Synthesis, Characterization, and Antioxidant Activity Evaluation of New N-Methyl Substituted Thiazole-Derived Polyphenolic Compounds
Abstract
:1. Introduction
2. Results
2.1. Chemical Synthesis of the Compounds
2.2. Antiradical and Electron Transfer Assays
2.2.1. Antiradical Assays
2.2.2. Electron Transfer Assays
2.3. In Silico Studies
2.3.1. Theoretical Quantum Calculations
2.3.2. Molecular Properties with Influence on the Pharmacokinetics of Compounds
3. Discussion
3.1. Chemical Synthesis of the Compounds
3.2. Antiradical and Electron Transfer Assays
3.2.1. Antiradical Assays
3.2.2. Electron Transfer Assays
3.3. In Silico Studies
3.3.1. Theoretical Quantum Calculations
3.3.2. Molecular Properties with Influence on the Pharmacokinetics of Compounds
4. Materials and Methods
4.1. Materials
4.1.1. Chemicals and Consumables
4.1.2. Instruments
4.2. Methodology for Synthesis and Characterization of Final Compounds
4.3. Antioxidant Assays
4.3.1. Antiradical Assays
4.3.2. Electron Transfer Assays
4.4. In Silico Studies
4.4.1. Theoretical Quantum Calculation
4.4.2. Molecular Properties with Influence on Pharmacokinetics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D. A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. J. Chem. 2023, 2024, 5594386. [Google Scholar] [CrossRef]
- Abdelazim, A.M.; Abomughaid, M.M. Oxidative stress: An overview of past research and future insights. All Life 2024, 17, 2316092. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Vona, R.; Pallotta, L.; Cappelletti, M.; Severi, C.; Matarrese, P. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants 2021, 10, 201. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Jideani, A.I.O.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H. Bin Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Papagiouvannis, G.; Rekka, E.A. A Review on Vitamin E Natural Analogues and on the Design of Synthetic Vitamin E Derivatives as Cytoprotective Agents. Mini-Rev. Med. Chem. 2021, 21, 10–22. [Google Scholar] [CrossRef]
- Tomova, T.; Petkov, V.; Slavova, I.; Stoyanov, P.; Argirova, M. Naturally present metal ions in plants could interfere with common antioxidant assays. MethodsX 2020, 7, 100995. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Pepinosa, N.Y.; Cardona-Trujillo, M.C.; Garzón-Castaño, S.C.; Veloza, L.A.; Sepúlveda-Arias, J.C. Antiproliferative activity of thiazole and oxazole derivatives: A systematic review of in vitro and in vivo studies. Biomed. Pharmacother. 2021, 138, 111495. [Google Scholar] [CrossRef] [PubMed]
- Cornea, A.C.; Marc, G.; Ionuț, I.; Moldovan, C.; Fizeșan, I.; Petru, A.-E.; Creștin, I.-V.; Pîrnău, A.; Vlase, L.; Oniga, O. Synthesis, Cytotoxicity and Antioxidant Activity Evaluation of Some Thiazolyl–Catechol Compounds. Antioxidants 2024, 13, 937. [Google Scholar] [CrossRef]
- Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules 2019, 24, 1741. [Google Scholar] [CrossRef]
- Narasimhamurthy, K.H.; Swaroop, T.R.; Rangappa, K.S. A review on progress of thiazole derivatives as potential anti-inflammatory agents. Eur. J. Med. Chem. Rep. 2024, 12, 100225. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Wang, Y.; Xu, L.; He, X.; Li, H.; Li, X. Harnessing two-dimensional magnetic Poly(deep eutectic solvents) for matrix solid-phase dispersion extraction of polyphenols from roselle: Promoting antiphotoaging strategy. Chem. Eng. J. 2024, 496, 154019. [Google Scholar] [CrossRef]
- Bešlo, D.; Golubić, N.; Rastija, V.; Agić, D.; Karnaš, M.; Šubarić, D.; Lučić, B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants 2023, 12, 1141. [Google Scholar] [CrossRef]
- Ungureanu, D.; Oniga, O.; Moldovan, C.; Ionuț, I.; Marc, G.; Stana, A.; Pele, R.; Duma, M.; Tiperciuc, B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics 2024, 13, 763. [Google Scholar] [CrossRef]
- Petrou, A.; Fesatidou, M.; Geronikaki, A.; Damiano Altomare, C. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021, 24, 3166. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.F.; Alam, A.; Alshammari, A.A.; Alhazza, M.B.; Alzimam, I.M.; Alam, M.A.; Mustafa, G.; Ansari, M.S.; Alotaibi, A.M.; Alotaibi, A.A.; et al. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022, 27, 3994. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Malhotra, D.; Singh, K.; Chadha, R.; Bedi, P.M.S. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J. Mol. Struct. 2022, 1266, 133479. [Google Scholar] [CrossRef]
- Marc, G.; Stana, A.; Franchini, A.H.; Vodnar, D.C.; Barta, G.; Tertiş, M.; Şanta, I.; Cristea, C.; Pîrnău, A.; Ciorîţă, A.; et al. Phenolic Thiazoles with Antioxidant and Antiradical Activity. Synthesis, In Vitro Evaluation, Toxicity, Electrochemical Behavior, Quantum Studies and Antimicrobial Screening. Antioxidants 2021, 10, 1707. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Biswas, S.S.; Browne, R.B.; Borah, V.V.; Roy, J.D. In Silico Approach for Phytocompound-Based Drug Designing to Fight Efflux Pump-Mediated Multidrug-Resistant Mycobacterium tuberculosis. Appl. Biochem. Biotechnol. 2021, 193, 1757–1779. [Google Scholar] [CrossRef]
- Prasch, S.; Bucar, F. Plant derived inhibitors of bacterial efflux pumps: An update. Phytochem. Rev. 2015, 14, 961–974. [Google Scholar] [CrossRef]
- Shiu, W.K.P.; Malkinson, J.P.; Rahman, M.M.; Curry, J.; Stapleton, P.; Gunaratnam, M.; Neidle, S.; Mushtaq, S.; Warner, M.; Livermore, D.M.; et al. A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int. J. Antimicrob. Agents 2013, 42, 513–518. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef]
- Opitz, S.; Smrke, S.; Goodman, B.; Keller, M.; Schenker, S.; Yeretzian, C. Antioxidant Generation during Coffee Roasting: A Comparison and Interpretation from Three Complementary Assays. Foods 2014, 3, 586–604. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Jaganjac, M.; Sredoja Tisma, V.; Zarkovic, N. Short Overview of Some Assays for the Measurement of Antioxidant Activity of Natural Products and Their Relevance in Dermatology. Molecules 2021, 26, 5301. [Google Scholar] [CrossRef] [PubMed]
- Antonijević, M.R.; Simijonović, D.M.; Avdović, E.H.; Ćirić, A.; Petrović, Z.D.; Marković, J.D.; Stepanić, V.; Marković, Z.S. Green One-Pot Synthesis of Coumarin-Hydroxybenzohydrazide Hybrids and Their Antioxidant Potency. Antioxidants 2021, 10, 1106. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zheng, Y.; An, L.; Dou, Y.; Liu, Y. Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins. Food Chem. 2014, 151, 198–206. [Google Scholar] [CrossRef]
- Molaei, S.; Tehrani, A.D.; Shamlouei, H. Antioxidant activates of new carbohydrate based gallate derivatives: A DFT study. J. Mol. Liq. 2023, 377, 121506. [Google Scholar] [CrossRef]
- Hossen, J.; Pal, T.K.; Hasan, T. Theoretical investigations on the antioxidant potential of 2,4,5-trihydroxybutyrophenone in different solvents: A DFT approach. Results Chem. 2022, 4, 100515. [Google Scholar] [CrossRef]
- Biela, M.; Kleinová, A.; Klein, E. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. Phytochemistry 2022, 200, 113254. [Google Scholar] [CrossRef]
- Di Meo, F.; Lemaur, V.; Cornil, J.; Lazzaroni, R.; Duroux, J.-L.; Olivier, Y.; Trouillas, P. Free Radical Scavenging by Natural Polyphenols: Atom versus Electron Transfer. J. Phys. Chem. A 2013, 117, 2082–2092. [Google Scholar] [CrossRef]
- Vlocskó, R.B.; Mastyugin, M.; Török, B.; Török, M. Correlation of physicochemical properties with antioxidant activity in phenol and thiophenol analogues. Sci. Rep. 2025, 15, 73. [Google Scholar] [CrossRef]
- Bhuyan, U.; Handique, J.G. Plant polyphenols as potent antioxidants: Highlighting the mechanism of antioxidant activity and synthesis/development of some polyphenol conjugates. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 243–266. [Google Scholar]
- Rohman, R.; Nath, R.; Kar, R. Revisiting the hydrogen atom transfer reactions through a simple and accurate theoretical model: Role of hydrogen bond energy in polyphenolic antioxidants. Comput. Theor. Chem. 2023, 1223, 114097. [Google Scholar] [CrossRef]
- Lauberte, L.; Fabre, G.; Ponomarenko, J.; Dizhbite, T.; Evtuguin, D.V.; Telysheva, G.; Trouillas, P. Lignin Modification Supported by DFT-Based Theoretical Study as a Way to Produce Competitive Natural Antioxidants. Molecules 2019, 24, 1794. [Google Scholar] [CrossRef] [PubMed]
- Doğan, M.; Koçyiğit, Ü.M.; Gürdere, M.B.; Ceylan, M.; Budak, Y. Synthesis and biological evaluation of thiosemicarbazone derivatives. Med. Oncol. 2022, 39, 157. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun. 2021, 51, 670–700. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bedlovicová, Z.; Strapác, I.; Baláž, M.; Salayová, A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules 2020, 25, 3191. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Papagiouvannis, G.; Rekka, E.A. Ferulic, Sinapic, 3,4-Dimethoxycinnamic Acid and Indomethacin Derivatives with Antioxidant, Anti-Inflammatory and Hypolipidemic Functionality. Antioxidants 2023, 12, 1436. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Marc, G.; Stana, A.; Oniga, S.D.; Pîrnău, A.; Vlase, L.; Oniga, O. New Phenolic Derivatives of Thiazolidine-2,4-dione with Antioxidant and Antiradical Properties: Synthesis, Characterization, In Vitro Evaluation, and Quantum Studies. Molecules 2019, 24, 2060. [Google Scholar] [CrossRef]
- Baig, H.; Dildar, A.; Saman, Z.; Aujla, M.I.; Asghar, M.N. In vitro Evaluation of Antioxidant Properties of Different Solvent Extracts of Rumex acetosella Leaves. Orient. J. Chem. 2011, 27, 1509–1516. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.; Bektaşoğlu, B.; Berker, K.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, M.; Güçlü, K.; Apak, R. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- Theofanous, A.; Deligiannakis, Y.; Louloudi, M. Hybrids of Gallic Acid@SiO2 and {Hyaluronic-Acid Counterpats}@SiO2 against Hydroxyl (●OH) Radicals Studied by EPR: A Comparative Study vs Their Antioxidant Hydrogen Atom Transfer Activity. Langmuir 2024, 40, 26412–26424. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, S.A.; Baumgartner, M.T. Theoretical study of the reaction mechanism of a series of 4-hydroxycoumarins against the DPPH radical. Chem. Phys. Lett. 2014, 601, 116–123. [Google Scholar] [CrossRef]
- Giacomelli, C.; Miranda, F.d.S.; Gonçalves, N.S.; Spinelli, A. Antioxidant activity of phenolic and related compounds: A density functional theory study on the O–H bond dissociation enthalpy. Redox Rep. 2004, 9, 263–269. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Delaney, J.S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef]
Compound | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|
7a | OH | H | H | H | H |
7b | H | OH | H | H | H |
7c | H | H | OH | H | H |
7d | H | OH | OH | H | H |
7e | OH | H | OH | H | H |
7f * | OH | H | OH | H | H |
7g | H | OH | -OCH3 | H | H |
7h | H | -OCH3 | OH | H | H |
7i | H | -OCH2CH3 | OH | H | H |
7j | OH | OH | OH | H | H |
7k | OH | H | OH | H | OH |
Compound | DPPH• | ABTS•+ |
---|---|---|
7a | 53.98 | 11.54 |
7b | 50.94 | 7.90 |
7c | 39.90 | 9.63 |
7d | 30.49 | 5.98 |
7e | 35.84 | 2.70 |
7f | 42.14 | 3.22 |
7g | 36.85 | 4.54 |
7h | 39.24 | 10.19 |
7i | 37.78 | 7.83 |
7j | 25.29 | 2.86 |
7k | 35.03 | 2.50 |
Ascorbic acid | 53.49 | NT |
Trolox | 38.01 | 15.87 |
Compound | TAC | RP | FRAP | CUPRAC | |
---|---|---|---|---|---|
Eq Ascorbic Acid | Eq Ascorbic Acid | Eq Trolox | Eq Trolox | Eq Trolox | |
7a | 1.03 | 3.28 | 2.72 | 1.42 | 3.32 |
7b | 1.05 | 3.67 | 3.05 | 1.48 | 5.26 |
7c | 1.02 | 3.25 | 2.70 | 1.41 | 5.46 |
7d | 1.41 | 3.47 | 2.88 | 1.32 | 3.79 |
7e | 1.27 | 3.52 | 2.92 | 1.56 | 5.79 |
7f | 1.58 | 3.32 | 2.76 | 1.49 | 3.97 |
7g | 1.03 | 3.71 | 3.08 | 1.47 | 3.74 |
7h | 1.06 | 3.21 | 2.67 | 1.32 | 4.60 |
7i | 1.05 | 3.82 | 3.18 | 1.37 | 5.56 |
7j | 2.38 | 4.24 | 3.53 | 1.66 | 5.87 |
7k | 1.78 | 3.84 | 3.19 | 1.59 | 6.03 |
Compound | Vacuum | Non-Polar | Water | ||||||
---|---|---|---|---|---|---|---|---|---|
HOMO | LUMO | Gap | HOMO | LUMO | Gap | HOMO | LUMO | Gap | |
7a | −5.23 | −1.52 | 3.71 | −5.24 | −1.59 | 3.65 | −5.25 | −1.61 | 3.64 |
7b | −5.05 | −1.36 | 3.69 | −5.18 | −1.52 | 3.66 | −5.21 | −1.56 | 3.65 |
7c | −4.93 | −1.20 | 3.73 | −5.06 | −1.36 | 3.70 | −5.09 | −1.39 | 3.70 |
7d | −4.93 | −1.19 | 3.74 | −5.06 | −1.36 | 3.70 | −5.09 | −1.40 | 3.69 |
7e | −5.06 | −1.30 | 3.76 | −5.14 | −1.42 | 3.72 | −5.15 | −1.44 | 3.71 |
7f | −5.10 | −1.28 | 3.82 | −5.13 | −1.33 | 3.80 | −5.14 | −1.34 | 3.80 |
7g | −4.87 | −1.15 | 3.72 | −5.04 | −1.36 | 3.68 | −5.08 | −1.40 | 3.68 |
7h | −4.86 | −1.17 | 3.69 | −5.03 | −1.36 | 3.67 | −5.06 | −1.40 | 3.66 |
7i | −4.85 | −1.15 | 3.70 | −5.02 | −1.35 | 3.67 | −5.06 | −1.40 | 3.66 |
7j | −5.17 | −1.43 | 3.74 | −5.17 | −1.46 | 3.71 | −5.16 | −1.46 | 3.70 |
7k | −5.11 | −1.40 | 3.71 | −5.15 | −1.46 | 3.69 | −5.15 | −1.47 | 3.68 |
Compound | O-H1 | O-H2 | O-H3 | O-H4 | O-H5 | O-H6 * |
---|---|---|---|---|---|---|
7a | 69.23 | 71.55 | 82.99 | - | - | - |
7b | 68.41 | 71.23 | - | 79.29 | - | - |
7c | 67.34 | 70.98 | - | - | 73.08 | - |
7d | 68.01 | 70.99 | - | 68.67 | 64.58 | - |
7e | 68.31 | 70.82 | 87.18 | - | 75.84 | - |
7f | 68.80 | 71.73 | 84.29 | - | 77.02 | - |
7g | 67.80 | 70.83 | - | 76.16 | - | - |
7h | 68.37 | 70.83 | - | - | 73.27 | - |
7i | 68.28 | 70.73 | - | - | 73.02 | - |
7j | 68.47 | 71.27 | 86.13 | 71.69 | 77.22 | - |
7k | 68.54 | 71.33 | 78.87 | - | 73.36 | 72.08 |
Compound | O-H1 | O-H2 | O-H3 | O-H4 | O-H5 | O-H6 * |
---|---|---|---|---|---|---|
7a | 69.38 | 71.92 | 78.74 | - | - | - |
7b | 69.31 | 72.12 | - | 79.21 | - | - |
7c | 68.91 | 71.87 | - | - | 71.64 | - |
7d | 68.93 | 71.91 | - | 69.95 | 65.31 | - |
7e | 69.16 | 71.80 | 88.68 | - | 73.25 | - |
7f | 69.01 | 71.99 | 80.63 | - | 74.19 | - |
7g | 68.89 | 71.89 | - | 76.07 | - | - |
7h | 69.21 | 71.74 | - | - | 72.46 | - |
7i | 69.17 | 71.68 | - | - | 72.29 | - |
7j | 69.04 | 72.02 | 83.34 | 69.97 | 72.71 | - |
7k | 69.30 | 71.93 | 82.18 | - | 70.75 | 70.44 |
Compound | O-H1 | O-H2 | O-H3 | O-H4 | O-H5 | O-H6 * |
---|---|---|---|---|---|---|
7a | 71.74 | 74.31 | 80.09 | - | - | - |
7b | 71.79 | 74.59 | - | 81.45 | - | - |
7c | 71.40 | 74.38 | - | - | 73.49 | - |
7d | 71.43 | 74.42 | - | 72.48 | 67.68 | - |
7e | 71.68 | 74.28 | 91.27 | - | 74.84 | - |
7f | 71.35 | 74.33 | 82.11 | - | 75.65 | - |
7g | 71.42 | 74.42 | - | 78.51 | - | - |
7h | 71.69 | 74.24 | - | - | 74.55 | - |
7i | 71.62 | 74.16 | - | - | 74.34 | - |
7j | 71.30 | 74.33 | 84.92 | 71.86 | 73.74 | - |
7k | 71.70 | 74.29 | 84.97 | - | 72.23 | 72.08 |
Compound | MW | Rotatable Bonds | HBA | HBD | TPSA (Å2) | MLogP | Water Solubility (µg/mL) | Lipinski Violations |
---|---|---|---|---|---|---|---|---|
7a | 341.38 | 3 | 5 | 3 | 118.58 | 1.48 | 2.54 | 0 |
7b | 341.38 | 3 | 5 | 3 | 118.58 | 1.48 | 2.54 | 0 |
7c | 341.38 | 3 | 5 | 3 | 118.58 | 1.48 | 2.54 | 0 |
7d | 357.38 | 3 | 6 | 4 | 138.81 | 0.95 | 3.74 | 0 |
7e | 357.38 | 3 | 6 | 4 | 138.81 | 0.95 | 3.74 | 0 |
7f | 371.41 | 3 | 6 | 4 | 138.81 | 1.19 | 2.42 | 0 |
7g | 371.41 | 4 | 6 | 3 | 127.81 | 1.19 | 2.40 | 0 |
7h | 371.41 | 4 | 6 | 3 | 127.81 | 1.19 | 2.40 | 0 |
7i | 385.44 | 5 | 6 | 3 | 127.81 | 1.42 | 1.47 | 0 |
7j | 373.38 | 3 | 7 | 5 | 159.04 | 0.43 | 5.40 | 0 |
7k | 373.38 | 3 | 7 | 5 | 159.04 | 0.43 | 5.40 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornea, A.C.; Marc, G.; Ionuț, I.; Moldovan, C.; Stana, A.; Oniga, S.D.; Pîrnău, A.; Vlase, L.; Oniga, I.; Oniga, O. Synthesis, Characterization, and Antioxidant Activity Evaluation of New N-Methyl Substituted Thiazole-Derived Polyphenolic Compounds. Molecules 2025, 30, 1345. https://doi.org/10.3390/molecules30061345
Cornea AC, Marc G, Ionuț I, Moldovan C, Stana A, Oniga SD, Pîrnău A, Vlase L, Oniga I, Oniga O. Synthesis, Characterization, and Antioxidant Activity Evaluation of New N-Methyl Substituted Thiazole-Derived Polyphenolic Compounds. Molecules. 2025; 30(6):1345. https://doi.org/10.3390/molecules30061345
Chicago/Turabian StyleCornea, Alexandra Cătălina, Gabriel Marc, Ioana Ionuț, Cristina Moldovan, Anca Stana, Smaranda Dafina Oniga, Adrian Pîrnău, Laurian Vlase, Ilioara Oniga, and Ovidiu Oniga. 2025. "Synthesis, Characterization, and Antioxidant Activity Evaluation of New N-Methyl Substituted Thiazole-Derived Polyphenolic Compounds" Molecules 30, no. 6: 1345. https://doi.org/10.3390/molecules30061345
APA StyleCornea, A. C., Marc, G., Ionuț, I., Moldovan, C., Stana, A., Oniga, S. D., Pîrnău, A., Vlase, L., Oniga, I., & Oniga, O. (2025). Synthesis, Characterization, and Antioxidant Activity Evaluation of New N-Methyl Substituted Thiazole-Derived Polyphenolic Compounds. Molecules, 30(6), 1345. https://doi.org/10.3390/molecules30061345