Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (519)

Search Parameters:
Keywords = metallic phase change material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
56 pages, 25615 KiB  
Review
Recent Progress and Scientific Challenges in Wire-Arc Additive Manufacturing of Metallic Multi-Material Structures
by Sainand Jadhav, Sambhaji Kusekar, Akash Belure, Satyavan Digole, Abhijeet Mali, Muralimohan Cheepu, Manoj Mugale, Suhas Alkunte and Duckbong Kim
J. Manuf. Mater. Process. 2025, 9(8), 284; https://doi.org/10.3390/jmmp9080284 - 21 Aug 2025
Viewed by 31
Abstract
Metallic multi-material structures are heterogeneous structures characterized by changing composition, microstructures, and site-specific characteristics, advantageous for numerous applications where multifunctionality is desired. Metallic multi-material structures are known as bimetallic structures (BSs), which are functionally graded materials (FGMs). In recent years, wire-arc additive manufacturing [...] Read more.
Metallic multi-material structures are heterogeneous structures characterized by changing composition, microstructures, and site-specific characteristics, advantageous for numerous applications where multifunctionality is desired. Metallic multi-material structures are known as bimetallic structures (BSs), which are functionally graded materials (FGMs). In recent years, wire-arc additive manufacturing (WAAM) advanced as a promising additive manufacturing process to realize the fabrication of these structures due to its high deposition rate, cost-effectiveness, and material utilization efficiency. This review presents a comprehensive overview of the recent progress, processing strategies, and scientific challenges in WAAM of multi-material structures. The paper begins with an introduction to multi-material structures, followed by a bibliometric analysis of the current research landscape. Conventional and additive manufacturing fabrication approaches are presented. The review highlights key developments in processing strategies and critically evaluates research studies on WAAM of BS and FGMs. Major scientific challenges, including porosity, lack of fusion, residual stresses, cracking, material compatibility, and brittle intermetallic phase formation, are critically analyzed. Additionally, modeling, simulation, and process automation issues are discussed as barriers to industrial-scale implementation. The paper concludes with an outlook on future research directions to address existing challenges and accelerate the adoption of WAAM for complex multi-material components. Full article
Show Figures

Figure 1

13 pages, 4113 KiB  
Article
Metal–Organic Network-Based Composite Phase Change Materials with High Thermal and Photothermal Conversion Performance
by Dian Wei, Yi Wang, Shuoshuo Yu, Qingtang Zhang and Yi Wang
Materials 2025, 18(16), 3814; https://doi.org/10.3390/ma18163814 - 14 Aug 2025
Viewed by 428
Abstract
Solid–liquid phase change materials (PCMs), promising for thermal management, face limited application due to leakage and low thermal conductivity. In this work, a shape-stabilized composite PCM was fabricated using a one-pot in situ process by mixing polyethylene glycol (PEG) with the novel metal–organic [...] Read more.
Solid–liquid phase change materials (PCMs), promising for thermal management, face limited application due to leakage and low thermal conductivity. In this work, a shape-stabilized composite PCM was fabricated using a one-pot in situ process by mixing polyethylene glycol (PEG) with the novel metal–organic network called CFK, which was synthesized from carboxylated multi-walled carbon nanotubes (CMWCNTs), FeCl3, and Kevlar nanofibers (KNFs). The morphology, composition, and thermophysical characteristics of the composite PCM were assessed. Key properties analyzed to validate its performance included leakage rate, thermal conductivity, latent heat, light absorption, photothermal conversion efficiency, and cycling stability. This composite PCM exhibits reduced leakage while maintaining remarkable thermal energy charge/discharge performance. The study establishes that the composite PCM containing 89.9 wt% PEG has a leakage rate of 0.76% since the PEG molecules are deeply embedded in the pores of CFK. The thermal conductivity of this composite PCM was enhanced by 170.5% relative to pure PEG, and the latent heat was measured as 147.9 J·g−1 for fusion and 143.7 J·g−1 for crystallization. Additionally, this composite PCM reveals excellent light absorption capacity, a photothermal conversion efficiency as high as 83.4%, and outstanding stability in photothermal cycling experiments. In short, this work offers a new strategy for both preparing high-performance composite PCMs and applying them in visible light conversion. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

14 pages, 3571 KiB  
Article
Thermal Modulation of Photonic Spin Hall Effect in Vortex Beam Based on MIM-VO2 Metasurface
by Li Luo, Jiahui Huo, Yuanyuan Lv, Jie Li, Yu He, Xiao Liang, Sui Peng, Bo Liu, Ling Zhou, Yuxin Zou, Yuting Wang, Jingjing Bian and Yuting Yang
Surfaces 2025, 8(3), 55; https://doi.org/10.3390/surfaces8030055 - 3 Aug 2025
Viewed by 327
Abstract
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared [...] Read more.
The photon spin Hall effect (PSHE) arises from the spin–orbit interaction of light. Metasurfaces enable precise control over the PSHE through their influence. Using electromagnetic simulations as its foundation, this work engineers a metal–insulator–metal (MIM) metasurface for generating vortex beams in the near-infrared band, targeting enhanced modulation of the PSHE. Electromagnetic simulations embed vanadium dioxide (VO2)—a thermally responsive phase-change material—within the MIM metasurface architecture. Numerical evidence confirms that harnessing VO2’s insulator–metal-transition-mediated optical switching dynamically tailors spin-dependent splitting in the illuminated MIM-VO2 hybrid, thereby achieving a significant amplification of the PSHE displacement. Electromagnetic simulations determine the reflection coefficients for both VO2 phase states in the MIM-VO2 structure. Computed spin displacements under vortex beam incidence reveal that VO2’s phase transition couples to the MIM’s top metal and dielectric layers, modifying reflection coefficients and producing phase-dependent PSHE displacements. The simulation results show that the displacement change of the PSHE before and after the phase transition of VO2 reaches 954.7 µm, achieving a significant improvement compared with the traditional layered structure. The dynamic modulation mechanism of the PSHE based on the thermal–optical effect has been successfully verified. Full article
Show Figures

Figure 1

25 pages, 2929 KiB  
Article
Modified Water-Dispersion Compositions Based on Synthesized Dispersions and Hollow Glass Microspheres with Improved Protective Characteristics
by Meiram M. Begentayev, Erzhan I. Kuldeyev, Ruslan E. Nurlybayev, Zaure N. Altayeva, Yelzhan S. Orynbekov, Axaya S. Yestemessova, Aktota A. Murzagulova, Alinur A. Iskakov, Aidos A. Joldassov and Zhanar O. Zhumadilova
Coatings 2025, 15(7), 840; https://doi.org/10.3390/coatings15070840 - 18 Jul 2025
Viewed by 475
Abstract
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics [...] Read more.
During the operation of structures, the components and materials from which they are made are exposed to various environmental, technological, and operational impacts. In this context, the use of a modified water-dispersion composition containing finely dispersed fillers with enhanced protective and performance characteristics proves to be effective. This article examines the development of a paint-and-coating composition using hollow glass microspheres and modified diatomite as finely dispersed fillers. The influence of technological factors on the properties of coating materials based on a synthesized acrylic dispersion and fillers—such as modified diatomite and hollow glass microspheres ranging from 20 to 100 μm in size with a bulk density of 0.107–0.252 g/cm3—is analyzed. The optimal formulation of the coating materials was determined to ensure the required coating quality. Experimental results demonstrate the improved strength and hardness of the coating due to the use of acrylic dispersion obtained through an emulsifier-free method and modifiers in the form of finely dispersed fillers. It has been established that the resulting samples also exhibit high adhesion to mineral and metallic substrates, along with excellent corrosion resistance. Moreover, the incorporation of acrylic dispersion contributes to increased elasticity of the coating, resulting in improved resistance to washing and abrasion. The developed protective material can be applied to a variety of surfaces, including walls, ceilings, and roofs of buildings and structures, pipelines, and many other applications. Thus, modified water-dispersion compositions based on synthesized acrylic dispersion showed the following results: resistance to sticking—5, which is the best; chemical resistance and gloss level with standard single-phase acrylic dispersion—no destruction or change in gloss. The adhesion of coatings cured under natural conditions and under the influence of UV radiation was 1 point. The developed formulations for obtaining water-dispersion paint and varnish compositions based on synthesized polymer dispersions, activated diatomite, and hollow glass microspheres, meet all the regulatory requirements for paint and varnish materials in terms of performance, and in terms of economic indicators, the cost of 1 kg of paint is 30% lower than the standard. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 4734 KiB  
Article
Research on the Terahertz Modulation Performance of VO2 Thin Films with Surface Plasmon Polaritons Structure
by Tao Chen, Qi Zhang, Jin Wang, Jiran Liang and Weibin Zhou
Coatings 2025, 15(7), 838; https://doi.org/10.3390/coatings15070838 - 17 Jul 2025
Viewed by 383
Abstract
This paper focuses on the switching and modulation techniques of terahertz waves, develops VO2 thin-film materials with an SPP structure, and uses terahertz time-domain spectroscopy (THz-TDS) to study the semiconductor–metal phase transition characteristics of VO2 thin films, especially the photoinduced semiconductor–metal [...] Read more.
This paper focuses on the switching and modulation techniques of terahertz waves, develops VO2 thin-film materials with an SPP structure, and uses terahertz time-domain spectroscopy (THz-TDS) to study the semiconductor–metal phase transition characteristics of VO2 thin films, especially the photoinduced semiconductor–metal phase transition characteristics of silicon-based VO2 thin films. The optical modulation characteristics of silicon-based VO2 thin films to terahertz waves under different light excitation modes, such as continuous light irradiation at different wavelengths and femtosecond pulsed laser irradiation, were analyzed. Combining the optical modulation characteristics of silicon-based VO2 thin films with the filtering characteristics of SPP structures, composite structures of VO2 thin films with metal hole arrays, composite structures of VO2 thin films with metal block arrays, and silicon-based VO2 microstructure arrays were designed. The characteristics of this dual-function device were tested experimentally. The experiment proves that the VO2 film material with an SPP structure has a transmission rate dropping sharply from 32% to 1% under light excitation; the resistivity changes by more than six orders of magnitude, and the modulation effect is remarkable. By applying the SPP structure to the VO2 material, the material can simultaneously possess modulation and filtering functions, enhancing its optical performance in the terahertz band. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

22 pages, 11295 KiB  
Article
Process-Driven Structural and Property Evolution in Laser Powder Bed Fusion of a Newly Developed AISI 316L Stainless Steel
by Amir Behjat, Morteza Shamanian, Fazlollah Sadeghi, Mohammad Hossein Mosallanejad and Abdollah Saboori
Materials 2025, 18(14), 3343; https://doi.org/10.3390/ma18143343 - 16 Jul 2025
Viewed by 407
Abstract
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser [...] Read more.
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser powder bed fusion (L-PBF) process. Moreover, establishing process–structure–properties linkages is a critical point that should be evaluated carefully before adding newly developed alloys into the AM market. Hence, the current study investigates the influences of various process parameters on the as-built quality and microstructure of the newly developed alloy. The results revealed that increasing laser energy density led to reduced porosity and surface roughness, likely due to enhanced melting and solidification. Microstructural analysis revealed a uniform distribution of copper within the austenite phase without forming any agglomeration or secondary phases. Electron backscatter diffraction analysis indicated a strong texture along the build direction with a gradual increase in Goss texture at higher energy densities. Grain boundary regions exhibited higher local misorientation and dislocation density. These findings suggest that changing the process parameters of the L-PBF process is a promising method for developing tailored microstructures and chemical compositions of commercially available AISI 316L stainless steel. Full article
Show Figures

Figure 1

25 pages, 3005 KiB  
Review
Non-Ferrous Metal Smelting Slags for Thermal Energy Storage: A Mini Review
by Meichao Yin, Yaxuan Xiong, Aitonglu Zhang, Xiang Li, Yuting Wu, Cancan Zhang, Yanqi Zhao and Yulong Ding
Buildings 2025, 15(13), 2376; https://doi.org/10.3390/buildings15132376 - 7 Jul 2025
Viewed by 641
Abstract
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. [...] Read more.
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. This study comprehensively sums up the composition and fundamental characteristics of metallurgical waste slag. It delves into the application potential of non-ferrous metal smelting waste slag, such as copper slag, nickel slag, and lead slag, in both sensible and latent heat storage. In sensible heat storage, copper slag, with its low cost and high thermal stability, is suitable as a storage material. After appropriate treatment, it can be combined with other materials to produce composite phase change energy storage materials, thus expanding its role into latent heat storage. Nickel slag, currently mainly used in infrastructure materials, still needs in-depth research to confirm its suitability for sensible heat storage. Nevertheless, in latent heat storage, it has been utilized in making the support framework of composite phase change materials. While there are no current examples of lead slag being used in sensible heat storage, the low leaching concentration of lead and zinc in lead slag concrete under alkaline conditions offers new utilization ideas. Given the strong nucleation effect of iron and impurities in lead slag, it is expected to be used in the skeleton preparation of composite phase change materials. Besides the aforementioned waste slags, other industrial waste slags also show potential as sensible heat storage materials. This paper aims to evaluate the feasibility of non-ferrous metal waste slag as energy storage materials. It analyses the pros and cons of their practical applications, elaborates on relevant research progress, technical hurdles, and future directions, all with the goal of enhancing their effective use in heat storage. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies for Low-Carbon Buildings)
Show Figures

Figure 1

19 pages, 4002 KiB  
Article
Experimental Testing of New Concrete-Based, Medium-Temperature Thermal Energy Storage Charged by Both a Thermal and Electrical Power Source
by Raffaele Liberatore, Daniele Nicolini, Michela Lanchi and Adio Miliozzi
Energies 2025, 18(13), 3511; https://doi.org/10.3390/en18133511 - 3 Jul 2025
Viewed by 561
Abstract
This study aims to explore a new concept for a Power to Heat (P2H) device and demonstrate its effectiveness compared to a thermal heating method. The proposed concept is a medium-temperature system where electro-thermal conversion occurs via the Joule effect in a metallic [...] Read more.
This study aims to explore a new concept for a Power to Heat (P2H) device and demonstrate its effectiveness compared to a thermal heating method. The proposed concept is a medium-temperature system where electro-thermal conversion occurs via the Joule effect in a metallic tube (resistive element). This tube also serves as a heat exchange surface between the heat transfer fluid and the thermal storage medium. The heat storage material here proposed consists of base concrete formulated on purpose to ensure its operation at high temperatures, good performance and prolongated thermal stability. The addition of 10%wt phase change material (i.e., solar salts) stabilized in shape through a diatomite porous matrix allows the energy density stored in the medium itself to increase (hybrid sensible/latent system). Testing of the heat storage module has been conducted within a temperature range of 220–280 °C. An experimental comparison of charging times has demonstrated that electric heating exhibits faster dynamics compared to thermal heating. In both electrical and thermal heating methods, the concrete module has achieved 86% of its theoretical storage capacity, limited by thermal losses. In conclusion, this study successfully demonstrates the viability and efficiency of the proposed hybrid sensible/latent P2H system, highlighting the faster charging dynamics of direct electrical heating compared to conventional thermal methods, while achieving a comparable storage capacity despite thermal losses. Full article
(This article belongs to the Special Issue Stationary Energy Storage Systems for Renewable Energies)
Show Figures

Figure 1

20 pages, 4487 KiB  
Article
Investigation on Corrosion-Induced Wall-Thinning Mechanisms in High-Pressure Steam Pipelines Based on Gas–Liquid Two-Phase Flow Characteristics
by Guangyin Li, Wei He, Pengyu Zhang, Hu Wang and Zhengxin Wei
Processes 2025, 13(7), 2096; https://doi.org/10.3390/pr13072096 - 2 Jul 2025
Viewed by 362
Abstract
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with [...] Read more.
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with particular emphasis on the mechanisms of void fraction and inner wall surface roughness. Research reveals that an increased void fraction significantly enhances flow turbulence and centrifugal effects, resulting in elevated pressure and Discrete Phase Model (DPM) concentration at the bend, thereby intensifying erosion phenomena. Simultaneously, the turbulence generated by bubble collapse at the bend promotes the accumulation and detachment of corrosion products, maintaining a cyclic process of erosion and corrosion that accelerates wall thinning. Furthermore, the increased surface roughness of the inner bend wall exacerbates the corrosion process. The rough surface alters local flow characteristics, leading to changes in pressure distribution and DPM concentration accumulation points, subsequently accelerating corrosion progression. Energy-Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) analyses reveal changes in the chemical composition and microstructural characteristics of corrosion products. The results indicate that the porous structure of oxide films fails to effectively protect against corrosive media, while bubble impact forces damage the oxide films, exposing fresh metal surfaces and further accelerating the corrosion process. Comprehensive analysis demonstrates that the interaction between void fraction and surface roughness significantly intensifies wall thinning, particularly under conditions of high void fraction and high roughness, where pressure and DPM concentration at the bend may reach extreme values, further increasing corrosion risk. Therefore, optimization of void fraction and surface roughness, along with the application of corrosion-resistant materials and surface treatment technologies, should be considered in pipeline design and operation to mitigate corrosion risks. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 5093 KiB  
Article
Enhancing Solar Thermal Energy Storage via Torsionally Modified TPMS Structures Embedded in Sodium Acetate Trihydrate
by Martin Beer and Radim Rybár
Energies 2025, 18(13), 3234; https://doi.org/10.3390/en18133234 - 20 Jun 2025
Viewed by 395
Abstract
This study focuses on the numerical analysis of the impact of geometric modifications of sheet-gyroid structures on heat transfer in thermal energy storage systems utilizing sodium acetate trihydrate as a phase change material. The aim was to enhance the thermal conductivity of SAT, [...] Read more.
This study focuses on the numerical analysis of the impact of geometric modifications of sheet-gyroid structures on heat transfer in thermal energy storage systems utilizing sodium acetate trihydrate as a phase change material. The aim was to enhance the thermal conductivity of SAT, which is inherently low in the solid phase, by embedding a thermally conductive metallic structure made of aluminum alloy 6061. The simulations compared four gyroid configurations with different degrees of torsional deformation (0°, 90°, 180°, and 360°) alongside a reference model without any structure. Using numerical analysis, the study evaluated the time required to heat the entire volume of SAT above its phase transition temperature (58 °C) as well as the spatial distribution of the temperature field. The results demonstrate that all gyroid configurations significantly reduced the charging time compared with the reference case, with the highest efficiency achieved by the 360° twisted structure. Temperature maps revealed a more uniform thermal distribution within the phase change material and a higher heat flux into the volume. These findings highlight the strong potential of TPMS-based structures for improving the performance of latent heat thermal energy storage systems. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization—2nd Edition)
Show Figures

Figure 1

22 pages, 9227 KiB  
Review
Review: The Application of MXene in Thermal Energy Storage Materials for Efficient Solar Energy Utilization
by Han Sun, Yingai Jin and Firoz Alam
Materials 2025, 18(12), 2839; https://doi.org/10.3390/ma18122839 - 16 Jun 2025
Viewed by 539
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of [...] Read more.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of the growing interest in MXenes, there are relatively few studies on their applications in phase-change materials for enhancing thermal conductivity and weak photo-responsiveness between 0 °C and 150 °C. Thus, this study aims to provide a current overview of recent developments, to examine how MXenes are made, and to outline the combined effects of different processes that can convert light into heat. This study illustrates the mechanisms that include enhanced broadband photon harvesting through localized surface plasmon resonance, electron–phonon coupling-mediated nonradiative relaxation, and interlayer phonon transport that optimizes thermal diffusion pathways. This study emphasizes that MXene-engineered 3D thermal networks can greatly improve energy storage and heat conversion, solving important problems with phase-change materials (PCMs), like poor heat conductivity and low responsiveness to light. This study also highlights the real-world issues of making MXene-based materials on a large scale, and suggests future research directions for using them in smart thermal management systems and solar thermal grid technologies. Full article
Show Figures

Figure 1

12 pages, 7645 KiB  
Article
Searching Optimum Self-Brazing Powder Mixtures Intended for Use in Powder Metallurgy Diamond Tools—A Statistical Approach
by Andrzej Romański, Piotr Matusiewicz and Elżbieta Cygan-Bączek
Materials 2025, 18(12), 2726; https://doi.org/10.3390/ma18122726 - 10 Jun 2025
Viewed by 410
Abstract
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of [...] Read more.
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of the sintered matrix. The experimental process involved the use of various commercially available powders, including carbonyl iron, carbonyl nickel, atomised bronze, atomised copper, and ferrophosphorus. The samples made of different powder mixtures were compacted and sintered and then characterised by dimensional change, density, porosity, and hardness. The obtained results were statistically analysed using an analysis of variance (ANOVA) tool to create linear regression models that relate the material properties to their chemical composition. The investigated materials exhibited excellent sintering behaviour and very low porosity, which are beneficial for diamond retention. Very good sinterability of powder mixtures can be achieved by tin bronze addition, which provides a sufficient content of the liquid phase and promotes the shrinkage during sintering. Statistical analysis revealed that hardness was primarily affected by phosphorous content, with nickel having a lesser but still significant impact. The statistical model can predict the hardness of the matrix based on its chemical composition. This model, with a determination coefficient of approximately 80%, can be valuable for developing new metal matrices for diamond-impregnated tools, particularly for wire saw beads production. Full article
Show Figures

Figure 1

15 pages, 4652 KiB  
Article
The Formation of Metal Hydrides on the Surface of Spherical Structures and the Numerical Evaluation of the Hydrogenation Process
by Zulfiqar Khalil and Žydrūnas Kavaliauskas
Materials 2025, 18(11), 2595; https://doi.org/10.3390/ma18112595 - 2 Jun 2025
Viewed by 547
Abstract
Hydrogen possesses distinctive characteristics that position it as a potential energy carrier to substitute fossil fuels. Nonetheless, there is still an essential need to create secure and effective storage solutions prior to its broad application. The use of hydride-forming metals (HFMs) for hydrogen [...] Read more.
Hydrogen possesses distinctive characteristics that position it as a potential energy carrier to substitute fossil fuels. Nonetheless, there is still an essential need to create secure and effective storage solutions prior to its broad application. The use of hydride-forming metals (HFMs) for hydrogen storage is a method that has been researched thoroughly over the past several decades. This study investigates the structural and chemical modifications in titanium (Ti) and zirconium (Zr) thin coatings over aluminum hydroxide (AlO3) granules before and after hydrogenation. The materials were subjected to hydrogenation at 400 °C and 5 atm of hydrogen pressure for 2 h, with a hydrogen flow rate of 0.8 L/min. The SEM analysis revealed significant morphological changes, including surface roughening, a grain boundary separation, and microcrack formations, indicating the formation of metal hydrides. The EDS analysis showed a reduction in Ti and Zr contents post-hydrogenation, likely due to the formation of hydrides. The presence of hydride phases, with shifts in diffraction peaks indicating structural modifications due to hydrogen absorption, is confirmed by the XRD analysis. The FTIR analysis revealed dihydroxylation, with the removal of surface hydroxyl groups and the formation of new metal–hydride bonds, further corroborating the structural changes. The formation of metal hydrides was confirmed by the emergence of new peaks within the 1100–1200 cm−1 range, suggesting the incorporation of hydrogen. Mathematical modeling based on the experimental parameters was conducted to assess the hydride formation and the rate of hydrogen penetration. The hydride conversion rate for Ti- and Zr-coated AlO3 granules was determined to be 3.5% and 1.6%, respectively. While, the hydrogen penetration depth for Ti- and Zr-coated AlO3 granules over a time of 2 h was found to be 1200 nm and 850 nm approximately. The findings had a good agreement with the experimental results. These results highlight the impact of hydrogenation on the microstructure and chemical composition of Ti- and Zr-coated AlO3, shedding light on potential applications in hydrogen storage and related fields. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

22 pages, 5716 KiB  
Article
Order–Disorder-Type Transitions Through a Multifractal Procedure in Cu-Zn-Al Alloys—Experimental and Theoretical Design
by Constantin Plăcintă, Valentin Nedeff, Mirela Panainte-Lehăduş, Elena Puiu Costescu, Tudor-Cristian Petrescu, Sergiu Stanciu, Maricel Agop, Diana-Carmen Mirilă and Florin Nedeff
Entropy 2025, 27(6), 587; https://doi.org/10.3390/e27060587 - 30 May 2025
Viewed by 493
Abstract
Experimental and theoretical design on thermal and structural properties of Cu-Zn-Al alloys are established. As such, from an experimental point of view, differential thermal analysis has been performed with the help of a DSC Netzsch STA 449 F1 Jupiter calorimeter with high levels [...] Read more.
Experimental and theoretical design on thermal and structural properties of Cu-Zn-Al alloys are established. As such, from an experimental point of view, differential thermal analysis has been performed with the help of a DSC Netzsch STA 449 F1 Jupiter calorimeter with high levels of sensitivity, and the structural analysis has been accomplished through X-ray diffraction and SEM analysis. An unusual specific property for a metallic material has been discovered, which is known as “rubber-type behavior”, a characteristic determined by micro-structural changes. From the theoretical point of view, the thermal transfer in Cu-Zn-Al is presented by assimilating this alloy, both structurally and functionally, with a multifractal, situation in which the order–disorder transitions assimilated with thermal “dynamics” of Cu-Zn-Al, are mimed through transitions from non-multifractal to multifractal curves. In such a context, the thermal expansion velocity contains both the propagation speed of the phase transformation (be it a direct one: austenitic–martensitic transformation, or an indirect one: martensitic–austenitic transformation) and the thermal diffusion speed. Then, through self-modulations of the thermal field, the Cu-Zn-Al alloy will self-structure in channel-type or cellular-type thermal patterns, which can be linked to obtained experimental data. Consequently, since the thermal conductivity becomes a function of the observation scale, and heat transfer is modified to reflect the multifractal, non-differentiable paths in the material, it leads to anomalous diffusion and complex thermal behaviors. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

14 pages, 3974 KiB  
Article
Surface Oxygen Vacancy Modulation of Nanostructured Li-Rich Mn-Based Oxides for Lithium-Ion Batteries
by Jinxia Nong, Xiayan Zhao, Fangan Liang, Shengkun Jia and Zhengguang Zou
Materials 2025, 18(11), 2537; https://doi.org/10.3390/ma18112537 - 28 May 2025
Viewed by 632
Abstract
Li-rich Mn-based cathode materials are considered potential cathode materials for next-generation lithium-ion batteries due to their outstanding theoretical capacity and energy density. Nonetheless, challenges like oxygen loss, transition metal migration, and structural changes during cycling have limited their potential for commercialization. The work [...] Read more.
Li-rich Mn-based cathode materials are considered potential cathode materials for next-generation lithium-ion batteries due to their outstanding theoretical capacity and energy density. Nonetheless, challenges like oxygen loss, transition metal migration, and structural changes during cycling have limited their potential for commercialization. The work in this study employed a straightforward heat treatment to generate oxygen vacancies. This process led to the development of a spinel phase on the surface, which improved Li+ diffusion and boosted the electrochemical performance of Li-rich Mn-based oxides. The results demonstrate that the treated Li1.2Mn0.54Ni0.13Co0.13O2 exhibits an initial specific capacity of 247 mAh·g−1 at 0.2C, as well as a reversible capacity of 224 mAh·g−1 after 100 cycles, with a capacity retention of 90.7%. The voltage decay is 1.221 mV per cycle under 1C long-term cycling conditions, indicating excellent cycling stability and minimal voltage drop. Therefore, this strategy of engineering through nanoscale oxygen vacancies provides a new idea for the development of high-stability layered oxide anodes and provides a reference for the development and application of new energy materials. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop