Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = methyl substituent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3729 KiB  
Review
Laminar Burning Velocity in Aviation Fuels: Conventional Kerosene, SAFs, and Key Hydrocarbon Components
by Zehua Song, Xinsai Yan, Ziyu Liu and Xiaoyi Yang
Appl. Sci. 2025, 15(14), 8098; https://doi.org/10.3390/app15148098 - 21 Jul 2025
Viewed by 418
Abstract
Sustainable aviation fuels (SAFs) are vitally important for aviation decarbonization. The laminar burning velocity (LBV), a key parameter reflecting the combustion behavior of fuel/oxidizer mixtures, serves as a fundamental metric for evaluating SAF performance. This paper systematically reviews and evaluates the LBV experiment [...] Read more.
Sustainable aviation fuels (SAFs) are vitally important for aviation decarbonization. The laminar burning velocity (LBV), a key parameter reflecting the combustion behavior of fuel/oxidizer mixtures, serves as a fundamental metric for evaluating SAF performance. This paper systematically reviews and evaluates the LBV experiment method and the performance of traditional aviation fuel, SAFs produced via different pathways, and individual components (n-alkanes, iso-alkanes, cycloalkanes, and aromatic hydrocarbons, as well as the impacts of isomers and homologues) in aviation fuels. It is found that LBV values of different SAFs exhibit significant fluctuations, approaching or slightly deviating from those of conventional aviation fuels. Carbon number, branching degree, substituent types, and testing methods in the components all affect LBV performance. Specifically, increased branching in iso-alkanes reduces LBV, cyclohexane and benzene show higher LBV than their methylated counterparts (methylcyclohexane and toluene), and n-alkylcyclohexanes/benzenes with short (C1–C3) side chains demonstrate minimal LBV variation. Spherical flame methods yield more consistent (and generally lower) LBV values than stagnation flame techniques. These findings provide insights for optimizing SAF–conventional fuel blends and enhancing drop-in compatibility while ensuring operational safety and usability. Full article
Show Figures

Figure 1

19 pages, 2360 KiB  
Article
Novel N-Alkyl 3-(3-Benzyloxyquinoxalin-2-yl) Propanamides as Antiproliferative Agents: Design, Synthesis, In Vitro Testing, and In Silico Mechanistic Study
by Samar A. Abubshait
Molecules 2025, 30(14), 3025; https://doi.org/10.3390/molecules30143025 - 18 Jul 2025
Viewed by 497
Abstract
A series of eleven new N-alkyl 3-(3-benzyloxyquinoxalin-2-yl) propanamides were prepared based on the azide coupling of 3-(3-benzyloxyquinoxalin-2-yl) propanhydrazide with a variety of primary and secondary amines and the consequent conjunction of a broad spectrum of lipophile and hydrophile characters to a quinoxaline [...] Read more.
A series of eleven new N-alkyl 3-(3-benzyloxyquinoxalin-2-yl) propanamides were prepared based on the azide coupling of 3-(3-benzyloxyquinoxalin-2-yl) propanhydrazide with a variety of primary and secondary amines and the consequent conjunction of a broad spectrum of lipophile and hydrophile characters to a quinoxaline ring system. 3-(3-benzyloxyquinoxalin-2-yl) propanhydrazide was produced in a two-step reaction of methyl 3-(3-oxo-3,4-dihydroquinoxalin-2-yl) propanoate with benzyl chloride followed by the hydrazinolysis of the corresponding ester. The antiproliferative activity of the compounds was tested in various cancer cell lines, including PC-3, Hela, HCT-116, and MCF-7; they showed a wide spectrum of activity for most of the tested compounds. Compound 6k exhibited the highest activity, which was comparable to that of doxorubicin, with IC50 (µM) values of 12.17 ± 0.9, 9.46 ± 0.7, 10.88 ± 0.8, and 6.93 ± 0.4 µM compared to 8.87 ± 0.6, 5.57 ± 0.4, 5.23 ± 0.3, and 4.17 ± 0.2 µM for doxorubicin against Hela, HCT-116, and MCF-7, respectively. The in silico mechanistic study revealed the inhibition of HDAC-6 through the binding of the unique zinc finger ubiquitin-binding domain (HDAC6 Zf-UBD). The docking results showed a specific binding pattern that emphasized the crucial role of the quinoxaline ring and its substituents. The newly developed derivatives were evaluated for antitumor effects against four cancer cell lines PC-3, HeLa, HCT-116, and MCF-7. This research led to the identification of a quinoxaline-based scaffold exhibiting broad-spectrum antiproliferative activity and a distinct mechanism involving binding to HDAC6 Zf-UBD. The findings highlight its potential for further optimization and preclinical studies to support future anticancer drug development. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Discovery, 2nd Edition)
Show Figures

Figure 1

17 pages, 3400 KiB  
Article
In Vitro Evaluation of Silver-NHC Complexes Against a Clinical Isolate of Acanthamoeba castellanii: Time- and Dose-Dependent Effects
by Zübeyda Akın-Polat, Neslihan Şahin, Shaima Hkiri, Bui Minh Thu Ly, İsmail Özdemir and David Sémeril
Inorganics 2025, 13(6), 204; https://doi.org/10.3390/inorganics13060204 - 18 Jun 2025
Viewed by 343
Abstract
The synthesis of a series of six chloro[N-alkyl-N-cinnamyl-benzimidazol-2-yliden]silver(I) complexes was successfully achieved, wherein allyl (3a), methoxymethyl (3b), benzyl (3c), 3-fluorobenzyl (3d), 4-fluorobenzyl (3e) and 4-methyl-benzyl (3f) substituents [...] Read more.
The synthesis of a series of six chloro[N-alkyl-N-cinnamyl-benzimidazol-2-yliden]silver(I) complexes was successfully achieved, wherein allyl (3a), methoxymethyl (3b), benzyl (3c), 3-fluorobenzyl (3d), 4-fluorobenzyl (3e) and 4-methyl-benzyl (3f) substituents were grafted on the benzimidazole ring. The isolated silver N-heterocyclic carbene (NHC) complexes were identified by microanalyses and mass spectrometry and characterized by FT-IR and NMR spectroscopic techniques. Conclusive evidence for the structures of complexes 3c and 3d was provided by single-crystal X-ray crystallography. The in vitro inhibitory activity of the six Ag-NHC complexes was tested against trophozoites and cysts of the pathogenic Acanthamoeba castellanii strain and the efficacy sequence is as follows: 3d > 3c > 3f > 3a > 3b > 3e. At a concentration of 100 µM in complexes 3c, 3d and 3f and after 72 h of incubation, 5.3, 3.2 and 6.3% A. castellanii trophozoite viabilities were observed, respectively. The utilization of elevated silver(I) drug concentrations, 1000 µM, resulted in the near-total eradication of pathogenic protozoa. Full article
Show Figures

Graphical abstract

14 pages, 2197 KiB  
Article
Bulky Ligand-Induced Hindrance in Photocatalytic CO2 Reduction over Various Tris(bipyridine)cobalt(II) Chloride Complexes
by Jinliang Lin, Rongying Liao, Li Li, Shuli Yao, Shengkai Li, Yun Zheng and Fei Fei
Molecules 2025, 30(12), 2573; https://doi.org/10.3390/molecules30122573 - 13 Jun 2025
Viewed by 742
Abstract
Photocatalytic CO2 conversion is one of the ideal approaches to address both topics of solar energy shortage and carbon neutrality. Cobalt(II) centers coordinated with bipyridines have been designed and evaluated as catalysts for CO2 conversion under light irradiation. Herein, we report [...] Read more.
Photocatalytic CO2 conversion is one of the ideal approaches to address both topics of solar energy shortage and carbon neutrality. Cobalt(II) centers coordinated with bipyridines have been designed and evaluated as catalysts for CO2 conversion under light irradiation. Herein, we report a series of pyridine-based cobalt complexes with alkyl substituents as molecular photocatalysts, aiming to elucidate the effects of alkyl type and substitution position on catalytic performance through spectroscopic and electrochemical measurements. The substitution of the hydrogen at 4,4′-positions on the bipyridine ring with a methyl group, a tert-butyl group, and a nonyl group led to a decrease in the conversion rate of CO2 by 13.2%, 29.6%, and 98%, respectively. The methyl substituents at the 5, 5′-positions of the bipyridine ring resulted in a 71.1% decrease in the CO2 conversion rate. The usage of either 6, 6′-Me2-2,2′-bipy, 2,4-bipy, or 3,3′-bipy resulted in no detectable activity for CO2 conversion in the current system. Both photo- and electrochemical analyses have been employed to reveal the relationship between changing ligands and photocatalytic performance on the molecular scale. These results demonstrate that bulky ligands significantly hinder CO2 reduction by cobalt complexes due to steric interference with coordination and active-site accessibility. This study demonstrates that the substituent effect of ligands on photocatalytic reactions for CO2 conversion provides valuable insight into a deeper understanding of molecular catalysis. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

9 pages, 1682 KiB  
Communication
Synthesis of Dimethyl (Z)-((3-oxoindolin-2-ylidene) (aryl)methyl)phosphonates Through Tandem Cadogan and Arbuzov Reactions
by Nicolai A. Aksenov, Dmitrii A. Aksenov, Daniil D. Ganusenko, Alexander E. Kurlikov, Alexander P. Barbolin, Polina S. Karaseva and Alexander V. Aksenov
Molbank 2025, 2025(2), M2002; https://doi.org/10.3390/M2002 - 5 May 2025
Viewed by 796
Abstract
A novel method employing a tandem Cadogan and Arbuzov reaction sequence has been developed, providing access to a series of previously unreported dimethyl (Z)-((3-oxoindolin-2-ylidene)(aryl)methyl)phosphonates. Restricted rotation of the aryl substituent, particularly in the presence of ortho substituents, gives axial chirality to these compounds. [...] Read more.
A novel method employing a tandem Cadogan and Arbuzov reaction sequence has been developed, providing access to a series of previously unreported dimethyl (Z)-((3-oxoindolin-2-ylidene)(aryl)methyl)phosphonates. Restricted rotation of the aryl substituent, particularly in the presence of ortho substituents, gives axial chirality to these compounds. Full article
Show Figures

Figure 1

15 pages, 2375 KiB  
Article
Synthesis and Evaluation of Antitumor and Anti-Angiogenesis Activity of Pyrone- or Pyridone-Embedded Analogs of Cortistatin A
by Yuri Fujimoto, Kanako Mizuno, Yuta Nakamura, Masayoshi Arai and Naoyuki Kotoku
Mar. Drugs 2025, 23(4), 179; https://doi.org/10.3390/md23040179 - 20 Apr 2025
Viewed by 899
Abstract
Simplified analogs of cortistatin A were synthesized and biologically evaluated to develop novel antitumor substances that target angiogenesis. To analyze the effect of substituents at positions corresponding to C-2 and/or C-4 of the A-ring, various pyrone- or pyridone-embedded analogs were designed and synthesized. [...] Read more.
Simplified analogs of cortistatin A were synthesized and biologically evaluated to develop novel antitumor substances that target angiogenesis. To analyze the effect of substituents at positions corresponding to C-2 and/or C-4 of the A-ring, various pyrone- or pyridone-embedded analogs were designed and synthesized. Among the prepared analogs, the pyridone analog 19 bearing a methyl group at C-2 and a hydroxyl group at C-4 showed potent and selective growth inhibitory activity against human umbilical vein endothelial cells (HUVECs, IC50 = 0.001 µM, selective index over that against human epidermoid carcinoma KB3-1 cells = 6400), exceeding those of natural products. The analog 19 of oral administration exhibited excellent in vivo antitumor activity in mice subcutaneously inoculated with sarcoma S180 cells. Full article
Show Figures

Graphical abstract

21 pages, 4255 KiB  
Article
Controlling Charge Generation in Organic Photovoltaic Ternary Blends: How Trace Ternary Additives Determine Mechanism
by Nathan A. Cooling, Krishna Feron, Timothy W. Jones, Warwick J. Belcher and Paul C. Dastoor
Electronics 2025, 14(8), 1655; https://doi.org/10.3390/electronics14081655 - 19 Apr 2025
Viewed by 326
Abstract
A series of modified tetraphenylporphyrins varying only in the electron-donating or electron-withdrawing character of the substituents in the para-phenyl position have been blended into the active layer of MEH-PPV:PCBM bulk heterojunction solar cells. Increasing the electron-withdrawing ability of the substituents, as quantified [...] Read more.
A series of modified tetraphenylporphyrins varying only in the electron-donating or electron-withdrawing character of the substituents in the para-phenyl position have been blended into the active layer of MEH-PPV:PCBM bulk heterojunction solar cells. Increasing the electron-withdrawing ability of the substituents, as quantified by the Hammett constant, systematically alters the device efficiency of ternary poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene]:porphyrin:[6,6]-phenylC61-butyric acid methyl ester (MEH-PPV:porphyrin:PCBM) bulk heterojunction organic solar cells through alteration of the HOMO/LUMO levels and, thereby, the open-circuit voltage of the cell. We show that the porphyrin concentrates at the MEH-PPV:PCBM interface in these blends and that the devices operate via a cascade mechanism when the highest occupied molecular orbital (HOMO) of the porphyrin is higher in energy that that of MEH-PPV, but via a parallel/alloy device mechanism, when the HOMO of the porphyrin is lower in energy than that of MEH-PPV. As such, this work highlights how the energetics of the ternary component can determine device performance by switching between charge generation models simply by altering the electron-withdrawing character of the porphyrin ternary additive. Full article
(This article belongs to the Special Issue Materials and Properties for Solar Cell Application)
Show Figures

Figure 1

12 pages, 920 KiB  
Article
Nitrone or Oxaziridine? Further Insights into the Selectivity of Imine Oxidation Catalyzed by Methyltrioxorhenium
by Camilla Matassini, Marco Bonanni, Francesca Cardona and Andrea Goti
Catalysts 2025, 15(4), 344; https://doi.org/10.3390/catal15040344 - 1 Apr 2025
Viewed by 602
Abstract
The oxidation of imines may give several products, such as oxaziridines, nitrones, amides, and other rearranged compounds. Therefore, its selectivity is a challenge that various methods have to face. The controversial selectivity of the oxidation of imines using urea hydrogen peroxide (UHP) catalyzed [...] Read more.
The oxidation of imines may give several products, such as oxaziridines, nitrones, amides, and other rearranged compounds. Therefore, its selectivity is a challenge that various methods have to face. The controversial selectivity of the oxidation of imines using urea hydrogen peroxide (UHP) catalyzed by methyltrioxorhenium (MTO) is addressed by varying the solvent, temperature, reaction time, amount of oxidant, and catalyst used. The reactivity and selectivity of the oxidation of imines proved to be particularly sensitive to the type of solvent. The use of methanol furnished the corresponding nitrones as the exclusive products, except for very hindered N-tert-alkyl substituted substrates. Using the ionic liquid [bmim]BF4 as a solvent resulted in a complete switch in reactivity and selectivity. N-methyl substituted imines gave the corresponding amides, while imines with bulkier substituents at nitrogen did not show any reactivity. An exception was the C-phenyl,N-tert-butyl imine—the only substrate that was oxidized to the corresponding oxaziridine, albeit with low conversion. The results reported herein reaffirm the oxidation of imines with UHP/MTO in MeOH as the method of choice for their interconversion to nitrones. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

25 pages, 8617 KiB  
Article
Structure and Optical Properties of New 2-N-Phenylamino-methyl-nitro-pyridine Isomers
by Patrycja Godlewska, Jerzy Hanuza, Jan Janczak, Radosław Lisiecki, Małgorzata Basiak, Adam Zając and Lucyna Dymińska
Int. J. Mol. Sci. 2025, 26(7), 2874; https://doi.org/10.3390/ijms26072874 - 21 Mar 2025
Viewed by 1257
Abstract
Two new 2-N-phenylamino-(4 or 6)-methyl-3-nitropyridine derivatives were synthesized. Their structures were characterized on the basis of X-ray diffraction, IR, and Raman spectra as well as electron UV-Vis and emission spectra measurements. The experimental results were analyzed in terms of theoretical data [...] Read more.
Two new 2-N-phenylamino-(4 or 6)-methyl-3-nitropyridine derivatives were synthesized. Their structures were characterized on the basis of X-ray diffraction, IR, and Raman spectra as well as electron UV-Vis and emission spectra measurements. The experimental results were analyzed in terms of theoretical data in which the quantum chemical DFT and NBO calculations were applied. To elucidate the relaxation pathways of electronically excited states, multiple excitation wavelengths were employed to probe energy dissipation mechanisms in the studied compounds. A systematic analysis was conducted to evaluate how variations in methyl substituent positioning modulate both the structural architecture and photophysical behavior of the isomeric systems. The spectroscopic, structural and theoretical considerations allow us to propose the potential technological applications derived from the unique properties of these isomers. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

21 pages, 983 KiB  
Article
Synthesis, Characterization, and Antioxidant Activity Evaluation of New N-Methyl Substituted Thiazole-Derived Polyphenolic Compounds
by Alexandra Cătălina Cornea, Gabriel Marc, Ioana Ionuț, Cristina Moldovan, Anca Stana, Smaranda Dafina Oniga, Adrian Pîrnău, Laurian Vlase, Ilioara Oniga and Ovidiu Oniga
Molecules 2025, 30(6), 1345; https://doi.org/10.3390/molecules30061345 - 17 Mar 2025
Cited by 2 | Viewed by 1459
Abstract
Reactive oxygen species play a significant role in various pathological conditions, driving the need for novel, potent antioxidants. While polyphenols are known for their antioxidant properties, their limited stability and bioavailability present challenges for therapeutic applications. To address these limitations, a series of [...] Read more.
Reactive oxygen species play a significant role in various pathological conditions, driving the need for novel, potent antioxidants. While polyphenols are known for their antioxidant properties, their limited stability and bioavailability present challenges for therapeutic applications. To address these limitations, a series of novel thiazolyl-polyphenolic compounds was synthesized via a multi-step synthetic route incorporating Hantzsch heterocyclization in the final step. The synthesized compounds 7ak were structurally characterized using spectroscopic techniques, including NMR, MS, and IR. In silico thermodynamic calculations, including HOMO–LUMO gap and bond dissociation enthalpy (BDE) calculations, revealed a promising antioxidant profile for these compounds and indicated that the substitution in position 2 of the thiazole ring does not substantially influence the antioxidant activity conferred by the catechol moiety in position 4. The antioxidant capacity of the synthesized compounds was experimentally validated using a panel of six distinct assays: two radical scavenging assays (ABTS and DPPH) and four electron transfer-based assays (RP, TAC, FRAP, and CUPRAC). The in vitro evaluation demonstrated that compounds 7j and 7k exhibited significantly enhanced antioxidant activity compared to the established antioxidant standards, ascorbic acid and Trolox. These findings suggest that the strategic modifications in position 2 of the thiazole scaffold represent a promising direction for future research aimed at developing novel therapeutic agents with enhanced antioxidant properties. The present study is limited to the in vitro evaluation of compounds based on the N-methyl substituted thiazole scaffold, but future studies can include modifications such as changing the substituent on the thiazole nitrogen, the hydrazone linker or possible insertion of substituents in position 5 of thiazole ring of substituents with various electronic or physico-chemical properties. Full article
(This article belongs to the Special Issue Heterocycles in Medicinal Chemistry III)
Show Figures

Graphical abstract

15 pages, 2472 KiB  
Article
Meta-Xylene-Based Diamines with Protected Benzyl Sites: Potential NCN Pincer Ligands with Tunable Steric Profiles
by Tamina Z. Kirsch, Toren Hynes, Jason D. Masuda and Saurabh S. Chitnis
Molecules 2025, 30(6), 1331; https://doi.org/10.3390/molecules30061331 - 16 Mar 2025
Viewed by 715
Abstract
Bulky NCN aryl-diamides featuring methyl groups in the benzyl positions were synthesized with the aim of creating a new class of meta-xylene-based trianionic pincer ligands where the common decomposition pathway of metal pincer complexes via C-H activation is prevented. Sterically demanding substituents [...] Read more.
Bulky NCN aryl-diamides featuring methyl groups in the benzyl positions were synthesized with the aim of creating a new class of meta-xylene-based trianionic pincer ligands where the common decomposition pathway of metal pincer complexes via C-H activation is prevented. Sterically demanding substituents on the ligands furthermore provide steric protection of the metal centre and can help prevent the dimerization of the complexes. While a double deprotonation of the ligands and the formation of a dilithium salt was straightforward, difficulties were encountered when attempting to deprotonate the ipso-CH proton on the central aryl ring to yield trianionic ligands. This stands in contrast to related pincer ligands without methyl groups in the benzylic positions. Experimental and theoretical investigations led to the conclusion that the challenges encountered when attempting the third deprotonation are likely caused by an interplay of increased electron density at the nitrogen atoms and steric hindrance. Both effects originate in the introduction of methyl groups in the benzylic positions, which make the targeted proton less accessible. These results provide further insight into the impact of methyl groups in the benzyl positions on both steric and electronic properties of NCN pincer ligands, which may find utility in coordination chemistry applications where metalation can be achieved by direct C-H activation rather than requiring triple deprotonation. Full article
(This article belongs to the Special Issue Advances in Main Group Chemistry)
Show Figures

Figure 1

16 pages, 39274 KiB  
Article
A Molecular Dynamics Study of the Solvation Properties of Sugars in Supercritical Carbon Dioxide
by Alexandrine Lambert and Francesca Ingrosso
Molecules 2025, 30(6), 1256; https://doi.org/10.3390/molecules30061256 - 11 Mar 2025
Viewed by 746
Abstract
Among the various strategies used to enhance the solvation power of supercritical carbon dioxide (scCO2), the use of CO2-philic compounds has been extensively studied over the recent two decades. Given the biocompatibility of this medium, extraction technologies based on [...] Read more.
Among the various strategies used to enhance the solvation power of supercritical carbon dioxide (scCO2), the use of CO2-philic compounds has been extensively studied over the recent two decades. Given the biocompatibility of this medium, extraction technologies based on scCO2 are particularly attractive, and a molecular-level understanding of intermolecular interactions is crucial for optimizing processing conditions. Functionalized sugars and cyclic oligosaccharides, such as cyclodextrins, can be rendered soluble in scCO2, opening new avenues for vectorization strategies and supramolecular chemistry in this medium. To support the exploration of CO2-philic compounds relevant to these research goals, we conducted a molecular dynamics investigation into the solvation properties of cyclodextrins functionalized with CO2-philic groups. We thoroughly analyzed the key solute–solvent interactions and their influence on the cavity shape. Additionally, we provided insights into the solvation behavior of peracetylated α and β-glucose across different regions of the carbon dioxide phase diagram. We were able to confirm the importance of the well-known (acetyl)C–O⋯C(CO2) interaction, as the most important signature of CO2-philicity of carbonyl compounds. Depending on the substituent, this interaction can be assisted by a cooperative (methyl)2HCH⋯O(CO2) intermolecular bond. In cyclodextrins, conformational flexibility, with a possible change in the conformation of some pyranose units, was observed in the macromolecular structure. On the other hand, these structural modifications were not present for α- and β-glucose. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

18 pages, 1067 KiB  
Article
Exploring the Potential of Coumarin Derivatives on Serotonin Receptors 5-HT1A and 5HT2A
by Kinga Ostrowska, Gabriela Horosz, Karolina Kruk, Bartłomiej Sieroń, Anna Leśniak, Zofia Czartoryska, Magdalena Bujalska-Zadrożny, Dejan Milenkovic and Bartosz Trzaskowski
Int. J. Mol. Sci. 2025, 26(5), 1946; https://doi.org/10.3390/ijms26051946 - 24 Feb 2025
Viewed by 1117
Abstract
A series of 2- and 3-methoxyphenylpiperazine derivatives in combination with a 2-hydroxypropoxy linker and coumarins containing various substituents was synthesized and evaluated for antidepressant-like activity. Microwave-assisted synthesis was used, and the structures of all compounds were confirmed by 1H, 13C NMR, [...] Read more.
A series of 2- and 3-methoxyphenylpiperazine derivatives in combination with a 2-hydroxypropoxy linker and coumarins containing various substituents was synthesized and evaluated for antidepressant-like activity. Microwave-assisted synthesis was used, and the structures of all compounds were confirmed by 1H, 13C NMR, and HRMS spectrometry. The affinity toward the 5-HT1A and 5-HT2A receptors was determined using radioligand binding assays and analyzed by molecular docking studies. Among the compounds evaluated, four demonstrated high affinity for the 5-HT1A receptor with the following Ki values: 5-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propoxy)-4,7-dimethyl-2H-chromen-2-one (5) (90 nM), 6-acetyl-5-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propoxy)-4,7-dimethyl-2H-chromen-2-one (7) (90 nM), 7-(2-hydroxy-3-(4-(3-methoxyphenyl)piperazin-1-yl) propoxy)-4-methyl-2H-chromen-2-one (10) (87 nM), and 8-acetyl-7-(2-hydroxy-3-(4-(2-methoxy phenyl)piperazin-1-yl)propoxy)-4-methyl-2H-chromen-2-one (11) (96 nM), and four demonstrated high affinity for the 5-HT2A receptor with the following Ki values: 6-acetyl-7-(2-hydroxy-3-(4-(3-methoxyphenyl)piperazin-1-yl)propoxy)-4-methyl-2H-chromen-2-one (2) (83 nM), 8-acetyl-7-(2-hydroxy-3-(4-(3-methoxyphenyl)piperazin-1-yl)propoxy)-4-methyl-2H-chromen-2-one (12) (67 nM), 7-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl) propoxy)-2H-chromen-2-one (13) (18 nM), and 7-(2-hydroxy-3-(4-(3-methoxyphenyl)piperazin-1-yl)propoxy)-2H-chromen-2-one (14) (68 nM). In functional assays, 8-acetyl-7-(2-hydroxy-3-(4-(2-methoxyphenyl) piperazin-1-yl)propoxy)-4-methyl-2H-chromen-2-one (compound 11) exhibited a significant 5-HT1A antagonistic profile. Computational studies revealed the structural details responsible for the high affinity of selected derivatives, which were compared to known 5HT1A partial agonists. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

19 pages, 4075 KiB  
Article
Hepatotoxicity Evaluation of Levornidazole and Its Three Main Impurities: Based on Structure–Toxicity Classification Prediction Combined with Zebrafish Toxicity Assessment
by Ting Liu, Song Yuan, Luyong Zhang and Dousheng Zhang
Molecules 2025, 30(5), 995; https://doi.org/10.3390/molecules30050995 - 21 Feb 2025
Viewed by 725
Abstract
Levornidazole, a nitroimidazole compound, has been linked to hepatotoxic adverse effects in clinical settings. However, the hepatotoxicity of levornidazole and its impurities has not been fully elucidated. This study aimed to predict and evaluate the potential hepatotoxicity of levornidazole, and elucidate the underlying [...] Read more.
Levornidazole, a nitroimidazole compound, has been linked to hepatotoxic adverse effects in clinical settings. However, the hepatotoxicity of levornidazole and its impurities has not been fully elucidated. This study aimed to predict and evaluate the potential hepatotoxicity of levornidazole, and elucidate the underlying mechanisms of action. Computational models based on support vector machines (SVM) and artificial neural networks (ANN) predicted that levornidazole, ornidazole, and impurity II exhibited hepatotoxic effects. The hepatotoxicity of levornidazole and impurity II was confirmed using a zebrafish toxicity study, with impurity II demonstrating hepatotoxicity at lower doses. Molecular structure analysis revealed that the electronegativity of the side-chain groups and the molecular polarity structure were correlated with the degree of hepatotoxicity. The toxic response was primarily associated with specific structural domains of the molecule, including the 2-methyl-5-nitro-1H-imiddaster-1-yl structure and the substituent groups of 1-chloro and 2(S)-2-methyloxirane. Transcriptome sequencing analysis indicated that levornidazole and impurity II affect multiple metabolic processes in the liver, including glucose, lipid, protein, hormone, and drug metabolism. These findings highlight the potential hepatotoxic risks associated with levomeprazole and its impurities, emphasizing the importance of further investigation and regulatory attention to ensure patient safety. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

7 pages, 1860 KiB  
Proceeding Paper
A New Synthesis of Polyhydroxylated Cyclopentane β-Amino Acids from Nitro Sugars
by Ramón J. Estévez, Begoña Pampín, Marcos González and Juan C. Estévez
Chem. Proc. 2024, 16(1), 94; https://doi.org/10.3390/ecsoc-28-20145 - 20 Feb 2025
Viewed by 960
Abstract
A ne stereocontrolled nitro sugar-mediated synthesis of polyhydroxylated β-amino acids is reported. The key step of this approach is a Michael addition of the lithium salt of tris(phenylthio)methane (a carboxyl synthetic equivalent) to sugar nitro olefins. This is followed by the generation of [...] Read more.
A ne stereocontrolled nitro sugar-mediated synthesis of polyhydroxylated β-amino acids is reported. The key step of this approach is a Michael addition of the lithium salt of tris(phenylthio)methane (a carboxyl synthetic equivalent) to sugar nitro olefins. This is followed by the generation of the amino acid functionality by the transformation of the tris(phenylthio)methyl substituent into the carboxylic acid functionality and the reduction of the nitro group to an amino group. Full article
Show Figures

Figure 1

Back to TopTop