Controlling Charge Generation in Organic Photovoltaic Ternary Blends: How Trace Ternary Additives Determine Mechanism
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
- (a)
- tetra(4-aminophenyl)porphyrin (TpNH2PP)
- (b)
- tetratolylporphyrin (TTP)
- (c)
- tetraphenylporphyrin (TPP)
- (d)
- tetra(4-chlorophenyl)porphyrin (TpClPP)
- (e)
- tetra(4-bromophenyl)porphyrin (TpBrPP)
- (f)
- tetra(4-methoxycarbonylphenyl)porphyrin (TpCOOCH3PP)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Lin, F.R.; Qi, F.; Heumüller, T.; Distler, A.; Egelhaaf, H.-J.; Li, N.; Chow, P.C.Y.; Brabec, C.J.; Jen, A.K.-Y.; et al. Renewed Prospects for Organic Photovoltaics. Chem. Rev. 2022, 122, 14180–14274. [Google Scholar] [CrossRef]
- Gao, W.; Qi, F.; Peng, Z.; Lin, F.R.; Jiang, K.; Zhong, C.; Kaminsky, W.; Guan, Z.; Lee, C.-S.; Marks, T.J.; et al. Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor. Adv. Mater. 2022, 34, 2202089. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, L.; Guo, C.; Xiao, J.; Liu, C.; Chen, C.; Xia, W.; Gan, Z.; Cheng, J.; Zhou, J.; et al. π-Extended Nonfullerene Acceptor for Compressed Molecular Packing in Organic Solar Cells to Achieve Over 20% Efficiency. J. Am. Chem. Soc. 2024, 146, 12011–12019. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171–184. [Google Scholar] [CrossRef]
- Dastoor, P.C.; Belcher, W.J. How the West Was Won? A History of Organic Photovoltaics. Substantia 2019, 3 (Suppl. 1), 99–110. [Google Scholar]
- Al-Ahmad, A.Y.; Almayhi, F.; Al-Mudhaffer, M.F.; Griffith, M.J.; Liu, W.; Li, S.; Sivunova, K.; Elkington, D.; Cooling, N.A.; Feron, K.; et al. A Nuanced Approach for Assessing OPV Materials for Large Scale Applications. Sustain. Energy Fuels 2020, 4, 940. [Google Scholar] [CrossRef]
- Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z.-G.; Li, Y. A Low Cost and High Performance Polymer Donor Material for Polymer Solar Cells. Nat. Commun. 2018, 9, 743. [Google Scholar] [CrossRef]
- Gasparini, N.; Salleo, A.; McCulloch, I.; Baran, D. The Role of the Third Component in Ternary Organic Solar Cells. Nat. Rev. Mater. 2019, 4, 229–242. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, S.; Xu, R.; Liu, F.; Miao, X.; Ran, G.; Liu, K.; Yi, Y.; Zhang, W.; Zhu, X. Non-Fullerene Acceptor with Asymmetric Structure and Phenyl-Substituted Alkyl Side Chain for 20.2% Efficiency Organic Solar Cells. Nat. Energy 2024, 9, 975–986. [Google Scholar] [CrossRef]
- Doumon, N.Y.; Yang, L.; Rosei, F. Ternary Organic Solar Cells: A Review of the Role of the Third Element. Nano Energy 2022, 94, 106915. [Google Scholar] [CrossRef]
- Günther, M.; Kazerouni, N.; Blätte, D.; Perea, J.D.; Thompson, B.C.; Ameri, T. Models and Mechanisms of Ternary Organic Solar Cells. Nat. Rev. Mater. 2023, 8, 456–471. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.; Zhang, R.; Yuan, J.; Hultmark, S.; Johnson, C.E.; Gallop, N.P.; Siegmund, B.; Qian, D.; Zhang, H.; et al. Origins of the Open-Circuit Voltage in Ternary Organic Solar Cells and Design Rules for Minimized Voltage Losses. Nat. Energy 2023, 8, 978–988. [Google Scholar] [CrossRef]
- Park, J.M.; Hong, K.-I.; Lee, H.; Jang, W.-D. Bioinspired Applications of Porphyrin Derivatives. Acc. Chem. Res. 2021, 54, 2249–2260. [Google Scholar] [CrossRef]
- Xiao, L.; Lai, T.; Liu, X.; Liu, F.; Russell, T.P.; Liu, Y.; Huang, F.; Peng, X.; Cao, Y. A Low-Bandgap Dimeric Porphyrin Molecule for 10% Efficiency Solar Cells with Small Photon Energy Loss. J. Mater. Chem. 2018, 6, 18469–18478. [Google Scholar] [CrossRef]
- Lyons, D.M.; Kesters, J.; Maes, W.; Bielawski, C.W.; Sessler, J.L. Improving Efficiencies by Modulating the Central Metal Ion in Porphyrin-Oligothiophene-Mediated P3HT/PCBM Organic Solar Cells. Synth. Met. 2013, 178, 56–61. [Google Scholar] [CrossRef]
- Rand, B.P.; Girotto, C.; Mityashin, A.; Hadipour, A.; Genoe, J.; Heremans, P. Photocurrent Enhancement in Polymer:Fullerene Bulk Heterojunction Solar Cells Doped with a Phosphorescent Molecule. Appl. Phys. Lett. 2009, 95, 173304. [Google Scholar] [CrossRef]
- Dastoor, P.C.; McNeill, C.R.; Frohne, H.; Foster, C.J.; Dean, B.; Belcher, W.J.; Fell, C.J.; Campbell, W.M.; Officer, D.L.; Blake, I.M.; et al. Understanding and Improving Solid-State Polymer/C60-Fullerene Bulk-Heterojunction Solar Cells Using Ternary Porphyrin Blends. J. Phys. Chem. C 2007, 111, 15415–15426. [Google Scholar] [CrossRef]
- Belcher, W.J.; Wagner, K.I.; Dastoor, P.C. The Effect of Porphyrin Inclusion on the Spectral Response of Ternary P3HT:Porphyrin:PCBM Bulk Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2007, 91, 447–452. [Google Scholar] [CrossRef]
- Park, J.M.; Lee, J.H.; Jang, W.-D. Applications of Porphyrins in Emerging Energy Conversion Technologies. Coord. Chem. Rev. 2020, 407, 213157. [Google Scholar] [CrossRef]
- Piradi, V.; Xu, W.; Wang, Z.; Ali, J.; Peng, Q.; Liu, F.; Zhu, X. Panchromatic Ternary Organic Solar Cells with Porphyrin Dimers and Absorption-Complementary Benzodithiophene-Based Small Molecules. ACS Appl. Mater. Interfaces 2019, 11, 6283–6291. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, H.; Cuesta, V.; de la Cruz, P.; Langa, F.; Sharma, G.D. Highly Efficient (15.08%) All-Small-Molecule Ternary Solar Cells Constructed with a Porphyrin as a Donor and Two Acceptors. ACS Appl. Energy Mater. 2021, 4, 4498–4506. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G. Functional Third Components in Nonfullerene Acceptor-Based Ternary Organic Solar Cells. Acc. Mater. Res. 2020, 1, 158–171. [Google Scholar] [CrossRef]
- Gao, K.; Kan, Y.; Chen, X.; Liu, F.; Kan, B.; Nian, L.; Wan, X.; Chen, Y.; Peng, X.; Russell, T.P.; et al. Low-Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications. Adv. Mater. 2020, 32, 1906129. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Peng, Q. Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. Adv. Mater. 2022, 34, 2107476. [Google Scholar] [CrossRef]
- Cooling, N.; Burke, K.B.; Zhou, X.; Lind, S.J.; Gordon, K.C.; Jones, T.W.; Dastoor, P.C.; Belcher, W.J. A Study of the Factors Influencing the Performance of Ternary MEH-PPV:Porphyrin:PCBM Heterojunction Devices: A Steric Approach to Controlling Charge Recombination. Sol. Energy Mater. Sol. Cells 2011, 95, 1767–1774. [Google Scholar] [CrossRef]
- Cooling, N.A.; Zhou, X.; Sales, T.A.; Sauer, S.E.; Lind, S.J.; Gordon, K.C.; Jones, T.W.; Burke, K.B.; Dastoor, P.C.; Belcher, W.J. A Study of the Factors Influencing the Performance of Ternary MEH-PPV:Porphyrin:PCBM Heterojunction Devices: Electronic Effects in Porphyrinoid Ternary Blend Bulk Heterojunction Photovoltaic Devices. Sol. Energy Mater. Sol. Cells 2012, 98, 308–316. [Google Scholar] [CrossRef]
- Mohapatra, A.A.; Tiwari, V.; Patil, S. Energy Transfer in Ternary Blend Organic Solar Cells: Recent Insights and Future Directions. Energy Environ. Sci. 2021, 14, 302–319. [Google Scholar] [CrossRef]
- Li, S.; Zhan, L.; Li, Y.; He, C.; Zuo, L.; Shi, M.; Chen, H. Achieving and Understanding of Highly Efficient Ternary Organic Photovoltaics: From Morphology and Energy Loss to Working Mechanism. Small Methods 2022, 6, 2200828. [Google Scholar] [CrossRef]
- Lui, L.; Kelly, M.A.; You, W.; Yu, L. Status and Prospects for Ternary Organic Photovoltaics. Nat. Photonics 2015, 9, 491–500. [Google Scholar] [CrossRef]
- Ameri, T.; Min, J.; Li, N.; Machui, F.; Baran, D.; Forster, M.; Schottler, K.J.; Dolfen, D.; Scherf, U.; Brabec, C.J. Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Small-Bandgap Polymer. Adv. Energy Mater. 2012, 2, 1198–1202. [Google Scholar] [CrossRef]
- Lu, L.; Xu, T.; Chen, W.; Landry, E.S.; Yu, L. Ternary Blend Polymer Solar Cells with Enhanced Power Conversion Efficiency. Nat. Photonics 2014, 8, 716–722. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, H.; Price, S.C.; You, W. Parallel-Like Bulk Heterojunction Polymer Solar Cells. J. Am. Chem. Soc. 2012, 134, 5432–5435. [Google Scholar] [CrossRef] [PubMed]
- Duck, B.; Vaughan, B.; Cooling, N.; Zhou, X.; Holdsworth, J.L.; Wen, L.L.; Rasmussen, S.C.; Dastoor, P.C.; Belcher, W.J. An Equivalent Circuit Model for Ternary Blend P3HT:pC6TP:PCBM Low Band Gap Devices. Sol. Energy Mater. Sol. Cells 2013, 114, 65–70. [Google Scholar] [CrossRef]
- Street, R.A.; Davies, D.; Khlyabich, P.P.; Burkhart, B.; Thompson, B.C. Origin of the Tuneable Open-Circuit Voltage in Ternary Blend Bulk Heterojunction Organic Solar Cells. J. Am. Chem. Soc. 2013, 135, 986–989. [Google Scholar] [CrossRef]
- Khlyabich, P.P.; Burkhart, B.; Thompson, B.C. Compositional Dependence of the Open-Circuit Voltage in Ternary Blend Bulk Heterojunction Solar Cells Based on Two Donor Polymers. J. Am. Chem. Soc. 2012, 134, 9074–9077. [Google Scholar] [CrossRef]
- Huang, J.-S.; Goh, T.; Li, X.; Sfeir, M.Y.; Bielnski, E.A.; Tomasulo, S.; Lee, M.L.; Hazari, N.; Taylor, A.D. Polymer Bulk Heterojunction Solar Cells Employing Förster Resonance Energy Transfer. Nat. Photonics 2013, 7, 479–485. [Google Scholar] [CrossRef]
- Feron, K.; Belcher, W.J.; Fell, C.J.; Dastoor, P.C. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer. Int. J. Mol. Sci. 2012, 13, 17019–17047. [Google Scholar] [CrossRef]
- Suzuki, M.; Suzuki, K.; Won, T.; Yamada, H. Impact of Substituents on the Performance of Small-Molecule Semiconductors in Organic Photovoltaic Devices via Regulating Morphology. J. Mater. Chem. C 2022, 10, 1162–1195. [Google Scholar] [CrossRef]
- Kilcoyne, A.L.D.; Tyliszczak, T.; Steele, W.F.; Fakra, S.; Hitchcock, P.; Franck, K.; Anderson, E.; Harteneck, B.; Rightor, E.G.; Mitchell, G.E.; et al. Interferometer-Controlled Scanning Transmission X-Ray Microscopes at the Advanced Light Source. J. Synchrotron Radiat. 2003, 10, 125–136. [Google Scholar] [CrossRef]
- Paliteiro, C.; Sobral, A. Electrochemical and Spectroelectrochemical Characterization of Meso-Tetra-Alkyl Porphyrins. Electrochim. Acta 2005, 50, 2445–2451. [Google Scholar] [CrossRef]
- Pavlishchuk, V.V.; Addison, A.W. Conversion Constants for Redox Potentials Measured versus Different Reference Electrodes in Acetonitrile Solutions at 25 °C. Inorg. Chim. Acta 2000, 298, 97–102. [Google Scholar] [CrossRef]
- Bond, A.M.; Oldham, K.B.; Snook, G.A. Use of the Ferrocene Oxidation Process to Provide Both Reference Electrode Potential Calibration and a Simple Measurement (via Semiintegration) of the Uncompensated Resistance in Cyclic Voltammetric Studies in High-Resistance Organic Solvents. Anal. Chem. 2000, 72, 3492–3496. [Google Scholar] [CrossRef]
- Jasieniak, J.; Califano, M.; Watkins, S.E. Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals. ACS Nano 2011, 5, 5888–5902. [Google Scholar] [CrossRef]
- Costa, J.C.; Taveira, R.J.; Lima, C.F.; Mendes, A.; Santos, L.M. Optical Band Gaps of Organic Semiconductor Materials. Opt. Mater. 2016, 58, 51–60. [Google Scholar] [CrossRef]
- Cooling, N. Ternary Porphyrinoid:Polymer:Fullerene Bulk Heterojunction Organic Solar Cells. Ph.D. Thesis, University of Newcastle, Newcastle, NSW, Australia, 2013. [Google Scholar]
- Acevedo-Peña, P.; Baray-Calderón, A.; Hu, H.; González, I.; Ugalde-Saldivar, V.M. Measurements of HOMO-LUMO Levels of Poly(3-Hexylthiophene) Thin Films by a Simple Electrochemical Method. J. Solid State Electrochem. 2017, 21, 2407–2414. [Google Scholar] [CrossRef]
- Balke, V.L.; Walker, F.A.; West, J.T. Electronic Effects in Transition-Metal Porphyrins. 6. The Effect of Unsymmetrical Phenyl Substitution on the Formation Constants of a Series of (Tetraphenylporphinato)Iron(III)-Bis(N-Methylimidazole) Complexes. J. Am. Chem. Soc. 1985, 107, 1226–1233. [Google Scholar] [CrossRef]
- Meot-Ner, M.; Adler, A.D. Substituent Effects in Noncoplanar π Systems, Meso-Porphyrins. J. Am. Chem. Soc. 1975, 97, 5107–5111. [Google Scholar] [CrossRef]
- Hammett, L.P. The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives. J. Am. Chem. Soc. 1937, 59, 96–103. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Ransdell, R.A.; Wamser, C.C. Solvent and Substituent Effects on the Redox Properties of Free-Base Tetraphenylporphyrins in DMSO and Aqueous DMSO. J. Phys. Chem. 1992, 96, 10572–10575. [Google Scholar] [CrossRef]
- Nicolaidis, N.; Vaughan, B.; Mulligan, C.J.; Bryant, G.; Zillger, T.; Tmovec, B.; Hübler, A.C.; Holmes, N.; Cooling, N.A.; Griffith, M.; et al. Solution Processable Interface Materials for Nanoparticulate Organic Photovoltaic Devices. Appl. Phys. Lett. 2014, 104, 043902. [Google Scholar] [CrossRef]
- Tarikhum, B.H.; Ali, B.; Almyahi, F. Role of Fullerene ICxA and Non-Fullerene Y6 in P3HT-Based Ternary Organic Photovoltaics. Solid State Commun. 2023, 372, 115319. [Google Scholar] [CrossRef]
- Srivastava, S.B.; Srivastava, S.K.; Singh, S.P. Molecular-Shape-Induced Efficiency Enhancement in PC61BM and PC71BM Based Ternary Blend Organic Solar Cells. J. Phys. Chem. C 2017, 121, 17104–17111. [Google Scholar] [CrossRef]
- Farinhas, J.; Oliveira, R.; Hansson, R.; Ericsson, L.K.; Moons, E.; Morgado, J.; Charas, A. Efficient Ternary Organic Solar Cells Based on Immiscible Blends. Org. Electron. 2017, 41, 130–136. [Google Scholar] [CrossRef]
- Brabec, C.J.; Cravino, A.; Meissner, D.; Sariciftci, N.S.; Fromherz, T.; Rispens, M.T.; Sanchez, L.; Hummelen, J.C. Origin of the Open Circuit Voltage of Plastic Solar Cells. Adv. Funct. Mater. 2001, 11, 374–380. [Google Scholar] [CrossRef]
- Widmer, J.; Tietze, M.; Leo, K.; Riede, M. Open-Circuit Voltage and Effective Gap of Organic Solar Cells. Adv. Funct. Mater. 2013, 23, 5814–5821. [Google Scholar] [CrossRef]
- Graham, K.R.; Erwin, P.; Nordlund, D.; Vandewal, K.; Li, R.; Ngongang Ndjawa, G.O.; Hoke, E.T.; Salleo, A.; Thompson, M.E.; McGehee, M.D.; et al. Re-Evaluating the Role of Sterics and Electronic Coupling in Determining the Open-Circuit Voltage of Organic Solar Cells. Adv. Mater. 2013, 25, 6076–6082. [Google Scholar] [CrossRef]
- Rand, B.P.; Burk, D.P. Offset Energies at Organic Semiconductor Heterojunctions and Their Influence on the Open-Circuit Voltage of Thin-Film Solar Cells. Phys. Rev. B 2007, 75, 115327. [Google Scholar] [CrossRef]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design Rules for Donors in Bulk-Heterojunction Solar Cells–Towards 10% Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Blom, P.W.M.; Mihailetchi, V.D.; Koster, L.J.A.; Markov, D.E. Device Physics of Polymer: Fullerene Bulk Heterojunction Solar Cells. Adv. Mater. 2007, 19, 1551–1566. [Google Scholar] [CrossRef]
- Gregg, B.A.; Hanna, M.C. Comparing Organic to Inorganic Photovoltaic Cells: Theory, Experiment, and Simulation. J. Appl. Phys. 2003, 93, 3605–3614. [Google Scholar] [CrossRef]
- Honda, S.; Nogami, T.; Ohkita, H.; Benten, H.; Ito, S. Improvement of the Light-Harvesting Efficiency in Polymer.Fullerene Bulk Heterojunction Solar Cells by Interfacial Dye Modification. ACS Appl. Mater. Interfaces 2009, 1, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Honda, S.; Yokoya, S.; Ohkita, H.; Benten, H.; Ito, S. Light-Harvesting Mechanism in Polymer/Fullerene/Dye Ternary Blends Studied by Transient Absorption Spectroscopy. J. Phys. Chem. C 2011, 115, 11306–11317. [Google Scholar] [CrossRef]
- Honda, S.; Ohkita, H.; Benten, H.; Ito, S. Selective Dye Loading at the Heterojunction in Polymer/Fullerene Solar Cells. Adv. Energy Mater. 2011, 1, 588–598. [Google Scholar] [CrossRef]
- Li, D.; Neumann, A.W. A Reformulation of the Equation of State for Interfacial Tensions. J. Colloid Interface Sci. 1990, 137, 304–307. [Google Scholar] [CrossRef]
Porphyrin p-Phenyl Substituent | Hammett σpara | Reference | Electronic Character | Experimental HOMO/eV | Experimental LUMO/eV |
---|---|---|---|---|---|
NH2 | −0.66 | [52] | Donating | −5.15 | −2.36 |
CH3 | −0.17 | [52] | Donating | −5.42 | −2.54 |
H | 0 | [52] | −5.44 | −2.56 | |
Cl | 0.227 | [51] | Withdrawing | −5.55 | −2.66 |
Br | 0.232 | [51] | Withdrawing | −5.52 | −2.64 |
COOCH3 | 0.45 | [52] | Withdrawing | −5.61 | −2.74 |
tBuPP | −5.48 | −2.54 | |||
MEH-PPV | −5.49 | −3.30 | |||
PCBM | −6.04 | −3.84 |
Porphyrin p-Phenyl Substituent | η (%) | VOC (mV) | JSC (mA.cm−2) | FF | Rs (Ω cm2) | Rsh (Ω cm2) |
---|---|---|---|---|---|---|
NH2 | 0.398 ± 0.020 | 376 ± 11.7 | 2.809 ± 0.097 | 0.376 ± 0.005 | 45 | 233 |
CH3 (2.5%) | 0.718 ± 0.074 | 553 ± 13.7 | 3.362 ± 0.255 | 0.385 ± 0.002 | 47 | 250 |
CH3 (10%) | 0.489 ± 0.026 | 467 ± 10.0 | 2.949 ± 0.089 | 0.354 ± 0.002 | 48 | 310 |
H (2.5%) | 0.794 ± 0.041 | 597 ± 10.5 | 3.439 ± 0.136 | 0.386 ± 0.005 | 52 | 311 |
H (10%) | 0.547 ± 0.015 | 531 ± 9.4 | 2.898 ± 0.033 | 0.355 ± 0.004 | 64 | 300 |
Cl | 1.008 ± 0.024 | 707 ± 8.4 | 3.744 ± 0.087 | 0.380 ± 0.004 | 55 | 407 |
Br | 1.131 ± 0.035 | 712 ± 8.9 | 3.964 ± 0.077 | 0.401 ± 0.007 | 38 | 380 |
COOCH3 | 1.173 ± 0.090 | 720 ± 9.3 | 3.989 ± 0.266 | 0.408 ± 0.003 | 28 | 334 |
MEH-PPV:PCBM 8:32 | 1.464 ± 0.141 | 842 ± 6.5 | 4.488 ± 0.319 | 0.387 ± 0.013 | 29 | 473 |
Material | Contact Angle (°) | Surface Tension (mJ/m2) | Wetting Coefficient |
---|---|---|---|
MEH-PPV | 91 | 29 | - |
PCBM | 80 | 36 | - |
NH2 | 90 | 29 | 0.73 |
CH3 | 88 | 30 | 0.51 |
H | 86 | 32 | 0.06 |
Cl | 86 | 32 | 0.02 |
COOCH3 | 90 | 29 | 0.74 |
tBuPP | 88 | 31 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooling, N.A.; Feron, K.; Jones, T.W.; Belcher, W.J.; Dastoor, P.C. Controlling Charge Generation in Organic Photovoltaic Ternary Blends: How Trace Ternary Additives Determine Mechanism. Electronics 2025, 14, 1655. https://doi.org/10.3390/electronics14081655
Cooling NA, Feron K, Jones TW, Belcher WJ, Dastoor PC. Controlling Charge Generation in Organic Photovoltaic Ternary Blends: How Trace Ternary Additives Determine Mechanism. Electronics. 2025; 14(8):1655. https://doi.org/10.3390/electronics14081655
Chicago/Turabian StyleCooling, Nathan A., Krishna Feron, Timothy W. Jones, Warwick J. Belcher, and Paul C. Dastoor. 2025. "Controlling Charge Generation in Organic Photovoltaic Ternary Blends: How Trace Ternary Additives Determine Mechanism" Electronics 14, no. 8: 1655. https://doi.org/10.3390/electronics14081655
APA StyleCooling, N. A., Feron, K., Jones, T. W., Belcher, W. J., & Dastoor, P. C. (2025). Controlling Charge Generation in Organic Photovoltaic Ternary Blends: How Trace Ternary Additives Determine Mechanism. Electronics, 14(8), 1655. https://doi.org/10.3390/electronics14081655