Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = micro-propulsion system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2123 KB  
Review
Molecular Dynamics Simulation of Nano-Aluminum: A Review on Oxidation, Structure Regulation, and Energetic Applications
by Dihua Ouyang, Xin Chen, Qiantao Zhang, Chunpei Yu, He Cheng, Weiqiang Pang and Jieshan Qiu
Nanomaterials 2026, 16(1), 74; https://doi.org/10.3390/nano16010074 - 5 Jan 2026
Viewed by 346
Abstract
Nano-aluminum (nAl), characterized by its high combustion enthalpy and enhanced reactivity, serves as a critical component in advanced energetic materials like solid propellants and micro-ignition devices. However, the atomic-scale mechanisms governing its core–shell structure evolution, oxidation dynamics, and interfacial interactions remain elusive to [...] Read more.
Nano-aluminum (nAl), characterized by its high combustion enthalpy and enhanced reactivity, serves as a critical component in advanced energetic materials like solid propellants and micro-ignition devices. However, the atomic-scale mechanisms governing its core–shell structure evolution, oxidation dynamics, and interfacial interactions remain elusive to experimental probes due to spatiotemporal limitations. Molecular dynamics (MD) simulations, particularly the synergistic use of a ReaxFF reactive force field (for large-scale systems) and ab initio MD (for electronic-level accuracy), have emerged as a powerful tool to overcome this barrier. This review systematically delineates the oxidation mechanisms and core–shell structure regulation of nAl, with a focus on the multi-scale simulation paradigm integrating DFT, AIMD, and ReaxFF MD that directly supports nAl research. It critically examines the pivotal role of MD simulations in guiding the surface modification of nAl, elucidating combustion mechanisms at the atomic level, and designing interfaces in energetic composite systems. By synthesizing recent advances (2022–2025), this study establishes a clear structure–property relationship between microscopic features and macroscopic performance of nAl. Furthermore, it identifies prevailing challenges, including simulations under multi-physics loading, multi-scale bridging, and quantitative experiment-simulation validation that specifically affect nAl-based energetic systems. Finally, future research directions are prospected, encompassing the development of machine learning-empowered force fields tailored for nAl systems, multi-scale and multi-field coupling simulation frameworks targeting nAl applications, and closed-loop experiment-simulation systems for nAl-based energetic materials. This review aims to provide fundamental insights and a technical framework for the rational design and engineering application of nAl-based energetic materials in fields such as aerospace propulsion. Full article
Show Figures

Figure 1

26 pages, 88895 KB  
Review
Active Propelled Micro Robots in Drug Delivery for Urologic Diseases
by Chunlian Zhong, Menghuan Tang and Zhaoqing Cong
Micromachines 2026, 17(1), 24; https://doi.org/10.3390/mi17010024 - 25 Dec 2025
Viewed by 660
Abstract
Active propelled micro robots (MRs) represent a transformative shift in biomedical engineering, engineered to navigate physiological environments by converting chemical, acoustic, or magnetic energy into mechanical propulsion. Unlike passive delivery systems limited by diffusion and systemic clearance, MRs offer autonomous mobility, enabling precise [...] Read more.
Active propelled micro robots (MRs) represent a transformative shift in biomedical engineering, engineered to navigate physiological environments by converting chemical, acoustic, or magnetic energy into mechanical propulsion. Unlike passive delivery systems limited by diffusion and systemic clearance, MRs offer autonomous mobility, enabling precise penetration and retention in hard-to-reach tissues. This review provides comprehensive analysis of MR technologies within urology, a field uniquely suited for microrobotic intervention due to the urinary tract’s anatomical accessibility and fluid-filled nature. We explore how MRs address critical therapeutic limitations, including the high recurrence of kidney stones and the rapid washout of intravesical bladder cancer therapies. The review categorizes propulsion mechanisms optimized for the urinary environment, such as urea-fueled nanomotors and magnetic swarms. Furthermore, we detail emerging applications, including bioresorbable acoustic robots for tumor ablation and magnetic grippers for minimally invasive biopsies. Finally, we critically assess the path toward clinical translation, focusing on challenges in biocompatibility, real-time tracking (MRI, MPI, photoacoustic imaging), and the regulatory landscape for these advanced combination products. Full article
Show Figures

Figure 1

8 pages, 1701 KB  
Proceeding Paper
Biohybrid Micro-Robots for Targeted Drug Delivery in Cancer Therapy
by Wai Yie Leong
Eng. Proc. 2025, 120(1), 4; https://doi.org/10.3390/engproc2025120004 - 24 Dec 2025
Viewed by 506
Abstract
The development of biohybrid micro-robots represents a groundbreaking advancement in targeted drug delivery for cancer therapy, offering unprecedented precision and reduced systemic toxicity. These microscale robots integrate synthetic materials with biological components such as bacteria, algae, red blood cells, or spermatozoa, capitalizing on [...] Read more.
The development of biohybrid micro-robots represents a groundbreaking advancement in targeted drug delivery for cancer therapy, offering unprecedented precision and reduced systemic toxicity. These microscale robots integrate synthetic materials with biological components such as bacteria, algae, red blood cells, or spermatozoa, capitalizing on the inherent motility, biocompatibility, and targeting capabilities of living organisms. This hybridization enables active navigation through complex biological environments, overcoming physiological barriers such as the blood–brain and endothelial junctions that impede traditional nanoparticle-based systems. In this study, we propose a multi-functional biohybrid micro-robotic platform composed of magnetically actuated synthetic chassis coated with doxorubicin-loaded lipid vesicles and tethered to Magnetospirillum magneticum for propulsion and tumor-homing capabilities. The results underscore the promise of biohybrid micro-robots as intelligent, minimally invasive agents for next-generation oncological therapies, capable of delivering chemotherapeutics with enhanced spatial and temporal accuracy. Future work will focus on clinical translation pathways, biosafety evaluations, and scalability of production under Good Manufacturing Practice (GMP) standards. Full article
(This article belongs to the Proceedings of 8th International Conference on Knowledge Innovation and Invention)
Show Figures

Figure 1

32 pages, 11603 KB  
Article
Leveraging the Symmetry Between Active Dual-Steering-Wheel MPC and Passive Air Bearing for Ground-Based Satellite Hovering Tests
by Xiao Zhang, Zhen Zhao, Zainan Jiang, Zhigang Xu and Yonglin Tian
Symmetry 2025, 17(11), 1990; https://doi.org/10.3390/sym17111990 - 17 Nov 2025
Viewed by 403
Abstract
Satellite hovering missions involve an active propulsion phase for precise maneuvering and a subsequent passive dynamics phase wherein the satellite responds to external forces, such as from a manipulator. Therefore, a ground-testing method capable of seamlessly integrating these operational regimes is required. This [...] Read more.
Satellite hovering missions involve an active propulsion phase for precise maneuvering and a subsequent passive dynamics phase wherein the satellite responds to external forces, such as from a manipulator. Therefore, a ground-testing method capable of seamlessly integrating these operational regimes is required. This paper presents a novel methodology that leverages the symmetry between active wheel-driven control and passive air-bearing dynamics to establish a unified testing platform. A mathematical model is established for the dual independent steering-wheel drive system, and an error model for tracking both the translational (position) trajectory and the rotational (attitude) trajectory of the satellite during hovering is derived. Based on this, a Model Predictive Control (MPC) scheme is designed to generate optimal driving speeds and steering angles for the wheels, ensuring accurate trajectory tracking while explicitly adhering to their driving and steering constraints. Furthermore, our work involves the integrated design of a gravity-compensated platform and its steering wheels, incorporating design methods to enhance air-bearing safety and a seamless switching method to maintain test continuity by minimizing transient disturbances. Experiments demonstrate that this integrated platform delivers both high-precision satellite trajectory tracking and high-fidelity passive air-bearing micro-gravity simulation for the active and passive phases of a satellite hovering mission. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

18 pages, 3270 KB  
Article
The Effect of Combustor Material for Micro-Propulsion Systems
by David M. Dias, Pedro R. Resende and Alexandre M. Afonso
Aerospace 2025, 12(9), 820; https://doi.org/10.3390/aerospace12090820 - 11 Sep 2025
Viewed by 3623
Abstract
The increasing demand on combustion-based micro-power generation systems, mainly due to the high energy density of hydrocarbon fuels, created a great opportunity to develop portable power devices, which can be applied on micro unmanned aerial vehicles, micro-satellite thrusters, or micro chemical reactors and [...] Read more.
The increasing demand on combustion-based micro-power generation systems, mainly due to the high energy density of hydrocarbon fuels, created a great opportunity to develop portable power devices, which can be applied on micro unmanned aerial vehicles, micro-satellite thrusters, or micro chemical reactors and sensors. Also, the need for better and cheaper communications networks and control systems has led space companies to invest in micro and meso satellites, such as CubeSat. In this study, we conducted a comprehensive and meticulous study of micro-combustion within wavy channel micro-propulsion systems, which can be applied on micro unmanned aerial vehicles or CubeSat. The primary objective was to gain a deeper comprehension of the dynamics within these complex non-linear geometries and analyze the effect of different materials on the combustion dynamics and propulsion efficiency. Full article
Show Figures

Figure 1

24 pages, 1481 KB  
Article
Optimal Heliocentric Orbit Raising of CubeSats with a Monopropellant Electrospray Multimode Propulsion System
by Alessandro A. Quarta, Marco Bassetto and Giulia Becatti
Appl. Sci. 2025, 15(16), 9169; https://doi.org/10.3390/app15169169 - 20 Aug 2025
Cited by 1 | Viewed by 903
Abstract
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion [...] Read more.
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion within a single vehicle, while reducing the overall mass compared to traditional configurations where each propulsion system uses a different propellant. This feature makes the MPS concept particularly attractive for small spacecraft, such as the well-known CubeSats, which have now reached a high level of technological maturity and are employed not only in geocentric environments but also in interplanetary missions as support elements for conventional deep-space vehicles. Within the MPS framework, a Monopropellant-Electrospray Multimode Propulsion System (MEMPS) represents a specific type of micropropulsion technology that enables a single miniaturized propulsion unit to operate in either catalytic-chemical or electrospray-electric mode. This paper investigates the flight performance of a MEMPS-equipped CubeSat in a classical circle-to-circle orbit-raising (or lowering) maneuver within a two-dimensional mission scenario. Specifically, the study derives the optimal guidance law that allows the CubeSat to follow a transfer trajectory optimized either for minimum flight time or minimum propellant consumption, starting from a parking orbit of assigned radius and targeting a final circular orbit. Numerical simulations indicate that a heliocentric orbit raising, increasing the initial solar distance by 20%, can be achieved with a flight time of approximately 11 months and a propellant consumption slightly below 6 kg. The proposed method is applied to a heliocentric case study, although the procedure can be readily extended to geocentric transfer missions, which represent a more common application scenario for current CubeSat-based scientific missions. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

15 pages, 2785 KB  
Article
Optimization of Magnetic Nozzle Configuration and Hybrid Propellant for Radio-Frequency Plasma Micro-Thrusters in Very Low Earth Orbit Applications
by Jinhao Liu, Longfei Ma, Jianwu He, Jinyue Geng, Li Duan, Qi Kang and Feng Xu
Aerospace 2025, 12(8), 712; https://doi.org/10.3390/aerospace12080712 - 11 Aug 2025
Cited by 1 | Viewed by 1023
Abstract
Very low Earth orbit (VLEO) satellites are confronted with the challenge of orbital decay caused by thin atmospheres, and the volume and power limitations of micro satellites further restrict the application of traditional electric propulsion systems. In response to the above requirements, this [...] Read more.
Very low Earth orbit (VLEO) satellites are confronted with the challenge of orbital decay caused by thin atmospheres, and the volume and power limitations of micro satellites further restrict the application of traditional electric propulsion systems. In response to the above requirements, this study proposes an innovative scheme of radio frequency plasma micro-thrusters based on magnetic nozzle acceleration technology. By optimizing the magnetic nozzle configuration through the system, the plasma confinement efficiency was significantly enhanced. Combined with the mixed working medium (5 sccm Xe + 10 sccm air), the thrust reached 1.7 mN at a power of 130 W. Experiments show that the configuration of the magnetic nozzle directly affects the plasma beam morphology and ionization efficiency, and a multi-magnet layout can form a stable trumpet-shaped plume. The air in the mixed working medium has a linear relationship with the thrust gain (60 μN/sccm), but xenon gas is required as a “seed” to maintain the discharge stability. The optimized magnetic nozzle enables the thruster to achieve both high thrust density (13.1 μN/W) and working medium adaptability at a power level of hundreds of watts. This research provides a low-cost and miniaturized propulsion solution for very low Earth orbit satellites. Its magnetic nozzle-hybrid propellant collaborative mechanism holds significant engineering significance for the development of air-aspirating electric propulsion technology. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

15 pages, 6663 KB  
Patent Summary
Modernization of the DISA 55D41 Wind Tunnel for Micro-Scale Probe Testing
by Emilia Georgiana Prisăcariu, Iulian Vlăducă, Oana Maria Dumitrescu, Sergiu Strătilă and Raluca Andreea Roșu
Inventions 2025, 10(4), 66; https://doi.org/10.3390/inventions10040066 - 1 Aug 2025
Viewed by 992
Abstract
Originally introduced in the 1960s by DISA Elektronik as a calibration tunnel for hot-wire anemometers, the Type 55D41 has now been reengineered into a versatile and modern aerodynamic test platform. While retaining key legacy components, such as the converging nozzle and the 55D42 [...] Read more.
Originally introduced in the 1960s by DISA Elektronik as a calibration tunnel for hot-wire anemometers, the Type 55D41 has now been reengineered into a versatile and modern aerodynamic test platform. While retaining key legacy components, such as the converging nozzle and the 55D42 power unit, the upgraded system features a redesigned modular test section with optical-grade quartz windows. This enhancement enables compatibility with advanced flow diagnostics and visualization methods, including PTV, DIC, and schlieren imaging. The modernized facility maintains the precision and flow stability that made the original design widely respected, while expanding its functionality to meet the demands of contemporary experimental research. Its architecture supports the aerodynamic characterization of micro-scale static pressure probes used in aerospace, propulsion, and micro gas turbine applications. Special attention is given to assessing the influence of probe tip geometry (e.g., conical, ogive), port positioning, and stem interference on measurement accuracy. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

12 pages, 6639 KB  
Article
Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide
by Haibo Yang, Zhongcan Chen, Xudong Yang, Chang Xu and Hanyu Deng
Aerospace 2025, 12(8), 663; https://doi.org/10.3390/aerospace12080663 - 26 Jul 2025
Viewed by 646
Abstract
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground [...] Read more.
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground ignition tests were conducted to monitor chamber pressure and shell temperature. Compared with conventional metallic thrusters, PA6GF composites have exhibited excellent thermal insulation and sufficient mechanical strength. Under 8 MPa and 2773 K ignition conditions, the shell thickness was reduced to 2.5 mm and could withstand pressures up to 10.37 MPa. These results indicate that PA6GF composites are well-suited for space micro solid thrusters with inner diameters of 15–70 mm, offering new possibilities for lightweight space propulsion system design. Full article
Show Figures

Figure 1

24 pages, 7102 KB  
Article
Comparing a New Passive Lining Method for Jet Noise Reduction Using 3M™ Nextel™ Ceramic Fabrics Against Ejector Nozzles
by Alina Bogoi, Grigore Cican, Laurențiu Cristea, Daniel-Eugeniu Crunțeanu, Constantin Levențiu and Andrei-George Totu
Technologies 2025, 13(7), 295; https://doi.org/10.3390/technologies13070295 - 9 Jul 2025
Viewed by 1408
Abstract
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three [...] Read more.
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three nozzle configurations, baseline, ejector, and Nextel-treated, were evaluated under realistic operating conditions using traditional and advanced acoustic diagnostics applied to data from a five-microphone circular array. The results show that while the ejector provides superior directional suppression and low-frequency redistribution, making it ideal for far-field noise control, it maintains high total energy levels and requires structural modifications. In contrast, the Nextel lining achieves comparable reductions in overall noise, especially in high-frequency ranges, while minimizing structural impact and promoting spatial energy dissipation. Analyses in both the time-frequency and spatial–spectral domains demonstrate that the Nextel configuration not only lowers acoustic energy but also disrupts coherent noise patterns, making it particularly effective for near-field protection in compact propulsion systems. A POD analysis further shows that NEXTEL more evenly distributes energy across mid-order modes, indicating its role in smoothing spatial variations and dampening localized acoustic concentrations. According to these results, ceramic fabric linings offer a lightweight, cost-effective solution for reducing the high noise levels typically associated with drones and UAVs powered by small turbojets. When combined with ejectors, they could enhance acoustic suppression in compact propulsion systems where space and weight are critical. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

17 pages, 6509 KB  
Article
Operation of Vacuum Arc Thruster Arrays with Multiple Isolated Current Sources
by Benjamin Kanda and Minkwan Kim
Aerospace 2025, 12(6), 549; https://doi.org/10.3390/aerospace12060549 - 16 Jun 2025
Viewed by 1677
Abstract
Vacuum arc thrusters (VATs) have recently gained significant interest as a micro-propulsion system due to their scalability, low cost, storability, and small form factor. While VATs offer an attractive propulsion solution for CubeSats, conventional propellant feed systems used in VATs require intricate mechanical [...] Read more.
Vacuum arc thrusters (VATs) have recently gained significant interest as a micro-propulsion system due to their scalability, low cost, storability, and small form factor. While VATs offer an attractive propulsion solution for CubeSats, conventional propellant feed systems used in VATs require intricate mechanical moving parts, increasing overall system complexity and mission risk. A promising alternative is the use of VAT arrays, where multiple thin-layer VATs are arranged in a regularly spaced grid, thus enhancing reliability, increasing total impulse without a mechanical propellant feed system, and enabling integrated attitude control via off-axis thruster placement. However, VAT arrays require a larger power processing unit (PPU) and additional control system, posing challenges within CubeSat volume constraints. To address this, this study proposes a novel PPU design that enables the simultaneous operation of multiple VATs while minimising system mass and volume. Experimental results demonstrate the successful operation of VAT pairs using the proposed PPU concept, validating its feasibility as an efficient propulsion solution for CubeSats. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges (3rd Volume))
Show Figures

Figure 1

11 pages, 4206 KB  
Article
Micro-Actuators with Light and Magnetism Dual-Control for Maneuverable Movements
by Yang Zhang, Tenglong Fu, Erming Tian and Jing Yi
Appl. Sci. 2025, 15(12), 6719; https://doi.org/10.3390/app15126719 - 16 Jun 2025
Viewed by 884
Abstract
Recent studies have highlighted the advantageous applications of the Marangoni effect in interfacial propulsion systems. Among these, optically driven Marangoni systems are particularly promising owing to their precise controllability and eco-friendly operation. Nevertheless, among these actuators, free movement still is limited by the [...] Read more.
Recent studies have highlighted the advantageous applications of the Marangoni effect in interfacial propulsion systems. Among these, optically driven Marangoni systems are particularly promising owing to their precise controllability and eco-friendly operation. Nevertheless, among these actuators, free movement still is limited by the interaction between light and actuators. In this work, we present a facile fabrication method for photothermal composites comprising polydimethylsiloxane (PDMS) matrices embedded with carbon nanoparticles and Fe3O4 microparticles to achieve a dual-control micro-actuator. Experimental characterization confirmed the superior photothermal conversion efficiency of the composite material. Symmetrical structural configurations were engineered to achieve long-range (>15 cm), directionally programmable, and rotational motion under continuous near-infrared laser irradiation (808 nm, 2 W/cm2), while exhibiting magnetically responsive capabilities for trajectory modulation. Furthermore, the inherent viscoelasticity, mechanical flexibility, and enhanced tensile strength (up to 1.8 MPa) of the composite material enable propulsion of macroscopic payloads exceeding 50 g. The fabrication process demonstrates cost-effective, scalable, and environmentally sustainable characteristics, requiring neither complex equipment nor organic solvents. This strategy provides a paradigm shift for designing Marangoni effect-based photothermal actuators, with transformative potential in autonomous surface robotics and microfluidics applications. Full article
Show Figures

Figure 1

31 pages, 13407 KB  
Article
Development of 6D Electromagnetic Actuation for Micro/Nanorobots in High Viscosity Fluids for Drug Delivery
by Maki K. Habib and Mostafa Abdelaziz
Technologies 2025, 13(5), 174; https://doi.org/10.3390/technologies13050174 - 27 Apr 2025
Viewed by 1095
Abstract
This research focuses on the development, design, implementation, and testing (with complete hardware and software integration) of a 6D Electromagnetic Actuation (EMA) system for the precise control and navigation of micro/nanorobots (MNRs) in high-viscosity fluids, addressing critical challenges in targeted drug delivery within [...] Read more.
This research focuses on the development, design, implementation, and testing (with complete hardware and software integration) of a 6D Electromagnetic Actuation (EMA) system for the precise control and navigation of micro/nanorobots (MNRs) in high-viscosity fluids, addressing critical challenges in targeted drug delivery within complex biological environments, such as blood vessels. The primary objective is to overcome limitations in the actuation efficiency, trajectory stability, and accurate path-tracking of MNRs. The EMA system utilizes three controllable orthogonal pairs of Helmholtz coils to generate uniform magnetic fields, which magnetize and steer MNRs in 3D for orientation. Another three controllable orthogonal pairs of Helmholtz coils generate uniform magnetic fields for the precise 3D orientation and steering of MNRs. Additionally, three orthogonal pairs of Maxwell coils generate uniform magnetic field gradients, enabling efficient propulsion in dynamic 3D fluidic environments in real time. This hardware configuration is complemented by three high-resolution digital microscopes that provide real-time visual feedback, enable the dynamic tracking of MNRs, and facilitate an effective closed-loop control mechanism. The implemented closed-loop control technique aimed to enhance trajectory accuracy, minimize deviations, and ensure the stable movement of MNRs along predefined paths. The system’s functionality, operation, and performance were tested and verified through various experiments, focusing on hardware, software integration, and the control algorithm. The experimental results show the developed system’s ability to activate MNRs of different sizes (1 mm and 0.5 mm) along selected desired trajectories. Additionally, the EMA system can stably position the MNR at any point within the 3D fluidic environment, effectively counteracting gravitational forces while adhering to established safety standards for electromagnetic exposure to ensure biocompatibility and regulatory compliance. Full article
(This article belongs to the Special Issue IoT-Enabling Technologies and Applications)
Show Figures

Figure 1

18 pages, 5108 KB  
Article
Design and Analysis of a Micro–Electro-Mechanical System Thruster for Small Satellites and Low-Thrust Propulsion
by Yubin Zhong, Fabrizio Ponti, Francesco Barato, Guojun Xia, Siyu Li, Xiao Zhang and Tao Wu
Aerospace 2025, 12(3), 172; https://doi.org/10.3390/aerospace12030172 - 21 Feb 2025
Viewed by 3306
Abstract
As a cost-effective and versatile solution, small satellites are increasingly being considered for space exploration. However, one of the major challenges in deploying small satellites for high total impulse missions, particularly deep space exploration, lies in the propulsion system. These missions face strict [...] Read more.
As a cost-effective and versatile solution, small satellites are increasingly being considered for space exploration. However, one of the major challenges in deploying small satellites for high total impulse missions, particularly deep space exploration, lies in the propulsion system. These missions face strict constraints in terms of volume, mass, and power budgets. This paper proposes a potential solution to this issue through the design of a bipropellant MEMS thruster. Simulation results indicate that this type of thruster offers superior performance compared to the monopropellant propulsion systems typically used in small satellite missions. Specifically, the bipropellant MEMS thruster demonstrates enhanced specific impulse and thrust-to-weight ratio, making it a promising alternative for small satellite propulsion in high total impulse missions. Full article
(This article belongs to the Special Issue Deep Space Exploration)
Show Figures

Figure 1

17 pages, 9943 KB  
Article
Research on Micro-Propulsion Performance of Laser Ablation ADN-Based Liquid Propellant Enhanced by Chemical Energy
by Luyun Jiang, Jifei Ye, Chentao Mao, Baosheng Du, Haichao Cui, Jianhui Han, Yongzan Zheng and Yanji Hong
Aerospace 2025, 12(2), 149; https://doi.org/10.3390/aerospace12020149 - 16 Feb 2025
Cited by 3 | Viewed by 1658
Abstract
The vigorous development of micro–nano satellites urgently requires satellite-borne propulsion systems as support. Pulsed laser ablation micro-propulsion can meet these high demands. Ammonium dinitramide (ADN), as a green monopropellant, can serve as the working substance for laser ablation. This work investigated the micro-propulsion [...] Read more.
The vigorous development of micro–nano satellites urgently requires satellite-borne propulsion systems as support. Pulsed laser ablation micro-propulsion can meet these high demands. Ammonium dinitramide (ADN), as a green monopropellant, can serve as the working substance for laser ablation. This work investigated the micro-propulsion performance of liquid propellants composed of ADN and water with different ADN mass fractions, aiming to clarify the enhancement effect of chemical energy. Through the single-pulse impulse measurement, the results show that the 70 wt.% ADN had a maximum specific impulse of 167.55 s, a 19% increase compared to H2O. The established semi-empirical model of the micro-propulsion performance fits well with the experimental data and can effectively explain the variations in the patterns of the propulsion’s parameters. The chemical energy’s actual rate of contribution to the increase in the kinetic energy was positively correlated with the ADN’s mass fraction and negatively correlated with the laser energy, with an actual contribution rate of 36% for 70 wt.% ADN at a laser energy of 60 mJ. Furthermore, based on the relationship between the ablation efficiency, chemical-specific energy, and laser specific energy, it was found that the ablation efficiency can be improved by increasing the chemical specific energy and reducing the laser specific energy while ensuring the breakdown. This work provides a scientific approach to quantitatively analyze the enhancement in the propulsion’s performance by chemical energy in laser micro-ablation, which is expected to be extended to other energetic liquid propellants. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology (2nd Edition))
Show Figures

Figure 1

Back to TopTop