Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,151)

Search Parameters:
Keywords = metal-coordinated complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1761 KiB  
Article
Copper(I) Complexes with Terphenyl-Substituted NPN Ligands Bearing Pyridyl Groups: Synthesis, Characterization, and Catalytic Studies in the S-Arylation of Thiols
by M. Trinidad Martín, Ana Gálvez del Postigo, Práxedes Sánchez, Eleuterio Álvarez, Celia Maya, M. Carmen Nicasio and Riccardo Peloso
Molecules 2025, 30(15), 3167; https://doi.org/10.3390/molecules30153167 - 29 Jul 2025
Viewed by 332
Abstract
In this study, three new terphenyl-substituted NPN ligands bearing pyridyl groups, two phosphonites and one diaminophosphine, were synthesized and fully characterized. Their coordination chemistry with copper(I) was investigated using CuBr and [Cu(NCMe)4]PF6 as metal precursors, affording six mononuclear Cu(I) complexes, [...] Read more.
In this study, three new terphenyl-substituted NPN ligands bearing pyridyl groups, two phosphonites and one diaminophosphine, were synthesized and fully characterized. Their coordination chemistry with copper(I) was investigated using CuBr and [Cu(NCMe)4]PF6 as metal precursors, affording six mononuclear Cu(I) complexes, which were characterized using NMR spectroscopy and, in selected cases, single-crystal X-ray diffraction (SCXRD) analysis. The NPN ligands adopt a κ3-coordination mode, stabilizing the copper centers in distorted tetrahedral geometries. The catalytic performance of these complexes in the S-arylation of thiols with aryl iodides was evaluated. Under optimized conditions, complexes 2a and 2b exhibited excellent activity and broad substrate scope, tolerating both electron-donating and electron-withdrawing groups, as well as sterically hindered and heteroaryl substrates. The methodology also proved effective for aliphatic thiols and demonstrated high chemoselectivity in the presence of potentially reactive functional groups. In contrast, aryl bromides and chlorides were poorly reactive under the same conditions. These findings highlight the potential of well-defined Cu(I)–NPN complexes as efficient and versatile precatalysts for C–S bond formation. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Europe 2025)
Show Figures

Figure 1

16 pages, 1937 KiB  
Article
Anti-Bacterial and Anti-Fungal Properties of a Set of Transition Metal Complexes Bearing a Pyridine Moiety and [B(C6F5)4]2 as a Counter Anion
by Ahmed K. Hijazi, Mohammad El-Khateeb, Ziyad A. Taha, Mohammed I. Alomari, Noor M. Khwaileh, Abbas I. Alakhras, Waleed M. Al-Momani, Ali Elrashidi and Ahmad S. Barham
Molecules 2025, 30(15), 3121; https://doi.org/10.3390/molecules30153121 - 25 Jul 2025
Viewed by 215
Abstract
Background: Transition metal complexes incorporating fluorinated counter anions represent a significant class of compounds with broad applications in industry, pharmaceuticals, and biomedicine. These fluorinated anions are known to enhance the solubility, stability, and reactivity of the complexes, thereby expanding their functional utility in [...] Read more.
Background: Transition metal complexes incorporating fluorinated counter anions represent a significant class of compounds with broad applications in industry, pharmaceuticals, and biomedicine. These fluorinated anions are known to enhance the solubility, stability, and reactivity of the complexes, thereby expanding their functional utility in various chemical and biological contexts. Methods: A set of metal(II) complexes of the general formula [MPy6][B(C6F5)4]2 where (Py = pyridine, M = Mn (1), Fe (2), Co (3), Ni (4), Cu (5), Zn (6)) have been synthesized by direct reaction of metal halides and pyridine in the presence of Ag[B(C6F5)4]. The complexes were characterized using different techniques to assure their purity, such as elemental analysis (EA), electron paramagnetic resonance (EPR) spectroscopy, thermogravimetric analysis (TGA), ultraviolet–visible (UV–Vis) spectroscopy, 11B-NMR, 1H-NMR, and FT-IR spectroscopy. The antimicrobial and antifungal properties against different types of bacteria and fungi were studied for all prepared complexes. Results: The synthesized complexes exhibited broad-spectrum antimicrobial activity, demonstrating variable efficacy compared to the reference antibiotic, oxytetracycline (positive control). Notably, complex 6 displayed exceptional antibacterial activity against Streptococcus pyogenes, with a minimum inhibitory concentration (MIC) of 4 µg/mL, outperforming the control (MIC = 8 µg/mL). Complexes 1, 2, and 4 showed promising activity against Shigella flexneri, Klebsiella pneumoniae, and Streptococcus pyogenes, each with MIC values of 8 µg/mL. Conversely, the lowest activity (MIC = 512 µg/mL) was observed for complexes 3, 5, and 6 against Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae, respectively. Regarding antifungal properties, complexes 5 and 6 demonstrated the highest activity against Candida albicans, with MIC values of 8 µg/mL, equivalent to that of the positive control, fluconazole. Density functional theory (DFT) calculations confirmed an overall octahedral coordination geometry for all complexes, with tetragonal distortions identified in complexes 3, 4, and 5. Full article
Show Figures

Figure 1

17 pages, 887 KiB  
Article
Coordination Chemistry of Solvated Metal Ions in Soft Donor Solvents
by Kersti B. Nilsson, Mikhail Maliarik and Ingmar Persson
Molecules 2025, 30(15), 3063; https://doi.org/10.3390/molecules30153063 - 22 Jul 2025
Viewed by 183
Abstract
The structures of hexaammine solvated indium(III) and thallium(III) ions in liquid ammonia solution are determined by EXAFS. Both complexes have regular octahedral coordination geometry with mean In-N and Tl-N bond distances of 2.23(1) and 2.29(2) Å, respectively. Ammine solvated thallium(III) in liquid ammonia [...] Read more.
The structures of hexaammine solvated indium(III) and thallium(III) ions in liquid ammonia solution are determined by EXAFS. Both complexes have regular octahedral coordination geometry with mean In-N and Tl-N bond distances of 2.23(1) and 2.29(2) Å, respectively. Ammine solvated thallium(III) in liquid ammonia is characterized with 205Tl NMR measurements. Solvents such as liquid ammonia, N,N-dimethylthioformamide (DMTF), trialkyl and triphenyl phosphite and phosphine are strong electron pair donors and thereby able to form bonds with a large covalent contribution with strong electron pair acceptors. A survey of reported structures of ammine, DMTF, trialkyl and triphenyl phosphite and phosphine solvated metal ions in the solid state and solution is presented. The M-N and M-S bond distances in ammine and DMTF solvated metal ions are compared with the M-O bond distance in the corresponding metal ion hydrates, expected to form mainly electrostatic interactions with metal ions. The d10 metal ions have high ability to form bonds with a high degree of covalency with increasing ability down the group and with decreasing charge of the metal ion. The difference in M-N and M-O bond distances between ammine solvated and hydrated metal ions with the same coordination geometry decreases significantly with the increasing ability of the metal ion to form bonds with a large covalent contribution. This difference correlates well with the covalent bonding index, γM2*r. Full article
(This article belongs to the Special Issue Influence of Solvent Molecules in Coordination Chemistry)
Show Figures

Graphical abstract

40 pages, 2830 KiB  
Review
Metal Complexes with Hydroxyflavones: A Study of Anticancer and Antimicrobial Activities
by Ljiljana E. Mihajlović, Monica Trif and Marijana B. Živković
Inorganics 2025, 13(8), 250; https://doi.org/10.3390/inorganics13080250 - 22 Jul 2025
Viewed by 372
Abstract
Metal chelation to bioactive small molecules is a well-established strategy to enhance the biological activity of the resulting complexes. Among the widely explored structural motifs, the combination of prominent metal centers with naturally inspired derivatives has attracted considerable attention. One such promising platform [...] Read more.
Metal chelation to bioactive small molecules is a well-established strategy to enhance the biological activity of the resulting complexes. Among the widely explored structural motifs, the combination of prominent metal centers with naturally inspired derivatives has attracted considerable attention. One such promising platform is the flavone scaffold, derived from flavonoids and studied since ancient times. Flavones are plant-derived compounds known for their diverse biological activities and health benefits. They exhibit significant structural variability, primarily through backbone modifications such as hydroxylation. Importantly, coordination of metal ions to hydroxylated flavone cores often improves their natural bioactivities, including anticancer and antimicrobial effects. In this review, we summarize transition metal complexes incorporating hydroxyflavone (OH–F) ligands reported over the past 15 years. We provide a concise overview of synthetic approaches and structural characterization, with a particular emphasis on coordination modes (e.g., maltol-type, acetylacetonate-type, catechol-type, and others). Furthermore, we discuss biological evaluation results, especially anticancer and antimicrobial studies, to highlight the therapeutic potential of these complexes. Finally, we suggest directions for the future development of metal-based agents bearing hydroxyflavone moieties through several critical points in terms of the accuracy, reproducibility, and relevance of biological studies involving metal-based compounds. Full article
Show Figures

Graphical abstract

28 pages, 732 KiB  
Systematic Review
Preclinical Trials of Cancer Stem Cells Targeted by Metal-Based Coordination Complexes: A Systematic Review
by Ana Caroline Mafra Bezerra, Lucas Elohim Cardoso Viana Baptista, Maria Núbia Alencar Couto and Milton Masahiko Kanashiro
Pharmaceutics 2025, 17(7), 931; https://doi.org/10.3390/pharmaceutics17070931 - 18 Jul 2025
Viewed by 541
Abstract
Background/Objective: Cancer stem cells (CSCs) are a self-renewing subpopulation within tumors that contribute to heterogeneity and resistance to conventional cancer therapies, including chemotherapy and radiotherapy. Despite growing interest in CSCs as therapeutic targets, effective compounds against these cells remain limited. This systematic [...] Read more.
Background/Objective: Cancer stem cells (CSCs) are a self-renewing subpopulation within tumors that contribute to heterogeneity and resistance to conventional cancer therapies, including chemotherapy and radiotherapy. Despite growing interest in CSCs as therapeutic targets, effective compounds against these cells remain limited. This systematic review aims to assess the potential of metal-based coordination complexes as anti-CSC agents in preclinical models. Methods: A systematic literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Twenty-seven original in vitro studies were included, all evaluating the cytotoxic effects of metal-based compounds on cancer cell lines enriched with CSC subpopulations. To ensure methodological rigor, all articles underwent a critical appraisal by independent reviewers who resolved discrepancies through consensus, and only studies meeting predefined quality criteria were included. Results: Several metal complexes, particularly copper-based compounds, demonstrated significant cytotoxicity toward CSCs, mainly through the induction of apoptosis. Breast cancer was the most frequently studied tumor type. Many studies reported modulation of CSC-related markers, including EPCAM, CD44, CD133, CD24, SOX2, KLF4, Oct4, NOTCH1, ALDH1, CXCR4, and HES1, suggesting effects on CSC maintenance pathways. Most studies were conducted in the United Kingdom and relied on in vitro models. Conclusions: Metal coordination complexes, especially those containing copper, show promise as therapeutic agents targeting CSCs. However, further in vivo studies and mechanistic investigations are essential to advance their translational potential. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies, 2nd Edition)
Show Figures

Figure 1

22 pages, 4829 KiB  
Article
Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers
by Mun Jeong Choi, Dae Hyeob Yoon, Yoo Sei Park, Hyoryung Nam and Geon Hwee Kim
Appl. Sci. 2025, 15(14), 8023; https://doi.org/10.3390/app15148023 - 18 Jul 2025
Viewed by 267
Abstract
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved [...] Read more.
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved or complex surfaces, low mechanical compliance, and susceptibility to oxidation-induced degradation. To overcome these challenges, we applied a protein-assisted electroless copper (Cu) plating strategy to electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber substrates to fabricate flexible, conductive planar heating membranes. For interfacial functionalization, a protein-based engineering approach using bovine serum albumin (BSA) was employed to facilitate palladium ion coordination and seed formation. The resulting membrane exhibited a dense, continuous Cu coating, low sheet resistance, excellent durability under mechanical deformation, and stable heating performance at low voltages. These results demonstrate that the BSA-assisted strategy can be effectively extended to complex three-dimensional fibrous membranes, supporting its scalability and practical potential for next-generation conformal and wearable planar heaters. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

32 pages, 5470 KiB  
Review
Progress and Reaction Mechanism of Co-Based Catalysts in the Selective Hydrogenation of α,β-Unsaturated Aldehydes
by Haixiang Shi, Jianming Xu, Xuan Luo and Zuzeng Qin
Catalysts 2025, 15(7), 689; https://doi.org/10.3390/catal15070689 - 17 Jul 2025
Viewed by 376
Abstract
In recent years, Co-based catalysts have attracted considerable attention in research on selective hydrogenation reactions because of their mild activities and favorable selectivities for producing intermediate products, especially in the selective hydrogenation of α,β-unsaturated aldehydes (UAL). However, the low activity of Co-based catalysts [...] Read more.
In recent years, Co-based catalysts have attracted considerable attention in research on selective hydrogenation reactions because of their mild activities and favorable selectivities for producing intermediate products, especially in the selective hydrogenation of α,β-unsaturated aldehydes (UAL). However, the low activity of Co-based catalysts for activating hydrogen limits their application in industry, and the diversity of forms and electronic states of Co-based catalysts also leads to the development of complex products and hydrogenation mechanisms at Co active sites. This review provides a comprehensive and systematic overview of recent progress in the selective hydrogenation of UAL over Co-based catalysts, where the preparation methods, hydrogenation properties, and UAL hydrogenation mechanisms of Co-based catalysts are carefully discussed. The influences of nanosize effects, electronic effects, and coordination effects on Co metal and Co oxides are investigated. In addition, the different reaction mechanisms at Co active sites are compared, and their strengths and weaknesses for C=O hydrogenation are further proposed. Finally, the outlook and challenges for the future development of Co-based hydrogenation catalysts are highlighted. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Graphical abstract

26 pages, 5873 KiB  
Article
Pyridine–Quinoline and Biquinoline-Based Ruthenium p-Cymene Complexes as Efficient Catalysts for Transfer Hydrogenation Studies: Synthesis and Structural Characterization
by Nikolaos Zacharopoulos, Gregor Schnakenburg, Eleni I. Panagopoulou, Nikolaos S. Thomaidis and Athanassios I. Philippopoulos
Molecules 2025, 30(14), 2945; https://doi.org/10.3390/molecules30142945 - 11 Jul 2025
Viewed by 469
Abstract
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] ( [...] Read more.
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] (911) were synthesized and fully characterized. These were prepared from the reaction of pyridine–quinoline and biquinoline-based ligands (L) with [Ru(η6-p-cymene)(μ-Cl)Cl]2, in 1:2 and 1:1, metal (M) to ligand (L) molar ratios. Characterization includes a combination of spectroscopic methods (FT-IR, UV-Vis, multi nuclear NMR), elemental analysis and single-crystal X-ray crystallography. The pyridine–quinoline organic entities encountered, were prepared in high yield either via the thermal decarboxylation of the carboxylic acid congeners, namely 2,2′-pyridyl-quinoline-4-carboxylic acid (pqca), 8-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8-Mepqca), 6′-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (6′-Mepqca) and 8,6′-dimethyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8,6′-Me2pqca), affording the desired ligands pq, 8-Mepq, 6′-Mepq and 8,6′-Me2pq, or by the classical Friedländer condensation, to yield 4,6′-dimethyl-2,2′-pyridyl-quinoline (4,6′-Me2pq) and 4-methyl-2,2′-pyridyl-quinoline (4-Mepq), respectively. The solid-state structures of complexes 14, 6, 8 and 9 were determined showing a distorted octahedral coordination geometry. The unit cell of 3 contains two independent molecules (Ru-3), (Ru′-3) in a 1:1 ratio, due to a slight rotation of the arene ring. All complexes catalyze the transfer hydrogenation of acetophenone, using 2-propanol as a hydrogen donor in the presence of KOiPr. Among them, complexes 1 and 5 bearing methyl groups at the 8 and 4 position of the quinoline moiety, convert acetophenone to 1-phenylethanol quantitatively, within approximately 10 min with final TOFs of 1600 h−1. The catalytic performance of complexes 111, towards the transfer hydrogenation of p-substituted acetophenone derivatives and benzophenone, ranges from moderate to excellent. An inner-sphere mechanism has been suggested based on the detection of ruthenium(II) hydride species. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Graphical abstract

19 pages, 2215 KiB  
Article
Ni-Co Electrodeposition Improvement Using Phenylsalicylimine Derivatives as Additives in Ethaline-Based Deep Eutectic Solvents (DES)
by Enrique Ordaz-Romero, Paola Roncagliolo-Barrera, Ricardo Ballinas-Indili, Oscar González-Antonio and Norberto Farfán
Coatings 2025, 15(7), 814; https://doi.org/10.3390/coatings15070814 - 11 Jul 2025
Viewed by 452
Abstract
The development of metallic coatings as Ni-Co alloys, with particular emphasis on their homogeneity, processability, and sustainability, is of the utmost significance. To address these challenges, the utilization of phenylsalicylimines (PSIs) as additives within deep eutectic solvents (DES) was investigated, assessing their influence [...] Read more.
The development of metallic coatings as Ni-Co alloys, with particular emphasis on their homogeneity, processability, and sustainability, is of the utmost significance. To address these challenges, the utilization of phenylsalicylimines (PSIs) as additives within deep eutectic solvents (DES) was investigated, assessing their influence on the electrodeposition process of these metals at an intermediate temperature of 60 °C, while circumventing aqueous reaction conditions. The findings demonstrated that the incorporation of PSIs markedly enhances coating uniformity, resulting in an optimal cobalt content of 37% and an average thickness of 24 µm. Electrochemical evaluations revealed improvements in charge and mass transfer, thereby optimizing process efficiency. Moreover, computational studies confirmed that PSIs form stable complexes with Co (II), modulating the electrochemical characteristics of the system through the introduction of the diethylamino electron-donating group, which significantly stabilizes the coordinated forms with both components of the DES. Additionally, the coatings displayed exceptional corrosion resistance, with a rate of 0.781 µm per year, and achieved an optimal hardness of 38 N HRC, conforming to ASTM B994 standards. This research contributes to the development of electroplating bath designs for metallic coating deposition and lays the groundwork for the advancement of sophisticated technologies in functional coatings that augment corrosion resistance and mechanical properties. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion Science for Coatings)
Show Figures

Figure 1

17 pages, 3073 KiB  
Article
Synthesis, Characterization, and Anticancer Activity of 3-Chlorothiophene-2-carboxylic Acid Transition Metal Complexes
by Baiquan Hu, Qianqian Kang, Xianggao Meng, Hao Yin, Xingzhi Yang, Yanting Yang and Mei Luo
Inorganics 2025, 13(7), 238; https://doi.org/10.3390/inorganics13070238 - 11 Jul 2025
Viewed by 506
Abstract
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py [...] Read more.
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py = pyridine), [{Ni(L)2(OH2)4}2{Ni(L)(OH2)5}]L•5H2O (3), and [{Co(L)2(OH2)4}2{Co(L)(OH2)5}]L•5H2O (4). All four compounds were identified by elemental analysis and ESI mass spectrometry, and subsequently characterized by IR spectroscopy, UV-visible diffuse reflectance spectroscopy, electron paramagnetic resonance spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography, and cyclic voltammetry. X-ray analyses revealed that complexes 1 and 2 exhibit a centrosymmetric pseudo-octahedral coordination geometry; the copper (II) and cobalt (II) metal ions, respectively, are located at the crystallographic center of inversion. The coordination sphere of the copper (II) complex is axially elongated in accordance with the Jahn–Teller effect. Intriguingly, for charge neutrality, compounds 3 and 4 crystallized as three independent mononuclear octahedrally coordinated metal centers, which are two [ML2(OH2)4] complex molecules and one [ML(OH2)5]+ complex cation (M = NiII and CoII, respectively), with the ligand anion L serving as the counter ion. The anticancer activities of these complexes were systematically assessed on human leukemia K562 cells, lung cancer A549 cells, liver cancer HepG2 cells, breast cancer MDA-MB-231 cells, and colon cancer SW480 cells. Among them, complex 4 shows significant inhibitory effects on leukemia K562 cells and colon cancer SW480 cells. Full article
Show Figures

Figure 1

11 pages, 1987 KiB  
Article
Dirhodium Tetraacetate Binding to Lysozyme at Body Temperature
by Gabriella Tito, Giarita Ferraro and Antonello Merlino
Int. J. Mol. Sci. 2025, 26(14), 6582; https://doi.org/10.3390/ijms26146582 - 9 Jul 2025
Viewed by 173
Abstract
Paddlewheel dirhodium complexes are cytotoxic compounds that are also used as catalysts and in the formation of Rh-based artificial metalloenzymes. Low-temperature structures of adducts formed by the model protein hen egg white lysozyme (HEWL) with dirhodium tetraacetate ([Rh2(μ-O2CCH3 [...] Read more.
Paddlewheel dirhodium complexes are cytotoxic compounds that are also used as catalysts and in the formation of Rh-based artificial metalloenzymes. Low-temperature structures of adducts formed by the model protein hen egg white lysozyme (HEWL) with dirhodium tetraacetate ([Rh2(μ-O2CCH3)4]) when crystals of the protein were treated with the metal compound at 20 °C demonstrated that [Rh2(μ-O2CCH3)4] in part breaks down upon reaction with HEWL; dimeric Rh-Rh units bind the side chains of Asp18 and the C-terminal carboxylate, and monometallic fragments coordinate the side chains of Arg14 and His15 in 20% ethylene glycol, 0.100 M sodium acetate at pH 4.5 and 0.600 M sodium nitrate, while dimeric Rh-Rh units bind the side chains of Asn93 and Lys96, the C-terminal carboxylate and Asp101, with monometallic fragments that bind the side chains of Lys33 and His15 in 0.010 M HEPES pH 7.5 and 2.00 M sodium formate. To verify whether the binding of this metallodrug to proteins also occurs at body temperature, crystals of HEWL were grown in 0.010 M HEPES pH 7.5 and 2.00 M sodium formate at 37 °C and soaked with [Rh2(μ-O2CCH3)4] at the same temperature. X-ray diffraction data collected on these crystals at 37 °C demonstrate that [Rh2(μ-O2CCH3)4] reacts with proteins at body temperature. The structures of the Rh/HEWL adduct formed at 20 °C (obtained from data collected at 100 K) and at 37 °C under the same experimental conditions are very similar, with metal binding sites that are conserved. However, metal-containing fragment occupancy is higher in the structure obtained at 37 °C, suggesting a role of temperature in defining the protein metalation process. Full article
(This article belongs to the Special Issue Peptide and Protein Metalation)
Show Figures

Figure 1

19 pages, 2749 KiB  
Article
Mechanism of Fluorescence Characteristics and Application of Zinc-Doped Carbon Dots Synthesized by Using Zinc Citrate Complexes as Precursors
by Yun Zhang, Yiwen Guo, Kaibo Sun, Xiaojing Li, Xiuhua Liu, Jinhua Zhu and Md. Zaved Hossain Khan
C 2025, 11(3), 48; https://doi.org/10.3390/c11030048 - 7 Jul 2025
Viewed by 462
Abstract
Zn-doped carbon dots (Zn@C-210 calcination temperature at 210 °C and Zn@C-260 calcination temperature at 260 °C) were synthesized via an in situ calcination method using zinc citrate complexes as precursors, aiming to investigate the mechanisms of their distinctive fluorescence properties. A range of [...] Read more.
Zn-doped carbon dots (Zn@C-210 calcination temperature at 210 °C and Zn@C-260 calcination temperature at 260 °C) were synthesized via an in situ calcination method using zinc citrate complexes as precursors, aiming to investigate the mechanisms of their distinctive fluorescence properties. A range of analytical methods were employed to characterize these nanomaterials. The mechanism study revealed that the coordination structure of Zn-O, formed through zinc doping, can induce a metal–ligand charge-transfer effect, which significantly increases the probability of radiative transitions between the excited and ground states, thereby enhancing the fluorescence intensity. The Zn@C-210 in a solid state and Zn@C-260 in water exhibited approximately 71.50% and 21.1% quantum yields, respectively. Both Zn@C-210 and Zn@C-260 exhibited excitation-independent luminescence, featuring a long fluorescence lifetime of 6.5 μs for Zn@C-210 and 6.2 μs for Zn@C-260. Impressively, zinc-doped CDs displayed exceptional biosafety, showing no acute toxicity even at 1000 mg/kg doses. Zn@C-210 has excellent fluorescence in a solid state, showing promise in anti-photobleaching applications; meanwhile, the dual functionality of Zn@C-260 makes it useful as a folate sensor and cellular imaging probe. These findings not only advance the fundamental understanding of metal-doped carbon dot photophysics but also provide practical guidelines for developing targeted biomedical nanomaterials through rational surface engineering and doping strategies. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

23 pages, 3154 KiB  
Article
Structurally Characterized Cobalt and Nickel Complexes of Flavonoid Chrysin as Potential Radical Scavenging Compounds
by Eleftherios Halevas, Barbara Mavroidi, Despoina Varna, Georgia Zahariou, George Litsardakis, Maria Pelecanou and Antonios G. Hatzidimitriou
Inorganics 2025, 13(7), 230; https://doi.org/10.3390/inorganics13070230 - 7 Jul 2025
Viewed by 418
Abstract
Polyphenolic compounds, such as flavonoids, possess important structural and physico-chemical characteristics that in combination with their biological properties render them an important class of natural compounds with medicinal prospects. Chrysin is a well-known flavone with antioxidant activity and a multitude of other beneficial [...] Read more.
Polyphenolic compounds, such as flavonoids, possess important structural and physico-chemical characteristics that in combination with their biological properties render them an important class of natural compounds with medicinal prospects. Chrysin is a well-known flavone with antioxidant activity and a multitude of other beneficial properties. The potential of flavonoids to coordinate with metal ions leads to derivatives with enhanced biological profile. Within this framework, four novel heteroleptic complexes of cobalt and nickel with chrysin and the aromatic bidentate chelating agents 2,2′-bipyridine and 1,10-phenanthroline were synthesized, as well as physico-chemically and structurally characterized. The in vitro antioxidant efficiency of the synthesized complexes was examined via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. All complexes showed notable radical scavenging capacity comparable to that of ascorbic acid, providing the incentive for further investigation of their therapeutic potential. Full article
Show Figures

Graphical abstract

19 pages, 5243 KiB  
Article
Crystal Structure and Properties of Thallium(I) Salinomycinate
by Nikolay Petkov, Petar Dorkov, Angel Ugrinov, Elzhana Encheva, Miroslav Abrashev, Diana Zasheva, Teodora Daneva and Ivayla N. Pantcheva
Int. J. Mol. Sci. 2025, 26(13), 6504; https://doi.org/10.3390/ijms26136504 - 6 Jul 2025
Viewed by 639
Abstract
In this study, we present the preparation and characterization of a novel thallium(I) coordination compound of the polyether ionophorous antibiotic salinomycin (SalH). The complex [TlSal(H2O)] exists as two subunits, SalTl1 and SalTl2, which differ slightly in their structural parameters. Salinomycin acts [...] Read more.
In this study, we present the preparation and characterization of a novel thallium(I) coordination compound of the polyether ionophorous antibiotic salinomycin (SalH). The complex [TlSal(H2O)] exists as two subunits, SalTl1 and SalTl2, which differ slightly in their structural parameters. Salinomycin acts in a pentadentate coordination mode through oxygen donor atoms, and the six-fold arrangement around the metal centers is completed by interaction with a water molecule. In the overall complex structure, the two mononuclear species SalTl1 and SalTl2 are connected via a hydrogen bond network by a third water molecule. The inclusion of the heavy metal ion into the structure of the polyether ionophore reduces its biological activity against Gram-positive microorganisms and cervical cancer cells at in vitro conditions. Full article
Show Figures

Figure 1

11 pages, 1722 KiB  
Communication
Comparative Study of Corrosion Inhibition Properties of Q345 Steel by Chitosan MOF and Chitosan Schiff Base
by Lizhen Huang, Jingwen Liu, Li Wan, Bojie Li, Xianwei Wang, Silin Kang and Lei Zhu
Materials 2025, 18(13), 3031; https://doi.org/10.3390/ma18133031 - 26 Jun 2025
Viewed by 390
Abstract
This study synthesized two eco-friendly inhibitors—a chitosan–copper metal–organic framework (CS@Cu MOF) and chitosan–Schiff base–Cu complex (Schiff–CS@Cu)—for Q345 steel protection in 3.5% NaCl/1M HCl. Electrochemical and weight loss analyses demonstrated exceptional corrosion inhibition: untreated specimens showed a 25.889 g/(m2·h) corrosion rate, while [...] Read more.
This study synthesized two eco-friendly inhibitors—a chitosan–copper metal–organic framework (CS@Cu MOF) and chitosan–Schiff base–Cu complex (Schiff–CS@Cu)—for Q345 steel protection in 3.5% NaCl/1M HCl. Electrochemical and weight loss analyses demonstrated exceptional corrosion inhibition: untreated specimens showed a 25.889 g/(m2·h) corrosion rate, while 100 mg/L of CS@Cu MOF and Schiff–CS@Cu reduced rates to 2.50 g/(m2·h) (90.34% efficiency) and 1.67 g/(m2·h) (93.56%), respectively. Schiff–CS@Cu’s superiority stemmed from its pyridine–Cu2+ chelation forming a dense coordination barrier that impeded Cl/H+ penetration, whereas CS@Cu MOF relied on physical adsorption and micro-galvanic interactions. Surface characterization revealed that Schiff–CS@Cu suppressed pitting nucleation through chemical coordination, contrasting with CS@Cu MOF’s porous film delaying uniform corrosion. Both inhibitors achieved optimal performance at 100 mg/L concentration. This work establishes a molecular design strategy for green inhibitors, combining metal–organic coordination chemistry with biopolymer modification, offering practical solutions for marine infrastructure and acid-processing equipment protection. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

Back to TopTop