Metal–Organic Network-Based Composite Phase Change Materials with High Thermal and Photothermal Conversion Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PEG/CFK Composite PCMs
2.3. Characterization
3. Results and Discussion
3.1. Determination of the Composition and Shape of PEG/CFK
3.2. Morphology and Structure of CFK and PEG/CFK-2
3.3. Thermodynamic Properties of PEG/CFK-2
3.4. Photothermal Conversion Performance of PEG/CFK-2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PCMs | phase change material |
PEG | polyethylene glycol |
CMWCNT | carboxylated multi-walled carbon nanotubes |
KNFs | Kevlar nanofibers |
CFK | CMWCNT/Fe3+/KNFs three-dimensional metal–organic network |
MOFs | metal–organic framework |
SEM | scanning electron microscope |
FTIR | Fourier transform infrared |
XRD | X-ray diffraction |
TGA | thermogravimetric analysis |
TC | thermal conductivity |
DSC | differential scanning calorimetry |
EDS | energy dispersive spectrometer |
TEA | triethylamine |
References
- Ali, H.M.; Rehman, T.; Arıcı, M.; Said, Z.; Duraković, B.; Mohammed, H.I.; Kumar, R.; Rathod, M.K.; Buyukdagli, O.; Teggar, M. Advances in thermal energy storage: Fundamentals and applications. Prog. Energy Combust. Sci. 2024, 100, 101109. [Google Scholar] [CrossRef]
- Wang, G.; Tang, Z.; Gao, Y.; Liu, P.; Li, Y.; Li, A.; Chen, X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem. Rev. 2023, 123, 6953–7024. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, X.; Li, Y.; Cheng, P.; Tang, Z.; Lv, J.; Aftab, W.; Wang, G. Aerogels Meet Phase Change Materials: Fundamentals, Advances, and Beyond. ACS Nano 2022, 16, 15586–15626. [Google Scholar] [CrossRef]
- Matuszek, K.; Kar, M.; Pringle, J.M.; MacFarlane, D.R. Phase Change Materials for Renewable Energy Storage at Intermediate Temperatures. Chem. Rev. 2023, 123, 491–514. [Google Scholar] [CrossRef]
- Kazaz, O.; Karimi, N.; Paul, M.C. Micro-/nano-encapsulated phase change materials: Revolutionising heat transfer fluids for solar energy applications. Energy Convers. Manag. 2025, 342, 120113. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, Y.; Liu, X.; Fu, M.; Luo, S.; Li, Y.; Cheng, X. Synergistically enhanced NF/CNTs@ PDA/PEG composite phase change materials for high-efficiency solar-thermal energy storage and conversion. Sol. Energy Mater. Sol. Cells 2025, 290, 113714. [Google Scholar] [CrossRef]
- Li, Z.; Luo, H.; Jiang, Y.; Liu, H.; Xu, L.; Cao, K.; Wu, H.; Gao, P.; Liu, H. Comprehensive review and future prospects on chip-scale thermal management: Core of data center’s thermal management. Appl. Therm. Eng. 2024, 251, 123612. [Google Scholar] [CrossRef]
- Lachheb, M.; Younsi, Z.; Youssef, N.; Bouadila, S. Enhancing building energy efficiency and thermal performance with PCM-Integrated brick walls: A comprehensive review. Build. Environ. 2024, 256, 111476. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Wang, K.; Xue, R.; Liu, X.; Zhou, S.; Zhao, Z. Dual three-dimensional ultra-flexible polymer-based phase change composite materials for body hyperthermia therapy: Ultra-low leakage rate, high thermal conductivity, and photothermal conversion efficiency. J. Energy Storage 2025, 118, 116175. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, W.; Gao, M.; Xiao, Y.; Huang, T.; Zhang, N.; Yang, J.; Qi, X.; Wang, Y. Flexible MXene-coated melamine foam based phase change material composites for integrated solar-thermal energy conversion/storage, shape memory and thermal therapy functions. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106291. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y.; Cao, X.; Du, Y.; Zhang, Z.; Gui, Y. Latent Heat Thermal Energy Storage Systems with Solid-Liquid Phase Change Materials: A Review. Adv. Eng. Mater. 2018, 20, 1700753. [Google Scholar] [CrossRef]
- Gerkman, M.A.; Han, G.G.D. Toward controlled thermal energy storage and release in organic phase change materials. Joule 2020, 4, 1621–1625. [Google Scholar] [CrossRef]
- Zhu, R.; Guo, J.; Pang, H.; Zhao, D.; Liu, Q.; Liang, P. Adsorption separation of gaseous pollutants over porous carbon materials: A review. J. Energy Inst. 2025, 120, 10219. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Z.; Qian, P.; Ala-Nissila, T.; Caro, M.A. Structure and pore size distribution in nanoporous carbon. Chem. Mater. 2022, 34, 617–628. [Google Scholar] [CrossRef]
- Sharwan, S.; Sikarwar, P.; Mazumdar, B. Recent innovations in support materials for shape-stable organic composite phase change materials: A comprehensive review. Sol. Energy Mater. Sol. Cells 2024, 272, 112910. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Z.; Hai, A.M.; Zhang, S.; Tang, B. Shape-stabilization micromechanisms of form-stable phase change materials-A review. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107047. [Google Scholar] [CrossRef]
- Yazdani McCord, M.R.Y.; Baniasadi, H. Advancements in form-stabilized phase change materials: Stabilization mechanisms, multifunctionalities, and applications—A comprehensive review. Mater. Today Energy 2024, 41, 101532. [Google Scholar] [CrossRef]
- Aramesh, M.; Shabani, B. Metal foam-phase change material composites for thermal energy storage: A review of performance parameters. Renew. Sustain. Energy Rev. 2022, 155, 111919. [Google Scholar] [CrossRef]
- Chriaa, I.; Karkri, M.; Trigui, A.; Jedidi, I.; Abdelmouleh, M.; Boudaya, C. The performances of expanded graphite on the phase change materials composites for thermal energy storage. Polymer 2021, 212, 123128. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Z.; Qin, Y.; Ye, C.; Liu, J.; Ouyang, T. Thermal Interface Engineering in a 3D-Structured Carbon Framework for a Phase-Change Composite with High Thermal Conductivity. ACS Appl. Mater. Interface 2023, 15, 48235–48245. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Pan, D.; Zhang, X. Construction and application of biochar-based composite phase change materials. Chem. Eng. J. 2023, 453, 139441. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, N.; Cao, X.; Yuan, Y.; Zhang, Z.; Yu, N. Ultra-light and flexible graphene aerogel-based form-stable phase change materials for energy conversion and energy storage. Sol. Energy Mater. Sol. Cells 2023, 252, 112176. [Google Scholar] [CrossRef]
- Hu, J.; Feng, D.; Li, W.; Miao, J.; Feng, Y. Constructing hierarchical porous SiC/SiO2 ceramics-based phase change composites with low thermal conductivity and high strength for aircraft thermal protection. Ceram. Int. 2025, 51, 12408–12419. [Google Scholar] [CrossRef]
- Wu, J.; Qiu, S.; Song, J.; Xu, X.; Shen, Y.; Zhang, D. Preparation and erosion resistance of SiC-based ceramic-PCM sensible-latent heat composite heat storage materials. Ceram. Int. 2024, 50, 45630–45639. [Google Scholar] [CrossRef]
- Xu, T.; Wu, F.; Zou, T.; Li, J.; Yang, J.; Zhou, X.; Liu, D.; Bie, Y. Development of diatomite-based shape-stabilized composite phase change material for use in floor radiant heating. J. Mol. Liq. 2022, 348, 118372. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Z.; Zhang, T.; Zhang, D. Preparation and thermophysical properties of three-dimensional attapulgite based composite phase change materials. J. Energy Storage 2020, 32, 101847. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Li, F.; Xiao, X.; Xu, Q. Metal-organic-framework-based materials as platforms for energy applications. Chem 2024, 10, 86–133. [Google Scholar] [CrossRef]
- Ma, K.; Idrees, K.B.; Son, F.A.; Maldonado, R.; Wasson, M.C.; Zhang, X.; Wang, X.; Shehayeb, E.; Merhi, A.; Kaafarani, B.R.; et al. Fiber Composites of Metal-Organic Frameworks. Chem. Mater. 2020, 32, 7120–7140. [Google Scholar] [CrossRef]
- Li, J.; Ding, Z.; Pan, L.; Li, J.; Wang, C.; Wang, G. Facile self-templating synthesis of layered carbon with N, S dual doping for highly efficient sodium storage. Carbon 2021, 173, 31–40. [Google Scholar] [CrossRef]
- Chen, X.; Gao, H.; Tang, Z.; Wang, G. Metal-organic framework-based phase change materials for thermal energy storage. Cell Rep. Phys. Sci. 2020, 1, 100218. [Google Scholar] [CrossRef]
- Kuai, Z.; Yan, T.; Huo, Y.; Wang, K.; Pan, W. Thermal characteristics of the multilayered structural MOF-EG/OC composite phase change material in thermal energy storage. Energy Build. 2022, 260, 111906. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Chang, S.J.; Kim, K.H.; Dong, W.; Kim, S. A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3, 6)-connected metal-organic framework. Chem. Eng. J. 2020, 389, 124430. [Google Scholar] [CrossRef]
- Li, A.; Dong, C.; Dong, W.; Atinafu, D.G.; Gao, H.; Chen, X.; Wang, G. Hierarchical 3D reduced Graphene porous-carbon-based PCMs for superior thermal energy storage performance. ACS Appl. Mater. Interfaces 2018, 10, 32093–32101. [Google Scholar] [CrossRef]
- Tang, J.; Yang, M.; Dong, W.; Yang, M.; Zhang, H.; Fan, S.; Wang, J.; Tan, L.; Wang, G. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity. RSC Adv. 2016, 6, 40106. [Google Scholar] [CrossRef]
- Wang, M.; Li, P.; Yu, F. Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage. Renew. Energy 2021, 172, 599–605. [Google Scholar] [CrossRef]
- Cao, F.; Li, Z.; Zhang, Y.; Zhu, L.; Fan, J.; Zhang, S.; Tang, B. Double-network aerogel-based eutectic composite phase change materials for efficient solar energy storage and building thermal management. Sol. Energy Mater. Sol. Cells 2024, 276, 113083. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Dong, W.; Huang, X.; Gao, H.; Wang, G. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity. Appl. Energy 2018, 211, 1203–1215. [Google Scholar] [CrossRef]
- Chen, X.; Gao, H.; Xing, L.; Dong, W.; Li, A.; Cheng, P.; Liu, P.; Wang, G. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Mater. 2019, 18, 280–288. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Li, P.; Yu, F. Lauric acid encapsulated in P-doped carbon matrix with reinforced heat storage performance for efficient battery cooling. J. Energy Storage 2021, 44, 103461. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.; Zuo, H.; Zuo, Q.; Chen, W.; Wei, W.; He, W. Mechanistic study of the N-doping enhancement in thermal performance of MOF-based composite phase change material and its application in lithium-ion battery heat dissipation. Energy 2025, 320, 135202. [Google Scholar] [CrossRef]
- Yu, S.; Li, X.; Zhang, T.; Yuan, X.; Chen, L.; Yang, B.; Wang, Y. Improving the shape stability and photothermal conversion performance of phase change materials through three-dimensional metal-organic network. Mater. Today Commun. 2024, 38, 108194. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, X.; Wang, J.; Wang, J.; Zhang, T.; Zheng, Y.; Xu, Y. Influence of confinement on the thermophysical property of paraffin wax/Kevlar nanofibrous phase change film. J. Energy Storage 2024, 104, 114553. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.; Zhang, T.; Yuan, X.; Chen, L.; Lv, J.; Wang, Y. Flexible and photoresponsive composite phase change materials for thermal therapy. J. Energy Storage 2024, 75, 109595. [Google Scholar] [CrossRef]
- Zhang, Y.; Gurzadyan, G.G.; Umair, M.M.; Wang, W.; Lu, R.; Zhang, S.; Tang, B. Ultrafast and efficient photothermal conversion for sunlight-driven thermal-electric system. Chem. Eng. J. 2018, 344, 402–409. [Google Scholar] [CrossRef]
- Sheng, X.; Dong, D.; Lu, X.; Zhang, L.; Chen, Y. MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106067. [Google Scholar] [CrossRef]
- Feng, L.; Wang, C.; Song, P.; Wang, H.; Zhang, X. The form-stable phase change materials based on polyethylene glycol and functionalized carbon nanotubes for heat storage. Appl. Therm. Eng. 2015, 90, 952–956. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Shen, Y.; Yang, B.; Lv, J.; Zheng, Y.; Wang, Y. Polyethylene glycol/nanofibrous Kevlar aerogel composite: Fabrication, confinement effect, thermal energy storage and insulation performance. Mater. Today 2022, 32, 104011. [Google Scholar]
- Yin, C.; Weng, L.; Fei, Z.; Shi, L.; Yang, K. Form-Stable phase change composites based on porous carbon derived from polyacrylonitrile hydrogel. Chem. Eng. J. 2022, 431, 134206. [Google Scholar] [CrossRef]
Sample | FeCl3·6H2O | CMWCNT | KNFs | PEG | ω (PEG) |
---|---|---|---|---|---|
(g) | (g) | (g) | (g) | (%) | |
PEG/CFK-1 | 0.15 | 0.2 | 0.1 | 3.0 | 87.0% |
PEG/CFK-2 | 0.15 | 0.2 | 0.1 | 4.0 | 89.9% |
PEG/CFK-3 | 0.15 | 0.2 | 0.1 | 5.0 | 91.7% |
Melting Process | Crystallization Process | |||||||
---|---|---|---|---|---|---|---|---|
Samples | Tom | Tpm | Tem | ΔHm | Toc | Tpc | Tec | ΔHc |
(°C) | (°C) | (°C) | (J·g−1) | (°C) | (°C) | (°C) | (J·g−1) | |
PEG | 59.3 | 61.2 | 63.2 | 168.6 | 46.3 | 44.1 | 41.6 | 161.7 |
PEG/CFK-2 | 58.7 | 61.1 | 63.4 | 147.9 | 46.5 | 42.8 | 40.1 | 143.7 |
Melting Process | Crystallization Process | |||||||
---|---|---|---|---|---|---|---|---|
Cycle Number | Tom | Tpm | Tem | ΔHm | Toc | Tpc | Tec | ΔHc |
(°C) | (°C) | (°C) | (J·g−1) | (°C) | (°C) | (°C) | (J·g−1) | |
1 | 58.7 | 61.1 | 63.4 | 147.9 | 46.5 | 42.8 | 40.1 | 143.7 |
50 | 58.8 | 61.2 | 63.4 | 148.4 | 46.2 | 42.8 | 40.2 | 144.2 |
100 | 58.8 | 61.2 | 63.4 | 148.0 | 46.0 | 42.8 | 40.3 | 144.3 |
150 | 58.8 | 61.1 | 63.4 | 148.3 | 46.1 | 42.8 | 40.2 | 144.2 |
200 | 58.8 | 61.1 | 63.4 | 148.2 | 46.0 | 42.8 | 40.2 | 143.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, D.; Wang, Y.; Yu, S.; Zhang, Q.; Wang, Y. Metal–Organic Network-Based Composite Phase Change Materials with High Thermal and Photothermal Conversion Performance. Materials 2025, 18, 3814. https://doi.org/10.3390/ma18163814
Wei D, Wang Y, Yu S, Zhang Q, Wang Y. Metal–Organic Network-Based Composite Phase Change Materials with High Thermal and Photothermal Conversion Performance. Materials. 2025; 18(16):3814. https://doi.org/10.3390/ma18163814
Chicago/Turabian StyleWei, Dian, Yi Wang, Shuoshuo Yu, Qingtang Zhang, and Yi Wang. 2025. "Metal–Organic Network-Based Composite Phase Change Materials with High Thermal and Photothermal Conversion Performance" Materials 18, no. 16: 3814. https://doi.org/10.3390/ma18163814
APA StyleWei, D., Wang, Y., Yu, S., Zhang, Q., & Wang, Y. (2025). Metal–Organic Network-Based Composite Phase Change Materials with High Thermal and Photothermal Conversion Performance. Materials, 18(16), 3814. https://doi.org/10.3390/ma18163814