Novel N-Alkyl 3-(3-Benzyloxyquinoxalin-2-yl) Propanamides as Antiproliferative Agents: Design, Synthesis, In Vitro Testing, and In Silico Mechanistic Study
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Cytotoxicity Assay
2.3. Docking Study
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedures
3.1.2. General Procedure for Alkylation of Methyl 3-(3-Oxo-3,4-dihydroquinoxalin-2-yl)propanoate (1)
Methyl 3-(4-Benzyl-3-oxo-3,4-dihydroquinoxalin-2-yl)propanoate (2)
Methyl 3-(3-Benzyloxyquinoxalin-2-yl)propanoate (3)
3.1.3. Preparation of 3-(3-Benzyloxyquinoxalin-2-yl)propanhydrazide (4)
3.1.4. Preparation of N-Alkyl 3-(3-Benzyloxyquinoxalin-2-yl)propanamide 6a–k
3-(3-Benzyloxyquinoxalin-2-yl)-N-propyl-propanamide (6a)
3-(3-Benzyloxyquinoxalin-2-yl)-N-butyl-propanamide (6b)
3-(3-Benzyloxyquinoxalin-2-yl)-N-isopropylpropanamide (6c)
N-Allyl-3-(3-(Benzyloxyquinoxalin-2-yl)propanamide (6d)
N-Benzyl-3-(3-Benzyloxyquinoxalin-2-yl)propanamide (6e)
3-(3-Benzyloxyquinoxalin-2-yl)-N-cyclohexylpropanamide (6f)
3-(3-Benzyloxyquinoxalin-2-yl)-N,N-diethylpropanamide (6g)
3-(3-Benzyloxyquinoxalin-2-yl)-1-morpholin-4-yl-propan-1-one (6h)
3-(3-Benzyloxyquinoxalin-2-yl)-1-piperidin-1-yl-propan-1-one (6i)
3-(3-Benzyloxyquinoxalin-2-yl)-1-(pyrrolidin-1-yl)propan-1-one (6j)
3-(3-Benzyloxyquinoxalin-2-yl)-N-(2-(naphthalen-2-ylamino)ethyl)propanamide (6k)
3.2. Biological Studies
3.2.1. Cell Line
3.2.2. Reagents and Cell Viability Assay
3.3. Molecular Modeling and Docking
3.3.1. Software
3.3.2. Crystal Structures
3.3.3. Protein Preparation
3.3.4. Receptor Grid Generation
3.3.5. Ligand Preparation
3.3.6. Validation of the Molecular Docking
3.3.7. Molecular Docking
3.3.8. Induced Fit Docking
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaushal, T.; Srivastava, G.; Sharma, A.; Singh Negi, A. An Insight into Medicinal Chemistry of Anticancer Quinoxalines. Bioorg. Med. Chem. 2019, 27, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Patinote, C.; Raevens, S.; Baumann, A.; Pellegrin, E.; Bonnet, P.-A.; Deleuze-Masquéfa, C. [1,2,4]Triazolo[4,3-a]Quinoxaline as Novel Scaffold in the Imiqualines Family: Candidates with Cytotoxic Activities on Melanoma Cell Lines. Molecules 2023, 28, 5478. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A.K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J.P.; Pathak, P.; Grishina, M.; et al. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals 2023, 16, 299. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Liu, P.; Jiang, Y.; He, X.; Zhang, L.; Wang, L.; Yang, T. Discovery and SAR Study of Quinoxaline-Arylfuran Derivatives as a New Class of Antitumor Agents. Pharmaceutics 2022, 14, 2420. [Google Scholar] [CrossRef] [PubMed]
- Bouali, N.; Hammouda, M.B.; Ahmad, I.; Ghannay, S.; Thouri, A.; Dbeibia, A.; Patel, H.; Hamadou, W.S.; Hosni, K.; Snoussi, M.; et al. Multifunctional Derivatives of Spiropyrrolidine Tethered Indeno-Quinoxaline Heterocyclic Hybrids as Potent Antimicrobial, Antioxidant and Antidiabetic Agents: Design, Synthesis, In Vitro and In Silico Approaches. Molecules 2022, 27, 7248. [Google Scholar] [CrossRef] [PubMed]
- Chawla, G.; Gupta, O.; Pradhan, T. A Review on Multipurpose Potential of Bioactive Heterocycle Quinoxaline. ChemistrySelect 2023, 8, e202301401. [Google Scholar] [CrossRef]
- Alasmary, F.A.S.; Abdullah, D.A.; Masand, V.H.; Ben Bacha, A.; Omar Ebeid, A.M.; El-Araby, M.E.; Alafeefy, A.M. Synthesis, Molecular Modelling, and Biological Evaluation of Novel Quinoxaline Derivatives for Treating Type II Diabetes. J. Enzyme Inhib. Med. Chem. 2024, 39, 2395985. [Google Scholar] [CrossRef] [PubMed]
- Elwan, A.; Sakr, H.; El-Helby, A.-G.A.; El-morsy, A.; Abdelgawad, M.A.; Ghoneim, M.M.; El-Sherbiny, M.; El-Adl, K. Triazoloquinoxalines-Based DNA Intercalators-Topo II Inhibitors: Design, Synthesis, Docking, ADMET and Anti-Proliferative Evaluations. J. Enzyme Inhib. Med. Chem. 2022, 37, 1556–1567. [Google Scholar] [CrossRef] [PubMed]
- Waseem, A.M.; Elmagzoub, R.M.; Abdelgadir, M.M.M.; Bahir, A.A.; EL-Gawaad, N.S.A.; Abdel-Samea, A.S.; Rao, D.P.; Kossenas, K.; Bräse, S.; Hashem, H. An Insight into the Therapeutic Impact of Quinoxaline Derivatives: Recent Advances in Biological Activities (2020–2024). Results Chem. 2025, 13, 101989. [Google Scholar] [CrossRef]
- Mamedov, V.A. Quinoxalines (Synthesis, Reactions, Mechanisms and Structure); Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-29771-2. [Google Scholar]
- Waring, M.J.; Ben-Hadda, T.; Kotchevar, A.T.; Ramdani, A.; Touzani, R.; Elkadiri, S.; Hakkou, A.; Bouakka, M.; Ellis, T. 2,3-Bifunctionalized Quinoxalines: Synthesis, DNA Interactions and Evaluation of Anticancer, Anti-Tuberculosis and Antifungal Activity. Molecules 2002, 7, 641–656. [Google Scholar] [CrossRef]
- Shivani; Mahajan, A.T.; Chaudhary, S. Emerging Trends in Quinoxaline-Based Analogs as Protein Kinase Inhibitors: Structural Developments and SAR Insights. ChemMedChem 2025, 20, e202400592. [Google Scholar] [CrossRef]
- Dehnavi, F.; Akhavan, M.; Bekhradnia, A. Advances in Quinoxaline Derivatives: Synthetic Routes and Antiviral Efficacy against Respiratory Pathogens. RSC Adv. 2024, 14, 35400–35423. [Google Scholar] [CrossRef] [PubMed]
- Buravchenko, G.I.; Shchekotikhin, A.E. Quinoxaline 1,4-Dioxides: Advances in Chemistry and Chemotherapeutic Drug Development. Pharmaceuticals 2023, 16, 1174. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Seijo, J.A.; Sheldrick, G.M. Structures of Complexes between Echinomycin and Duplex DNA. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Park, E.J.; Stephen, A.G.; Calvani, M.; Cardellina, J.H.; Monks, A.; Fisher, R.J.; Shoemaker, R.H.; Melillo, G. Echinomycin, a Small-Molecule Inhibitor of Hypoxia-Inducible Factor-1 DNA-Binding Activity. Cancer Res. 2005, 65, 9047–9055. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.F. Chemistry, Synthesis, and Structure Activity Relationship of Anticancer Quinoxalines. Chemistry 2023, 5, 2566–2587. [Google Scholar] [CrossRef]
- Suwanhom, P.; Saetang, J.; Khongkow, P.; Nualnoi, T.; Tipmanee, V.; Lomlim, L. Synthesis, Biological Evaluation, and In Silico Studies of New Acetylcholinesterase Inhibitors Based on Quinoxaline Scaffold. Molecules 2021, 26, 4895. [Google Scholar] [CrossRef] [PubMed]
- Yashwantrao, G.; Saha, S. Recent Advances in the Synthesis and Reactivity of Quinoxaline. Org. Chem. Front. 2021, 8, 2820–2862. [Google Scholar] [CrossRef]
- Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.S.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, Its Derivatives and Applications: A State of the Art Review. Eur. J. Med. Chem. 2015, 97, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Eissa, I.H.; El-Naggar, A.M.; El-Sattar, N.E.A.A.; Youssef, A.S.A. Design and Discovery of Novel Quinoxaline Derivatives as Dual DNA Intercalators and Topoisomerase II Inhibitors. Anticancer Agents Med. Chem. 2018, 18, 195–209. [Google Scholar] [CrossRef] [PubMed]
- El-Adl, K.; El-Helby, A.-G.A.; Sakr, H.; Elwan, A. Design, Synthesis, Molecular Docking and Anti-Proliferative Evaluations of [1,2,4]Triazolo[4,3-a]Quinoxaline Derivatives as DNA Intercalators and Topoisomerase II Inhibitors. Bioorg. Chem. 2020, 105, 104399. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.K.; Taghour, M.S.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Elhendawy, M.A.; Radwan, M.M.; Yassin, A.M.; El-Deeb, N.M.; Hafez, E.E.; et al. Design, Synthesis, Molecular Modeling and Anti-Proliferative Evaluation of Novel Quinoxaline Derivatives as Potential DNA Intercalators and Topoisomerase II Inhibitors. Eur. J. Med. Chem. 2018, 155, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Montero, V.; Montana, M.; Carré, M.; Vanelle, P. Quinoxaline Derivatives: Recent Discoveries and Development Strategies towards Anticancer Agents. Eur. J. Med. Chem. 2024, 271, 116360. [Google Scholar] [CrossRef] [PubMed]
- Oyallon, B.; Brachet-Botineau, M.; Logé, C.; Robert, T.; Bach, S.; Ibrahim, S.; Raoul, W.; Croix, C.; Berthelot, P.; Guillon, J.; et al. New Quinoxaline Derivatives as Dual Pim-1/2 Kinase Inhibitors: Design, Synthesis and Biological Evaluation. Molecules 2021, 26, 867. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Boggu, P.R.; Yu, H.N.; Ki, S.Y.; Jung, J.M.; Kim, Y.S.; Park, G.M.; Ma, S.H.; Kim, I.S.; Jung, Y.H. Synthesis and Biological Evaluation of Quinoxaline Derivatives as Specific C-Met Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 127189. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Lan, P.; Chen, Q.; Liu, H.; Chen, Z.; Wang, T.; Wang, Z. Synthesis and Biological Evaluation of Quinoxaline Derivatives as ASK1 Inhibitors. J. Enzyme Inhib. Med. Chem. 2024, 39, 2414382. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Huang, J.; Zhou, X.; Luo, W.; Xie, J.; Niu, L.; Yan, Z.; Luo, Y.; Men, Y.; Chen, Y.; et al. Synthesis and Biological Evaluation of Quinoxaline Derivatives as Tubulin Polymerization Inhibitors That Elevate Intracellular ROS and Triggers Apoptosis via Mitochondrial Pathway. Chem. Biol. Drug Des. 2019, 93, 617–627. [Google Scholar] [CrossRef] [PubMed]
- El Newahie, A.M.S.; Nissan, Y.M.; Ismail, N.S.M.; Abou El Ella, D.A.; Khojah, S.M.; Abouzid, K.A.M. Design and Synthesis of New Quinoxaline Derivatives as Anticancer Agents and Apoptotic Inducers. Molecules 2019, 24, 1175. [Google Scholar] [CrossRef] [PubMed]
- Montero, V.; Montana, M.; Khoumeri, O.; Correard, F.; Estève, M.-A.; Vanelle, P. Synthesis, In Vitro Antiproliferative Activity, and In Silico Evaluation of Novel Oxiranyl-Quinoxaline Derivatives. Pharmaceuticals 2022, 15, 781. [Google Scholar] [CrossRef] [PubMed]
- Aboelmagd, A.; Alotaibi, S.H.; El Rayes, S.M.; Elsayed, G.M.; Ali, I.A.I.; Fathalla, W.; Pottoo, F.H.; Khan, F.A. Synthesis and Anti Proliferative Activity of New N-Pentylquinoxaline Carboxamides and Their O-Regioisomer. ChemistrySelect 2020, 5, 13439–13453. [Google Scholar] [CrossRef]
- Aboelmagd, A.; Rayes, S.M.E.; Gomaa, M.S.; Ali, I.A.I.; Fathalla, W.; Pottoo, F.H.; Khan, F.A.; Khalifa, M.E. The Synthesis and Antiproliferative Activity of New N-Allyl Quinoxalinecarboxamides and Their O-Regioisomers. New J. Chem. 2021, 45, 831–849. [Google Scholar] [CrossRef]
- Megahed, M.; Fathalla, W.; Alsheikh, A.A. Synthesis and Antimicrobial Activity of Methyl 2-(2-(2-Arylquinazolin-4-Yl)Oxy) Acetylamino Alkanoates. J. Heterocycl. Chem. 2018, 55, 2799–2808. [Google Scholar] [CrossRef]
- Fathalla, W. Chemoselective Synthesis of 3,6,7-Trisubstituted 2-(2,3:5,6-Di-O-Isopropylidene-β-D-Mannofuranosyloxy]- and 2-(2-Acetamido-3,4,6-Tri-O-Acetyl-2-Deoxy-β-D-Glucopyranosyloxy)Quinoxaline Derivatives. Chem. Heterocycl. Comp. 2015, 51, 67–72. [Google Scholar] [CrossRef]
- Ismail, E.F.; Ali, I.A.I.; Fathalla, W.; Alsheikh, A.A.; Tamneya, E.S.E. Synthesis of Methyl [3-Alkyl-2-(2,4-Dioxo-3,4-Dihydro-2H-Quinazolin-1-Yl)-Acetamido] Alkanoate. Arkivoc 2017, 2017, 104–120. [Google Scholar] [CrossRef]
- Ali, I.A.I.; Fathalla, W. N1-Allyl-3-Substituted-6,7-Dimethyl-1,2-Dihydro-2-Quinoxalinone as Key Intermediate for New Acyclonucleosides and Their Regioisomer O-Analogues. Heteroat. Chem. 2006, 17, 280–288. [Google Scholar] [CrossRef]
- Ali, I.A.I.; Fathalla, W.; Rayes, S.M.E. Convenient Syntheses of Methyl 2-[2-(3-Acetyl-4-Methyl-2-Oxo-1,2-Dihydroquinolin-1-Yl)Acetamido] Alkanoates and Their O-Regioisomers. Arkivoc 2008, 2008, 179–188. [Google Scholar] [CrossRef]
- Abad, N.; Al-Ostoot, F.H.; Ashraf, S.; Chkirate, K.; Aljohani, M.S.; Alharbi, H.Y.; Buhlak, S.; El Hafi, M.; Van Meervelt, L.; Al-Maswari, B.M.; et al. Synthesis, Crystal Structure, DFT Calculations, Hirshfeld Surface Analysis, Energy Frameworks, Molecular Dynamics and Docking Studies of Novel Isoxazolequinoxaline Derivative (IZQ) as Anti-Cancer Drug. J. Mol. Struct. 2021, 1232, 130004. [Google Scholar] [CrossRef]
- Son, J.-H.; Zhu, J.S.; Phuan, P.-W.; Cil, O.; Teuthorn, A.P.; Ku, C.K.; Lee, S.; Verkman, A.S.; Kurth, M.J. High-Potency Phenylquinoxalinone Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activators. J. Med. Chem. 2017, 60, 2401–2410. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wei, C.; Wu, S.; Zhang, W.; Song, R.; Hu, D. Synthesis, Anti-Potato Virus Y Activities, and Interaction Mechanisms of Novel Quinoxaline Derivatives Bearing Dithioacetal Moiety. J. Agric. Food Chem. 2022, 70, 7029–7038. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.A.I.; El Rayes, S.M. Synthesis of Quinoxaline Reverse Ribofuranosides and Their O-Regioisomers. Monatsh. Chem. 2014, 145, 1371–1380. [Google Scholar] [CrossRef]
- Harding, R.J.; Ferreira de Freitas, R.; Collins, P.; Franzoni, I.; Ravichandran, M.; Ouyang, H.; Juarez-Ornelas, K.A.; Lautens, M.; Schapira, M.; von Delft, F.; et al. Small Molecule Antagonists of the Interaction between the Histone Deacetylase 6 Zinc-Finger Domain and Ubiquitin. J. Med. Chem. 2017, 60, 9090–9096. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Denizot, F.; Lang, R. Rapid Colorimetric Assay for Cell Growth and Survival. Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Sherje, A.P.; Kulkarni, V.; Murahari, M.; Nayak, U.Y.; Bhat, P.; Suvarna, V.; Dravyakar, B. Inclusion Complexation of Etodolac with Hydroxypropyl-Beta-Cyclodextrin and Auxiliary Agents: Formulation Characterization and Molecular Modeling Studies. Mol. Pharm. 2017, 14, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Costanzo, L.D.; Duarte, J.M.; Dutta, S.; Feng, Z.; et al. The RCSB Protein Data Bank: Integrative View of Protein, Gene and 3D Structural Information. Nucleic Acids Res. 2017, 45, D271–D281. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful New Tools for Exploring 3D Structures of Biological Macromolecules for Basic and Applied Research and Education in Fundamental Biology, Biomedicine, Biotechnology, Bioengineering and Energy Sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, M.S.; Alturki, M.S.; Tawfeeq, N.; Hussein, D.A.; Pottoo, F.H.; Al Khzem, A.H.; Sarafroz, M.; Abubshait, S. Discovery of Non-Peptide GLP-1 Positive Allosteric Modulators from Natural Products: Virtual Screening, Molecular Dynamics, ADMET Profiling, Repurposing, and Chemical Scaffolds Identification. Pharmaceutics 2024, 16, 1607. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, M.S.; Ahmed, A.H.A.; El Rayes, S.M.; Ali, I.A.I.; Fathalla, W.; Alturki, M.S.; Alkhzem, A.H.; Almalki, A.H.; Aldawsari, M.F.; Pottoo, F.H.; et al. Design, Synthesis and Antiproliferative Activity against Colorectal Cancer Cells of Methyl 2-(3-(2-Oxo-3-Phenylquinoxalin-1(2H)-Yl)Propanamido)Alkanoates and Related Compounds. J. Mol. Struct. 2025, 1330, 141456. [Google Scholar] [CrossRef]
- Jaundoo, R.; Bohmann, J.; Gutierrez, G.E.; Klimas, N.; Broderick, G.; Craddock, T.J.A. Using a Consensus Docking Approach to Predict Adverse Drug Reactions in Combination Drug Therapies for Gulf War Illness. Int. J. Mol. Sci. 2018, 19, 3355. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, Y.; Fang, Y.; Wang, X.; Chen, Y.; Qi, Q.; Huang, F.; Xiao, X. Meta-Analysis of Colistin for the Treatment of Acinetobacter Baumannii Infection. Sci. Rep. 2015, 5, 17091. [Google Scholar] [CrossRef] [PubMed]
Solvent | O-Substituted Yield | N-Substituted Yield |
---|---|---|
DMF | 2% | 85% |
Acetonitrile | 33% | 55% |
Ethanol | 20% | 38% |
Acetone | 63% | 18% |
Comp. No. | In Vitro Cytotoxicity IC50 (µM) * | |||
---|---|---|---|---|
PC-3 | Hela | HCT-116 | MCF-7 | |
2 | 34.77 ± 2.2 | 18.16 ± 1.5 | 33.05 ± 2.1 | 24.83 ± 1.7 |
3 | 87.24 ± 4.5 | 59.33 ± 3.3 | 79.31 ± 3.9 | 61.71 ± 3.3 |
4 | 17.82 ± 1.3 | 13.44 ± 1.1 | 19.06 ± 1.3 | 11.19 ± 0.9 |
6a | 94.14 ± 4.9 | 78.20 ± 3.8 | 81.65 ± 4.0 | 76.07 ± 3.9 |
6b | ˃100 | 91.38 ± 4.8 | ˃100 | 85.20 ± 4.2 |
6c | 65.06 ± 3.5 | 43.35 ± 2.6 | 49.31 ± 2.8 | 54.57 ± 3.1 |
6d | 82.75 ± 4.1 | 69.48 ± 3.6 | 74.51 ± 3.7 | 72.64 ± 3.8 |
6e | ˃100 | 63.59 ± 3.5 | 89.43 ± 4.5 | 67.72 ± 3.6 |
6f | 47.61 ± 2.7 | 25.16 ± 1.7 | 38.76 ± 2.4 | 30.14 ± 1.9 |
6g | 56.15 ± 3.2 | 32.21 ± 2.0 | 46.60 ± 2.7 | 37.54 ± 2.4 |
6h | 77.83 ± 3.8 | 53.86 ± 3.1 | 60.63 ± 3.4 | 41.22 ± 2.6 |
6i | 29.22 ± 1.8 | 15.50 ± 1.3 | 22.49 ± 1.6 | 17.37 ± 1.4 |
6j | 70.19 ± 3.7 | 39.02 ± 2.5 | 55.71 ± 3.1 | 48.82 ± 2.8 |
6k | 12.17 ± 0.9 | 9.46 ± 0.7 | 10.88 ± 0.8 | 6.93 ± 0.4 |
Doxorubicin | 8.87 ± 0.6 | 5.57 ± 0.4 | 5.23 ± 0.3 | 4.17 ± 0.2 |
Compound | XP Score (kcal/mol) | Rank | Experimental IC50-MCF-7 (µM) | Rank | Activity Threshold |
---|---|---|---|---|---|
6k | −6.11 | 1 | 6.93 ± 0.4 | 1 | Active |
4 | −6.07 | 2 | 11.19 ± 0.9 | 2 | Active |
2 | −5.27 | 3 | 24.83 ± 1.7 | 3 | Moderate |
6g | −4.93 | 5 | 37.54 ± 2.4 | 4 | Moderate |
3 | −4.90 | 4 | 61.71 ± 3.3 | 5 | Weak |
6b | −4.63 | 6 | 85.20 ± 4.2 | 6 | Inactive |
Crystal ligand | −6.62 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abubshait, S.A. Novel N-Alkyl 3-(3-Benzyloxyquinoxalin-2-yl) Propanamides as Antiproliferative Agents: Design, Synthesis, In Vitro Testing, and In Silico Mechanistic Study. Molecules 2025, 30, 3025. https://doi.org/10.3390/molecules30143025
Abubshait SA. Novel N-Alkyl 3-(3-Benzyloxyquinoxalin-2-yl) Propanamides as Antiproliferative Agents: Design, Synthesis, In Vitro Testing, and In Silico Mechanistic Study. Molecules. 2025; 30(14):3025. https://doi.org/10.3390/molecules30143025
Chicago/Turabian StyleAbubshait, Samar A. 2025. "Novel N-Alkyl 3-(3-Benzyloxyquinoxalin-2-yl) Propanamides as Antiproliferative Agents: Design, Synthesis, In Vitro Testing, and In Silico Mechanistic Study" Molecules 30, no. 14: 3025. https://doi.org/10.3390/molecules30143025
APA StyleAbubshait, S. A. (2025). Novel N-Alkyl 3-(3-Benzyloxyquinoxalin-2-yl) Propanamides as Antiproliferative Agents: Design, Synthesis, In Vitro Testing, and In Silico Mechanistic Study. Molecules, 30(14), 3025. https://doi.org/10.3390/molecules30143025