The Effect of Combustor Material for Micro-Propulsion Systems
Abstract
1. Introduction
2. Methodology
2.1. Governing Equations
2.1.1. Gas-Phase Equations
2.1.2. Gas–Solid-Phase Equations
2.2. Numerical Model
2.3. Micro-Propulsion System
2.3.1. Thrust and Specific Impulse
2.3.2. Thrust Key Indicators
3. Computational Domain
3.1. Geometry and Case Introduction
Grid and Numerical Stability
3.2. Material Properties
4. Results and Discussion
4.1. Overall Flame Dynamics
4.2. Micro-Propulsion Indicators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ju, Y.; Maruta, K. Microscale combustion: Technology development and fundamental research. Prog. Energy Combust. Sci. 2011, 37, 669–715. [Google Scholar] [CrossRef]
- Maruta, K.; Kataoka, T.; Kim, N.; Minaev, S.; Fursenko, R. Characteristics of combustion in a narrow channel with a temperature gradient. Proc. Combust. Inst. 2005, 30, 2429–2436. [Google Scholar] [CrossRef]
- Nakamura, Y.; Gao, J.; Matsuoka, T. Progress in small-scale combustion. J. Therm. Sci. Technol. 2017, 12, JTST0001. [Google Scholar] [CrossRef]
- Resende, P.R.; Ayoobi, M.; Afonso, A.M. Numerical Investigations of Micro-Scale Diffusion Combustion: A Brief Review. Appl. Sci. 2019, 9, 3356. [Google Scholar] [CrossRef]
- Zamaschcikov, V. An Investigation of Gas Combustion in a Narrow Tube. Combust. Sci. Technol. 2001, 166, 1–14. [Google Scholar] [CrossRef]
- Xu, B.; Ju, Y. Experimental study of spinning combustion in a mesoscale divergent channel. Proc. Combust. Inst. 2007, 31, 3285–3292. [Google Scholar] [CrossRef]
- Norton, D.G.; Vlachos, D.G. Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures. Chem. Eng. Sci. 2003, 58, 4871–4882. [Google Scholar] [CrossRef]
- Norton, D.G.; Vlachos, D.G. A CFD study of propane/air microflame stability. Combust. Flame 2004, 138, 97–107. [Google Scholar] [CrossRef]
- Federici, J.A.; Wetzel, E.D.; Geil, B.R.; Vlachos, D.G. Single channel and heat recirculation catalytic microburners: An experimental and computational fluid dynamics study. Proc. Combust. Inst. 2009, 32, 3011–3018. [Google Scholar] [CrossRef]
- Li, J.; Chou, S.K.; Li, Z.W.; Yang, W.M. A comparative study of H2-air premixed flame in micro combustors with different physical and boundary conditions. Combust. Theory Model. 2008, 12, 325–347. [Google Scholar] [CrossRef]
- Pizza, G.; Frouzakis, C.E.; Mantzaras, J.; Tomboulides, A.G.; Boulouchos, K. Dynamics of premixed hydrogen/air flames in microchannels. Combust. Flame 2008, 152, 433–450. [Google Scholar] [CrossRef]
- Li, J.; Chou, S.K.; Yang, W.M.; Li, Z.W. A numerical study on premixed micro-combustion of CH4-air mixture: Effects of combustor size, geometry and boundary conditions on flame temperature. Chem. Eng. J. 2009, 150, 213–222. [Google Scholar] [CrossRef]
- Pizza, G.; Frouzakis, C.E.; Mantzaras, J.; Tomboulides, A.G.; Boulouchos, K. Three-dimensional simulations of premixed hydrogen/air flames in microtubes. J. Fluid Mech. 2010, 658, 463–491. [Google Scholar] [CrossRef]
- Nakamura, H.; Fan, A.; Minaev, S.; Sereshchenko, E.; Fursenko, R.; Tsuboi, Y.; Maruta, K. Bifurcations and negative propagation speeds of methane/air premixed flames with repetitive extinction and ignition in a heated microchannel. Combust. Flame 2012, 159, 1631–1643. [Google Scholar] [CrossRef]
- Tsuboi, Y.; Yokomori, T.; Maruta, K. Lower limit of weak flame in a heated channel. Proc. Combust. Inst. 2009, 32, 3075–3081. [Google Scholar] [CrossRef]
- Miyata, E.; Fukushima, N.; Naka, Y.; Shimura, M.; Tanahashi, M.; Miyauchi, T. Direct numerical simulation of micro combustion in a narrow circular channel with a detailed kinetic mechanism. Proc. Combust. Inst. 2015, 35, 3421–3427. [Google Scholar] [CrossRef]
- Yamamoto, A.; Oshibe, H.; Nakamura, H.; Tezuka, T.; Hasegawa, S.; Maruta, K. Stabilized three-stage oxidation of gaseous n-heptane/air mixture in a micro flow reactor with a controlled temperature profile. Proc. Combust. Inst. 2011, 33, 3259–3266. [Google Scholar] [CrossRef]
- Alipoor, A.; Mazaheri, K. Combustion characteristics and flame bifurcation in repetitive extinction-ignition dynamics for premixed hydrogen-air combustion in a heated micro channel. Energy 2016, 109, 650–663. [Google Scholar] [CrossRef]
- Abbaspour, P.; Alipoor, A. Numerical study of combustion characteristics and oscillating behaviors of hydrogen–air combustion in converging–diverging microtubes. Int. J. Heat Mass Transf. 2020, 159, 120127. [Google Scholar] [CrossRef]
- Li, L.; Yang, W.; Fan, A. Effect of the cavity aft ramp angle on combustion efficiency of lean hydrogen/air flames in a micro cavity-combustor. Int. J. Hydrogen Energy 2019, 44, 5623–5632. [Google Scholar] [CrossRef]
- Zuo, W.; E, J.; Peng, Q.; Zhao, X.; Zhang, Z. Numerical investigations on thermal performance of a micro-cylindrical combustor with gradually reduced wall thickness. Appl. Therm. Eng. 2017, 113, 1011–1020. [Google Scholar] [CrossRef]
- Zuo, W.; Zhang, Y.; Li, J.; Li, Q.; He, Z. A modified micro reactor fueled with hydrogen for reducing entropy generation. Int. J. Hydrogen Energy 2019, 44, 27984–27994. [Google Scholar] [CrossRef]
- Zuo, W.; E, J.; Hu, W.; Jin, Y.; Han, D. Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor. Energy 2017, 126, 1–12. [Google Scholar] [CrossRef]
- Chabane, A.M.; Truffin, K.; Angelberger, C. Direct numerical simulation of catalytic combustion in a meso-scale channel with non-planar walls. Combust. Flame 2020, 222, 85–102. [Google Scholar] [CrossRef]
- Zamashchikov, V.V.; Minaev, S.S. Limits of flame propagation in a narrow channel with gas filtration. Combust. Explos. Shock Waves 2001, 37, 21–29. [Google Scholar] [CrossRef]
- Biswas, S.; Zhang, P.; Wang, H.; Qiao, L. Propagation and extinction behavior of methane/air premixed flames through straight and converging-diverging microchannels. Appl. Therm. Eng. 2019, 148, 1395–1406. [Google Scholar] [CrossRef]
- Mansouri, Z. Combustion in wavy micro-channels for thermo-photovoltaic applications – Part I: Effects of wavy wall geometry, wall temperature profile and reaction mechanism. Energy Convers. Manag. 2019, 198, 111155. [Google Scholar] [CrossRef]
- Mansouri, Z. A novel wavy micro-combustor for micro-thermophotovoltaic applications. Chem. Eng. Process.-Process Intensif. 2021, 163, 108371. [Google Scholar] [CrossRef]
- Han, L.; Li, J.; Zhao, D.; Xi, Y.; Gu, X.; Wang, N. Effect analysis on energy conversion enhancement and NOx emission reduction of ammonia/hydrogen fuelled wavy micro-combustor for micro-thermophotovoltaic application. Fuel 2021, 289, 119755. [Google Scholar] [CrossRef]
- Resende, P.R.; Morais, L.C.; Pinho, C.; Afonso, A.M. Combustion Characteristics of Premixed Hydrogen/Air in an Undulate Microchannel. Energies 2022, 15, 626. [Google Scholar] [CrossRef]
- Cai, L.; E, J.; Zhao, D. Numerical investigation on NOx emissions and thermal performance of hydrogen/ammonia fueled micro-combustors with periodic wall structures. Renew. Energy 2025, 241, 122347. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, D.; Becker, S.; Zhang, Y. NO emission and enhanced thermal performances studies on counter-flow double-channel hydrogen/ammonia-fuelled microcombustors with oval-shaped internal threads. Fuel 2023, 341, 127665. [Google Scholar] [CrossRef]
- Cai, L.; E, J.; Zhao, H.; Zhao, D. Effect analysis on thermal performance enhancement and entropy generation reduction in micro-combustors with different geometric structures fueled with the hydrogen/air and hydrogen/ammonia/air. Fuel 2024, 374, 132535. [Google Scholar] [CrossRef]
- Coffee, T.P.; Heimerl, J.M. Transport algorithms for premixed, laminar steady-state flames. Combust. Flame 1981, 43, 273–289. [Google Scholar] [CrossRef]
- Hall, R.J. The radiative source term for plane-parallel layers of reacting combustion gases. J. Quant. Spectrosc. Radiat. Transf. 1993, 49, 517–523. [Google Scholar] [CrossRef]
- Cuoci, A.; Frassoldati, A.; Faravelli, T.; Ranzi, E. Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method. Energy Fuels 2013, 27, 7730–7753. [Google Scholar] [CrossRef]
- Ranzi, E.; Frassoldati, A.; Grana, R.; Cuoci, A.; Faravelli, T.; Kelley, A.P.; Law, C.K. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Prog. Energy Combust. Sci. Technol. 2012, 38, 468–501. [Google Scholar] [CrossRef]
- Nettis, L. Conjugate Heat Transfer: Strategies and Applications. Ph.D. Thesis, Politecnico Di Bari, Bari, Italy, 2011. [Google Scholar]
- Panara, D.; Noll, B.E. A coupled solver for the solution of the unsteady conjugate heat transfer problem. In Proceedings of the International Conference on Computational Methods for Coupled Problems Science and Engineering, Ibiza, Spain, 21–23 May 2007; pp. 23–40. [Google Scholar]
- Cova, A.; Resende, P.R.; Cuoci, A.; Ayoobi, M.; Afonso, A.M.; Pinho, C.T. Numerical Studies of Premixed and Diffusion Meso/Micro-Scale Flames. Energy Procedia 2017, 120, 673–680. [Google Scholar] [CrossRef]
- Resende, P.R.; Afonso, A.; Pinho, C.; Ayoobi, M. Impacts of Dilution on Hydrogen Combustion Characteristics and NOx Emissions. J. Heat Transf. 2018, 141, 012003. [Google Scholar] [CrossRef]
- Resende, P.; Pinho, C.; Ayoobi, M.; Afonso, A. Numerical studies of fuel-rich micro combustion: Effect of N2 dilution on NOx emissions. In Proceedings of the 24th ABCM International Congress of Mechanical Engineering, Curitiba, Brazil, 3–8 December 2017. [Google Scholar] [CrossRef]
- Cova, A.M.P. Numerical Studies on Micro-Combustion. Master’s Thesis, University of Porto, Porto, Portugal, 2016. [Google Scholar]
- Dias, D.M.; Resende, P.R.; Afonso, A.M. A Review on Micro-Combustion Flame Dynamics and Micro-Propulsion Systems. Energies 2024, 17, 1327. [Google Scholar] [CrossRef]
- Sutton, G.; Biblarz, O. Rocket Propulsion Elements; A Wiley Interscience Publication; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- de Athayde Costa e Silva, M. MEMS Micropropulsion: Design, Modeling and Control of Vaporizing Liquid Microthrusters. Doctoral Dissertation, Delft University of Technology, Delft, The Netherlands, 2018. [Google Scholar] [CrossRef]
- NASA Glenn Research Center. Aeronautics: Aircraft Specifications and Performance. Available online: https://www.grc.nasa.gov/www/k-12/airplane/specimp.html (accessed on 21 July 2023).
- Dias, D.M.; Resende, P.R.; Afonso, A.M. The effect of micro-combustor material on premixed Hydrogen/air flame dynamics. Appl. Therm. Eng. 2025, 279, 127403. [Google Scholar] [CrossRef]
- Alipoor, A.; Mazaheri, K. Studying the repetitive extinction-ignition dynamics for lean premixed hydrogen-air combustion in a heated microchannel. Energy 2014, 73, 367–379. [Google Scholar] [CrossRef]
- Richter, K.; Norris, P.M.; Tien, C.L. Aerogels: Applications, structure, and heat transfer phenomena. Annu. Rev. Heat Transf. 1995, 6, 61–114. [Google Scholar] [CrossRef]
- MatWeb. Schott BOROFLOAT® Borosilicate Float Glass. 2023. Available online: https://www.matweb.com/search/datasheet_print.aspx?matguid=0c11fe52052f4debb90fc82d5cae73b4 (accessed on 4 May 2023).
- Property Database, M.M. Corning Vycor® 7913 UV-Transmitting Glass. 2023. Available online: https://www.matweb.com/search/datasheet_print.aspx?matguid=7546f96147b847a5ab00091f3c36b8ce (accessed on 4 May 2023).
- LTCC Materials Co., Ltd. LTCC Design Guideline (Standard). 2019. Available online: https://www.ltccm.co.jp/assets/pdf/ltcc_design_guideline_standard_en_20191001.pdf (accessed on 4 May 2023).
- Hermetics, E.P.E. High Temperature Cofired Ceramic (HTCC) Hermetic Packages. 2023. Available online: https://epihermetics.com/htcc-ceramic-feedthroughs/ (accessed on 4 May 2023).
- Materials, A. Stainless Steel—Grade 310 (UNS S31000). 2023. Available online: https://www.azom.com/properties.aspx?ArticleID=966 (accessed on 4 May 2023).
- Materials, A. Stainless Steel—Grade 430 (UNS S43000). 2023. Available online: https://www.azom.com/properties.aspx?ArticleID=996 (accessed on 4 May 2023).
- Ioffe Physical-Technical Institute of the Russian Academy of Sciences Thermal Properties of Silicon. 2016. Available online: https://www.ioffe.ru/SVA/NSM/Semicond/Si/thermal.html (accessed on 4 May 2023).
- Zhang, A.; Li, Y. Thermal Conductivity of Aluminum Alloys—A Review. Materials 2023, 16, 2972. [Google Scholar] [CrossRef] [PubMed]
- Brassinter, S.A. Tungsten—Copper and Molybdenum—Copper Alloys. 2016. Available online: http://www.brassinter.com.br/en/eletrodos.htm (accessed on 4 May 2023).
- Dias, D.M.; Resende, P.R.; Afonso, A.M. Thermal and combustion performance of micro-burner under adiabatic conditions. Appl. Therm. Eng. 2025, 267, 125631. [Google Scholar] [CrossRef]
- Macedo, J.M.R.C.d. Estudos Numéricos em Micropropulsão. Master’s Thesis, Universidade do Porto, Porto, Portugal, 2021. [Google Scholar]
MeshRegion | Nº Cells in Domain [-] | Nº Points in Domain [-] | Memory () [Mb] |
---|---|---|---|
fluidRegion | 11,836 | 23,838 | 1.074 |
solidRegion1 and solidRegion2 | 5740 | 12,330 | 0.555 |
Material | Ref. | |||||
---|---|---|---|---|---|---|
[W/(mK)] | [kg/m3] | [J/(kgK)] | [m2/s] | [−] | ||
Zero Wall Heat Flux (Adiabatic) | 0 | n.a. | n.a. | n.a. | n.a. | [50] |
Borosilicate Glass | 1 | 2230 | 830 | 0.3 | [51] | |
Fused Silica | 1.47 | 2200 | 670 | 0.3 | [52] | |
LTCC | 2.8 | 2950 | 710 | 0.75 | [53] | |
HTCC | 20 | 3670 | 790 | 0.75 | [54] | |
Stainless Steel High Carbon | 16.2 | 7750 | 510 | 0.5 | [55] | |
Stainless Steel Low Carbon | 25 | 7700 | 470 | 0.5 | [56] | |
Silicon | 130 | 2321 | 700 | 0.5 | [57] | |
Aluminium | 200 | 2750 | 860 | 0.1 | [58] | |
Copper– Tungsten | 250 | 11,300 | 200 | 0.4 | [59] |
Group | Name | U4 | U6 | U8 | U10 | U12 |
---|---|---|---|---|---|---|
[m/s] | [m/s] | [m/s] | [m/s] | [m/s] | ||
Adiabatic | Adiabatic | Ad4Sp | Ad6Sp | Ad8Sp | Ad10Sp | Ad12Sp |
Amorphous | Fused Silica | FS4Sp | FS6Sp | FS8Sp | FS10Sp | FS12Sp |
Borosilicate Glass | BG4Sp | BG6Sp | BG8Sp | BG10Sp | BG12Sp | |
Ceramic | LTCC | LT4Sp | LT6Sp | LT8Sp | LT10Sp | LT12Sp |
HTCC | HT4Sp | HT6Sp | HT8Sp | HT10Sp | HT12Sp | |
Steel | Stainless Steel High Carbon | CS4Sp | CS6Sp | CS8Sp | CS10Sp | CS12Sp |
Stainless Steel Low Carbon | SS4Sp | SS6Sp | SS8Sp | SS10Sp | SS12Sp | |
Conductor | Copper– Tungsten | CT4Sp | CT6Sp | CT8Sp | CT10Sp | CT12Sp |
Silicon | Si4Sp | Si6Sp | Si8Sp | Si10Sp | Si12Sp | |
Aluminium | Al4Sp | Al6Sp | Al8Sp | Al10Sp | Al12Sp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, D.M.; Resende, P.R.; Afonso, A.M. The Effect of Combustor Material for Micro-Propulsion Systems. Aerospace 2025, 12, 820. https://doi.org/10.3390/aerospace12090820
Dias DM, Resende PR, Afonso AM. The Effect of Combustor Material for Micro-Propulsion Systems. Aerospace. 2025; 12(9):820. https://doi.org/10.3390/aerospace12090820
Chicago/Turabian StyleDias, David M., Pedro R. Resende, and Alexandre M. Afonso. 2025. "The Effect of Combustor Material for Micro-Propulsion Systems" Aerospace 12, no. 9: 820. https://doi.org/10.3390/aerospace12090820
APA StyleDias, D. M., Resende, P. R., & Afonso, A. M. (2025). The Effect of Combustor Material for Micro-Propulsion Systems. Aerospace, 12(9), 820. https://doi.org/10.3390/aerospace12090820