. Int. J. Cardiol. 2016, 220, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Grigioni, F.; Benfari, G.; Vanoverschelde, J.-L.; Tribouilloy, C.; Avierinos, J.-F.; Bursi, F.; Suri, R.M.; Guerra, F.; Pasquet, A.; Rusinaru, D.; et al. Long-Term Implications of Atrial Fibrillation in Patients with Degenerative Mitral Regurgitation. J. Am. Coll. Cardiol. 2019, 73, 264–274. [Google Scholar] [CrossRef] [PubMed]
- El Mathari, S.; Kluin, J.; Hopman, L.H.G.A.; Bhagirath, P.; Oudeman, M.A.P.; Vonk, A.B.A.; Nederveen, A.J.; Eberl, S.; Klautz, R.J.M.; Chamuleau, S.A.J.; et al. The role and implications of left atrial fibrosis in surgical mitral valve repair as assessed by CMR: The ALIVE study design and rationale. Front. Cardiovasc. Med. 2023, 10, 1166703. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Zhu, Y.; Imbrie-Moore, A.M.; Wang, H.; Marin-Cuartas, M.; Paulsen, M.J.; Woo, Y.J. Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Ex Vivo Heart Simulation. Front. Cardiovasc. Med. 2021, 8, 673689. [Google Scholar] [CrossRef] [PubMed]
- Zoghbi, W.A.; Asch, F.M.; Bruce, C.; Gillam, L.D.; Grayburn, P.A.; Hahn, R.T.; Inglessis, I.; Islam, A.M.; Lerakis, S.; Little, S.H.; et al. Guidelines for the Evaluation of Valvular Regurgitation After Percutaneous Valve Repair or Replacement: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Angiography and Interventions, Japanese Society of Echocardiography, and Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2019, 32, 431–475. [Google Scholar] [CrossRef] [PubMed]
- Loardi, C.M.; Nagata, Y.; Thiene, G. 3D Echocardiography in Mitral Valve Prolapse. Front. Cardiovasc. Med. 2023, 9, 1050476. [Google Scholar] [CrossRef] [PubMed]
Parameter | Mean ± SD |
---|---|
Age (years) | 77 ± 9.2 |
eGFR (mL/min) | 63.6 ± 22.6 |
Euroscore II (%) | 2.3 ± 1.85 |
Parameter | N% |
Female | 77 ± 9.2 |
NYHA class II or IV | 63.6 ± 22.6 |
DM II | 2.3 ± 1.85 |
Arterial hypertension | 50 (62.5%) |
Extracardiac arteriopathy | 7 (8.7%) |
CAD | 12 (15%) |
Previous stroke | 2 (2.5%) |
COPD | 5 (6.3%) |
Malignancy | 14 (17.5%) |
AF | 24 (30%) |
Persistent AF | 13 (16.3%) |
Previous cardiac surgery | 11 (13.7%) |
PAPs > 50 mmHg | 19 (23.7%) |
Compassionate | 23 (28.7%) |
Parameter | Mean ± SD |
---|---|
EF (%) | 63 ± 5 |
LVEDD (mm) | 53 ± 7 |
EDVi (mL/m2) | 71 ± 21 |
ESVi (mL/m2) | 26 ± 7 |
LAVi (mL/m2) | 61 ± 25 |
sPAP (mmHg) | 43 ± 15 |
AP annulus diameter 2D (mm) | 31.1 ± 5.6 |
IC annulus diameter 2D (mm) | 36.2 ± 5.7 |
AP annulus diameter 3D (mm) | 34.4 ± 5.9 |
IC annulus diameter 3D (mm) | 42.6 ± 5.8 |
AML (mm) | 26.6 ± 4 |
PML (mm) | 17.7 ± 2.9 |
LAI (2D) | 1.45 ± 0.24 |
LAI (3D) | 1.42 ± 0.06 |
Flail gap (mm) | 5.9 ± 2.1 |
Flail width (mm) | 13.6 ± 4.6 |
Prolapse area (mm2) | 209 ± 90 |
Annulus area, end-systolic (mm2) | 1197.8 ± 312.7 |
Annulus area, early-systolic (mm2) | 1120.5 ± 326.1 |
Annulus area, end-diastolic (mm2) | 1294.1 ± 334 |
Annulus circumference, end-systolic (mm) | 134 ± 17.1 |
Annulus area fractional chance (%) | 7.6 ± 6.1 |
Annulus circumference fractional change (%) | 4.4 ± 3.3 |
Leaflets area (mm2) | 1553 ± 390 |
Annulus heigh, end-systolic (mm) | 7.6 ± 2.4 |
Parameter | N (%) |
TR ≥ moderate | 18 (22.5%) |
Anatomical Classification | |
Type A (favorable) | 50 (62.5%) |
Type B (favorable) | 19 (23.7%) |
Type C (unfavorable) | 11 (13.8%) |
Spot annulus calcification | 8 (10%) |
Cleft | 4 (5%) |
Parameter | Success Group n = 50 | Failed Group n = 30 | OR | Univariate 95% CI | Logistic Regression p-Value |
---|---|---|---|---|---|
Age (years) | 74 ± 9 | 77 ± 10 | 1.05 | 0.99–1.11 | 0.071 |
Euroscore II (%) | 2.3 ± 1.9 | 2.8 ± 1.9 | 1.14 | 0.90–1.45 | 0.268 |
eGFR (mL/min) | 67.2 ± 24.5 | 57.8 ± 19.8 | 0.98 | 0.95–1.00 | 0.077 |
Female | 15 (30%) | 10 (33%) | 0.97 | 0.37–2.53 | 0.951 |
DM II | 3 (6%) | 1 (3%) | 0.54 | 0.05–5.44 | 0.601 |
Arterial hypertension | 27 (54%) | 24 (80%) | 3.40 | 1.118–9.77 | 0.023 |
Extracardiac arteriopathy | 3 (6%) | 4 (13%) | 2.41 | 0.50–11.60 | 0.273 |
CAD | 9 (18%) | 5 (17%) | 0.91 | 0.27–3.02 | 0.879 |
Atrial fibrillation | 9 (18%) | 15 (50%) | 4.55 | 1.64–12.58 | 0.003 |
Previous cardiac surgery | 8 (16%) | 3 (10%) | 0.82 | 0.14–4.78 | 0.827 |
Parameter | Success Group n = 50 | Failed Group n = 30 | p-Value |
---|---|---|---|
Ejection fraction (%) | 63.2 ± 4.6 | 62.6 ± 5.8 | 0.69 |
LVEDD (mm) | 30.2 ± 0.9 | 30.7 ± 1.1 | 0.74 |
EDVi (mL/m2) | 69.9 ± 3.2 | 74 ± 3.8 | 0.42 |
ESVi (mL/m2) | 25.7 ± 1.1 | 28.8 ± 1.5 | 0.15 |
LAVi (mL/m2) | 52.7 ± 2.5 | 67.2 ± 5.5 | 0.01 |
sPAP (mmHg) | 27 (54%) | 24 (80%) | 0.11 |
Prolapse area (mmq) | 2.02 ± 0.14 | 2.23 ± 0.21 | 0.408 |
AML + PML (mm) | 43.85 ± 0.83 | 44.87 ± 0.64 | 0.243 |
Leaflet area 3D (mm2) | 1397.81 ± 49.25 | 1687.59 ± 81.58 | 0.001 |
Leaflet area/prolapse area | 793.36 ± 63.52 | 927.08 ± 110.42 | 0.267 |
Flail gap (mm) | 5.03 ± 0.24 | 7.14 ± 0.42 | 0.001 |
Flail width (mm) | 12.95 ± 0.91 | 15.16 ± 1.46 | 0.186 |
Cleft | 0 | 4 (13%) | 0.017 |
Anulus, static | |||
AP annulus diameter 2D (mm) | 30.52 ± 0.84 | 32.18 ± 0.94 | 0.22 |
End-systolic annulus height (mm) | 7.99 ± 0.40 | 7.04 ± 0.39 | 0.003 |
IC annulus diameter 2D (mm) | 35.81 ± 0.78 | 36.55 ± 1.16 | 0.62 |
AP annulus diameter, early-systolic, 3D (mm) | 30.2 ± 5.18 | 34.9 ± 4.53 | 0.0005 |
AP annulus diameter, end-systolic, 3D (mm) | 32.3 ± 6.52 | 37.4 ± 5.92 | 0.0003 |
AP annulus diameter, end-diastolic, 3D (mm) | 32.7 ± 5.79 | 37.5 ± 4.98 | 0.0005 |
IC annulus diameter, early-systolic, 3D (mm) | 38 ± 4.81 | 41.4 ± 4.83 | 0.006 |
IC annulus diameter, end-systolic, 3D (mm) | 39.5 ± 6.58 | 44.2 ± 4.91 | 0.0005 |
IC annulus diameter, end-diastolic, 3D (mm) | 40.1 ± 5.81 | 45.1 ± 5.22 | 0.0022 |
(AP + IC)/2 3D value | 36.38 ± 0.97 | 41.27 ± 0.95 | 0.0010 |
End-diastolic annulus area (mm2) | 1190.39 ± 46.77 | 1451.48 ± 62.89 | 0.0001 |
End-diastolic annulus circumference (mm) | 130.23 ± 2.68 | 141.97 ± 2.83 | 0.0001 |
End-systolic annulus circumference (mm) | 124.33 ± 2.44 | 135.71 ± 2.85 | 0.0039 |
End-systolic annulus area (mm2) | 1102.84 ± 44.97 | 1342.06 ± 57.30 | 0.0015 |
Annulus, dynamic | |||
Annulus circumference fractional change (%) | 0.044 ± 0.005 | 0.044 ± 0.059 | 0.9973 |
Annulus area, fractional change (%) | 0.076 ± 0.009 | 0.074 ± 0.010 | 0.9202 |
Early-systolic annulus area (mm2) | 992.69 ± 41.43 | 1089.38 ± 62.25 | 0.0001 |
Early-systolic annulus circumference (mm) | 119.82 ± 2.36 | 136.43 ± 3.02 | 0.0001 |
Coptation reserve | |||
Leaflet-to-annulus index (LAI) 2D | 1.47 ± 0.04 | 1.41 ± 0.04 | 0.367 |
LAI (end-systolic AP diameter) 3D | 1.40 ± 0.04 | 1.27 ± 0.03 | 0.021 |
LAI (early systolic AP diameter) 3D | 1.50 ± 0.04 | 1.29 ± 0.03 | 0.001 |
(AML + PML)/annulus area (mm/mm2) | 0.032 ± 0.001 | 0.027 ± 0.001 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vairo, A.; Russo, C.; Saglietto, A.; Cimino, R.A.; Pocar, M.; Barbero, C.; Costamagna, A.; De Ferrari, G.M.; Rinaldi, M.; Salizzoni, S. A Machine Learning Approach to Predict Successful Trans-Ventricular Off-Pump Micro-Invasive Mitral Valve Repair. J. Clin. Med. 2025, 14, 5863. https://doi.org/10.3390/jcm14165863
Vairo A, Russo C, Saglietto A, Cimino RA, Pocar M, Barbero C, Costamagna A, De Ferrari GM, Rinaldi M, Salizzoni S. A Machine Learning Approach to Predict Successful Trans-Ventricular Off-Pump Micro-Invasive Mitral Valve Repair. Journal of Clinical Medicine. 2025; 14(16):5863. https://doi.org/10.3390/jcm14165863
Chicago/Turabian StyleVairo, Alessandro, Caterina Russo, Andrea Saglietto, Rino Andrea Cimino, Marco Pocar, Cristina Barbero, Andrea Costamagna, Gaetano Maria De Ferrari, Mauro Rinaldi, and Stefano Salizzoni. 2025. "A Machine Learning Approach to Predict Successful Trans-Ventricular Off-Pump Micro-Invasive Mitral Valve Repair" Journal of Clinical Medicine 14, no. 16: 5863. https://doi.org/10.3390/jcm14165863
APA StyleVairo, A., Russo, C., Saglietto, A., Cimino, R. A., Pocar, M., Barbero, C., Costamagna, A., De Ferrari, G. M., Rinaldi, M., & Salizzoni, S. (2025). A Machine Learning Approach to Predict Successful Trans-Ventricular Off-Pump Micro-Invasive Mitral Valve Repair. Journal of Clinical Medicine, 14(16), 5863. https://doi.org/10.3390/jcm14165863