Micro-Actuators with Light and Magnetism Dual-Control for Maneuverable Movements
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Preparation and Properties of C/Fe3O4/PDMS Films
3.2. Photothermal Property of C/Fe3O4/PDMS Film
3.3. The Motion Properties of the Actuators
3.4. Directional Control and Maneuverability Analysis
3.5. Rotational Movement of the Drives
3.6. The Movement Caused by the Magnetic Field
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scriven, L.E.; Sternling, C.V. The Marangoni Effects. Nature 1960, 187, 186–188. [Google Scholar] [CrossRef]
- Zhou, P.; Lin, J.; Zhang, W.; Luo, Z.; Chen, L. Photo-thermoelectric generator integrated in graphene—Based actuator for self-powered sensing function. Nano Res. 2022, 15, 5376–5383. [Google Scholar] [CrossRef]
- Zhou, P.; Gong, X.; Sun, Y.; Yi, N.; Wang, Z.; Weng, M.; Gao, X. Ultra-fast re-programmable actuator for use in multiple scenarios. Chem. Eng. J. 2025, 508, 160978. [Google Scholar] [CrossRef]
- Maggi, C.; Saglimbeni, F.; Dipalo, M.; Angelis, F.D.; Leonardo, R.D. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nat. Commun. 2015, 6, 7855. [Google Scholar] [CrossRef]
- Li, T.; Kar, A.; Kumar, R.J. Marangoni circulation by UV light modulation on sessile drop for particle agglomeration. J. Fluid Mech. 2019, 873, 72–88. [Google Scholar] [CrossRef]
- Renney, C.; Brewer, A.; Mooibroek, T. Easy Demonstration of the Marangoni Effect by Prolonged and Directional Motion: “Soap Boat 2.0”. J. Chem. Educ. 2013, 90, 1353–1357. [Google Scholar] [CrossRef]
- Xiao, M.; Xian, Y.; Shi, F. Precise Macroscopic Supramolecular Assembly by Combining Spontaneous Locomotion Driven by the Marangoni Effect and Molecular Recognition. Angew. Chem. Int. Ed. 2015, 127, 8952–8956. [Google Scholar] [CrossRef]
- Ban, T.; Yamagami, T.; Nakata, H.; Okano, Y.J. pH-dependent motion of self-propelled droplets due to Marangoni effect at neutral pH. Langmuir ACS J. Surf. 2013, 29, 2554–2561. [Google Scholar] [CrossRef]
- Varanakkottu, S.N.; Anyfantakis, M.; Morel, M.; Rudiuk, S.; Baigl, D. Light-Directed Particle Patterning by Evaporative Optical Marangoni Assembly. Nano Lett. 2016, 16, 644–650. [Google Scholar] [CrossRef]
- Ban, T.; Nakata, H.J. Metal-Ion-Dependent Motion of Self-Propelled Droplets due to the Marangoni Effect. J. Phys. Chem. B 2015, 119, 7100–7105. [Google Scholar] [CrossRef]
- Ikezoe, Y.; Washino, G.; Uemura, T.; Kitagawa, S.; Matsui, H. Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 2012, 11, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Zhu, Y.; Sun, H.; Chen, F.; Sun, H.; Dai, W.; Wei, Q.; Fu, L.; Yu, A.; Du, S.; et al. Layer-by-layer stacked graphene nanocoatings by Marangoni self-assembly for corrosion protection of stainless steel. Chin. Chem. Lett. 2021, 32, 501–505. [Google Scholar] [CrossRef]
- Okawa, D.; Pastine, S.J.; Zettl, A.; FreChet, J.J. Surface tension mediated conversion of light to work. J. Am. Chem. Soc. 2009, 131, 5396–5398. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Hao, W.; Yu, S.; Feng, R.; Liu, Y.; Yu, F.; Tao, P.; Shang, W.; Wu, J.; Song, C.; et al. Vapor—Enabled propulsion for plasmonic photothermal motor at the liquid/air interface. J. Am. Chem. Soc. 2017, 139, 12362–12365. [Google Scholar] [CrossRef]
- Pan, X.; Grossiord, N.; Sol, J.A.H.P.; Debije, M.G.; Schenning, A.P.H.J. 3D Anisotropic Polyethylene as Light-Responsive Grippers and Surfing Divers. Adv. Funct. Mater. 2021, 31, 2100465. [Google Scholar] [CrossRef]
- Chu, Y.; Qin, L.; Zhen, L.; Pan, Q.M. Controlled Movement of a Smart Miniature Submarine at Various Interfaces. ACS Appl. Mater. Interfaces 2018, 10, 24899–24904. [Google Scholar] [CrossRef]
- Jin, H.; Marmur, A.; Ikkala, O.; Ras, R.H.A. Vapour-driven Marangoni propulsion: Continuous, prolonged and tunable motion. Chem. Sci. 2012, 3, 2526–2529. [Google Scholar] [CrossRef]
- Cheng, L.; Qiao, L.; Hao, L.J. Dramatic squat and trim phenomena of mm-scaled SU-8 boats induced by Marangoni effect. Microfluid. Nanofluidics 2010, 9, 573–577. [Google Scholar]
- Dietrich, K.; Jaensson, N.; Buttinoni, I.; Volpe, G.; Isa, L. Microscale Marangoni Surfers. Phys. Rev. Lett. 2020, 125, 098001. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Rong, X.; Dong, G. Fabrication of Patterned Organic Semiconductor Thin Films by the Synergy of Marangoni and Coffee-Ring Effects. Acta Phys. Chim. Sin. 2019, 35, 1259–1266. [Google Scholar] [CrossRef]
- Karakashev, S.I.; Tsekov, R.J. Electro-Marangoni Effect in Thin Liquid Films. Langmuir 2011, 27, 2265–2270. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, J.; Kim, H.Y. Dewetting of liquid film via vapour-mediated Marangoni effect. J. Fluid Mech. 2019, 872, 100–114. [Google Scholar] [CrossRef]
- Hu, H.; Larson, R.G. Marangoni Effect Reverses Coffee-Ring Depositions. J. Phys. Chem. B 2006, 110, 7090–7094. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, H.; Kim, S.H.; Stone, H.A. Uniform coating of self-assembled non-iridescent colloidal nanostructures using the Marangoni effect and polymers. Phys. Rev. Appl. 2018, 10, 054003. [Google Scholar] [CrossRef]
- Fanton, X.; Cazabat, A.M. Spreading and Instabilities Induced by a Solutal Marangoni Effect. Langmuir 1998, 14, 2554–2561. [Google Scholar] [CrossRef]
- Cheng, L.; Hao, L.; Liu, X. Propulsion of microboats using isopropyl alcohol as a propellant. J. Micromechanics Microengineering 2008, 18, 067002. [Google Scholar]
- Akella, V.S.; Singh, D.K.; Mandre, S.; Bandi, M.M. Dynamics of a Camphoric Acid boat at the air-water interface. Phys. Lett. A 2018, 382, 1176–1180. [Google Scholar] [CrossRef]
- Yang, R.L.; Zhu, Y.J.; Qin, D.D.; Xiong, Z.C. Light-Operated Dual-Mode Propulsion at the Liquid/Air Interface Using Flexible, Superhydrophobic, and Thermally Stable Photothermal Paper. ACS Appl. Mater. Interfaces 2019, 12, 1339–1347. [Google Scholar] [CrossRef]
- Wang, W.; Han, B.; Zhang, Y.; Li, Q.; Zhang, Y.-L.; Han, D.-D.; Sun, H.-B. Laser-Induced Graphene Tapes as Origami and Stick-On Labels for Photothermal Manipulation via Marangoni Effect. Adv. Funct. Mater. 2020, 31, 2006179–2006187. [Google Scholar] [CrossRef]
- Kwak, B.; Choi, S.; Bae, J. Directional Motion on Water Surface with Keel Extruded Footpads Propelled by Marangoni Effect. IEEE Robot. Autom. Lett. 2020, 5, 6829–6836. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.Q.; Liu, Y.; Han, B.; Wang, H.; Han, D.D.; Wang, J.N.; Zhang, Y.L.; Sun, H.B. Direct Laser Writing of Superhydrophobic PDMS Elastomers for Controllable Manipulation via Marangoni Effect. Adv. Funct. Mater. 2017, 27, 1702946. [Google Scholar] [CrossRef]
- Jing, L.; Song, Y.; He, S.; Fu, X.; Du, Z.; Yin, X. Dual—Mode driven Marangoni actuator with spontaneity and controllability as a soft robot. Sens. Actuators B Chem. 2025, 436, 137697. [Google Scholar] [CrossRef]
- Yao, C.; Yang, Y.; Huang, W.-Y.; Xiao, J.-J.; Meng, Z.-J.; Ou, Y.-Y.; He, X.-H.; Zhang, Y. Controllable Shape Morphing Nanocomposite Hydrogels for Robust Multi-Stimuli-Responsive Actuators. ACS Appl. Polym. Mater. 2024, 6, 6371–6382. [Google Scholar] [CrossRef]
- Dong, X.X.; Zhao, H.; Wang, Z.H.; Ouzounian, M.; Hu, T.S.; Guo, Y.J.; Zhang, L.P.; Xu, Q. Gecko-inspired composite micro-pillars with both robust adhesion and enhanced dry self-cleaning property. Chin. Chem. Lett. 2019, 30, 2333–2337. [Google Scholar] [CrossRef]
- Harkins, W.D.; Brown, F.E. The determination of surface tension and the weight of falling drops: The surface tension of water and benzene by the capillary height method. J. Am. Chem. Soc. 1919, 41, 499–524. [Google Scholar] [CrossRef]
Variable | Sample 1 | Sample 2 | Sample 3 |
---|---|---|---|
Fe3O4 (a) | 0.10 | 0.20 | 0.30 |
SW [g] (b) | 2.00 | 2.00 | 2.00 |
CA [°] (c) | 92.99 | 94.12 | 97.71 |
TI [°C] (d) | 23.50 | 29.50 | 36.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fu, T.; Tian, E.; Yi, J. Micro-Actuators with Light and Magnetism Dual-Control for Maneuverable Movements. Appl. Sci. 2025, 15, 6719. https://doi.org/10.3390/app15126719
Zhang Y, Fu T, Tian E, Yi J. Micro-Actuators with Light and Magnetism Dual-Control for Maneuverable Movements. Applied Sciences. 2025; 15(12):6719. https://doi.org/10.3390/app15126719
Chicago/Turabian StyleZhang, Yang, Tenglong Fu, Erming Tian, and Jing Yi. 2025. "Micro-Actuators with Light and Magnetism Dual-Control for Maneuverable Movements" Applied Sciences 15, no. 12: 6719. https://doi.org/10.3390/app15126719
APA StyleZhang, Y., Fu, T., Tian, E., & Yi, J. (2025). Micro-Actuators with Light and Magnetism Dual-Control for Maneuverable Movements. Applied Sciences, 15(12), 6719. https://doi.org/10.3390/app15126719