Comparative Study of Corrosion Inhibition Properties of Q345 Steel by Chitosan MOF and Chitosan Schiff Base
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.1.1. Steel Specimens
2.1.2. Corrosion Inhibitors
- (a)
- Chitosan–copper MOF (CS@CU MOF): A chitosan–copper precursor solution was initially prepared by completely dissolving 2.0 g of chitosan powder in 50 mL of a 1 wt% acetic acid aqueous solution. This dissolution occurred under constant magnetic agitation at 400 rpm and 25 °C for 12 h. Subsequently, 5.7 g of Cu(NO3)2·3H2O was introduced into this homogeneous mixture, with stirring maintained at 400 rpm for an additional 2 h to achieve full complexation. The resulting solution underwent controlled gelation by careful dripping into a 3 M NaOH solution held at 25 °C. Following a 6 h reaction period, this process yielded spherical porous beads, which were then collected via vacuum filtration. A rigorous purification protocol ensued, involving rinsing with distilled water until neutral pH was attained, followed by sequential 20 min ultrasonication treatments in ethanol/water solutions with progressively increasing ethanol concentrations (10/90, 30/70, 50/50, 70/30, and 90/10 v/v), culminating in a final 20 min immersion in anhydrous ethanol to stabilize the pore structure. To induce MOF crystallization, the purified beads were immersed in a 0.16 g/L dimethylimidazole (DMIM) ethanol solution and reacted at 40 °C for 24 h under a nitrogen atmosphere. The final CS@Cu MOF material was obtained after vacuum drying at 60 °C for 12 h [39,40].
- (b)
- Chitosan Schiff base (chitosan–3-pyridinecarbaldehyde Schiff base–CuSO4) complex (Schiff–CS@Cu): The preparation of chitosan–Schiff base–copper functional material (Schiff–CS@Cu) involves a two-step procedure. Initially, chitosan powder was dissolved in acetic acid solution to form a homogeneous system, which was then mixed with 3-pyridinecarboxaldehyde in anhydrous ethanol. The mixture underwent 12 h reflux condensation at 75 °C to form Schiff base linkages. The resultant Schiff–CS product was purified through sequential ethanol washing until colorless filtrate and deionized water rinsing to neutrality, followed by vacuum drying at 50 °C. Subsequently, the Schiff–CS material was immersed in saturated copper sulfate solution under 50 °C stirring for 6 h to achieve copper ion adsorption. After filtration and thorough washing to remove unbound ions, the final Schiff–CS@Cu composite was obtained through 12 h drying at 50 °C. This methodology integrates covalent modification through Schiff base formation with subsequent metal ion coordination, demonstrating the effective integration of organic–inorganic hybrid functionalities [41,42].
2.1.3. Corrosive Medium
2.2. Testing Methods
2.2.1. Experimental Design
2.2.2. Corrosion Testing
2.2.3. Data Analysis
3. Results and Discussion
3.1. Corrosion Inhibition Effect
3.2. Corrosion Morphology Analysis
3.2.1. The Morphology Under the Same Corrosion Inhibitors Concentration
3.2.2. The Morphology at Lower Corrosion Inhibition Effect
4. Conclusions
- (1)
- Chitosan MOF (CS@Cu MOF) and chitosan Schiff base (Schiff–CS@Cu) have a favorable corrosion inhibition effect on Q345 steel; the concentration of 100 mg/L is recommended, considering its efficiency and economy.
- (2)
- Schiff–CS@Cu has better corrosion inhibition performance than physical adsorption-dominated CS@Cu MOF due to the chemical ligand-dominated dense film layer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simoncelli, M.; Aloisio, A.; Zucca, M.; Venturi, G.; Alaggio, R. Intensity and location of corrosion on the reliability of a steel bridge. J. Constr. Steel Res. 2023, 206, 107937. [Google Scholar] [CrossRef]
- Cui, C.; Zhang, Q.; Zhang, D.; Lao, W.; Wu, L.; Jiang, Z. Monitoring and detection of steel bridge diseases: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2024, 11, 188–208. [Google Scholar] [CrossRef]
- Bao, A.; Guillaume, C.; Satter, C.; Moraes, A.; Williams, P.; Kelly, T.; Guo, Y. Testing and evaluation of web bearing capacity of corroded steel bridge girders. Eng. Struct. 2021, 238, 112276. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Isahak, W.N.R.W.; Al-Azzawi, W.K. Corrosion inhibitors: Natural and synthetic organic inhibitors. Lubricants 2023, 11, 174. [Google Scholar] [CrossRef]
- Pradhan, B. A study on effectiveness of inorganic and organic corrosion inhibitors on rebar corrosion in concrete: A review. Mater. Today Proc. 2022, 65, 1360–1366. [Google Scholar] [CrossRef]
- Kuznetsov, Y.I.; Redkina, G.V. Thin protective coatings on metals formed by organic corrosion inhibitors in neutral media. Coatings 2022, 12, 149. [Google Scholar] [CrossRef]
- Lai, X.; Hu, J.; Ruan, T.; Zhou, J.; Qu, J. Chitosan derivative corrosion inhibitor for aluminum alloy in sodium chloride solution: A green organic/inorganic hybrid. Carbohydr. Polym. 2021, 265, 118074. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.M.; Rajesh, T.; Obot, I.B.; Bin Sharfan, I.I.; Abdulhamid, M.A. Water-soluble chitosan salt as ecofriendly corrosion inhibitor for N80 pipeline steel in artificial sea water: Experimental and theoretical approach. Int. J. Biol. Macromol. 2024, 254, 127697. [Google Scholar] [CrossRef]
- Dou, X.; Fan, N.; Yang, J.; Zhang, Z.; Wu, B.; Wei, X.; Shi, S.; Zhang, W.; Feng, Y. Research progress on chitosan and its derivatives in the fields of corrosion inhibition and antimicrobial activity. Environ. Sci. Pollut. Res. 2024, 31, 30353–30369. [Google Scholar] [CrossRef]
- Farag, A.A.; Al-Shomar, S.M.; Abdelshafi, N.S. Eco-friendly modified chitosan as corrosion inhibitor for carbon steel in acidic medium: Experimental and in-depth theoretical approaches. Int. J. Biol. Macromol. 2024, 279, 135408. [Google Scholar] [CrossRef]
- Pawariya, V.; De, S.; Dutta, J. Chitosan-based Schiff bases: Promising materials for biomedical and industrial applications. Carbohydr. Polym. 2024, 323, 121395. [Google Scholar] [CrossRef] [PubMed]
- John, S.; Mathew, Z.P.; Augustine, C.; George, J.B.; Joseph, B.; Josh, M.S. Corrosion inhibition of mild steel in 1 M HCl using water soluble chitosan derivative of vanillin. Int. J. Biol. Macromol. 2024, 262, 130024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Xu, N.; Jiang, Z.N.; Liu, H.; Zhang, G. Chitosan derivatives as promising green corrosion inhibitors for carbon steel in acidic environment: Inhibition performance and interfacial adsorption mechanism. J. Colloid Interface Sci. 2023, 640, 1052–1067. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Chen, B.; Li, J.; Zhou, C.; Guo, M.; Peng, K.; Dai, H.; Lan, B.; Xiong, W.; Liu, Y. Zwitterion modified chitosan as a high-performance corrosion inhibitor for mild steel in hydrochloric acid solution. Int. J. Biol. Macromol. 2024, 267, 131429. [Google Scholar] [CrossRef]
- Menaka, R.; Nijarubini, V.; Sakthivel, K.; Kavitha, P.; Firdhouse, M.J. Electrochemical investigation and surface interaction of thiophene based Chitosan Schiff base on mild steel surface in 1M HCl. Mater. Today Proc. 2024, 88, 684–692. [Google Scholar] [CrossRef]
- Sun, A.; Cui, G.; Liu, Q. Capsule corrosion inhibitor loaded with hyperbranched chitosan: Carbon dioxide corrosion protection for downhole pipelines in oil fields. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131106. [Google Scholar] [CrossRef]
- Dalhatu, S.N.; Modu, K.A.; Mahmoud, A.A.; Zango, Z.U.; Umar, A.B.; Usman, F.; Dennis, J.O.; Alsadig, A.; Ibnaouf, K.H.; Aldaghri, O.A. L-arginine grafted chitosan as corrosion inhibitor for mild steel protection. Polymers 2023, 15, 398. [Google Scholar] [CrossRef]
- Li, D.; Yadav, A.; Zhou, H.; Roy, K.; Thanasekaran, P.; Lee, C. Advances and applications of metal-organic frameworks (MOFs) in emerging technologies: A comprehensive review. Glob. Chall. 2024, 8, 2300244. [Google Scholar] [CrossRef]
- Mohanty, B.; Kumari, S.; Yadav, P.; Kanoo, P.; Chakraborty, A. Metal-organic frameworks (MOFs) and MOF composites based biosensors. Coord. Chem. Rev. 2024, 519, 216102. [Google Scholar] [CrossRef]
- Poonia, K.; Patial, S.; Raizada, P.; Ahamad, T.; Khan, A.A.P.; Van Le, Q.; Nguyen, V.-H.; Hussain, C.M.; Singh, P. Recent advances in Metal Organic Framework (MOF)-based hierarchical composites for water treatment by adsorptional photocatalysis: A review. Environ. Res. 2023, 222, 115349. [Google Scholar] [CrossRef]
- Shahraki, S. Schiff base compounds as artificial metalloenzymes. Colloids Surf. B Biointerfaces 2022, 218, 112727. [Google Scholar] [CrossRef] [PubMed]
- Afshari, F.; Ghomi, E.R.; Dinari, M.; Ramakrishna, S. Recent advances on the corrosion inhibition behavior of schiff base compounds on mild steel in acidic media. ChemistrySelect 2023, 8, e202203231. [Google Scholar] [CrossRef]
- Ramu, A.G.; Yang, D.; Song, M.; Choi, D. Advancements in integrating MOFs into micro-arc oxidation coatings on Mg alloys: A perspective on PEO-MOF coatings as innovative corrosion inhibitors. J. Magnes. Alloys 2024, 12, 4363–4394. [Google Scholar] [CrossRef]
- Al Kiey, S.A.; El-Shahat, M.; Abdelhameed, R.M. Role of different metal precursors based MOFs for boosting anti-corrosion performance of mild steel in acid media. Mater. Today Sustain. 2023, 23, 100460. [Google Scholar] [CrossRef]
- Guo, Z.; Lan, D.; Jia, Z.; Gao, Z.; Shi, X.; He, M.; Guo, H.; Wu, G.; Yin, P. Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption. Nano-Micro Lett. 2024, 17, 23. [Google Scholar] [CrossRef]
- Lahhit, A.; Azghay, I.; Elyoussfi, A.; Ghalit, M.; Ouzidan, Y.; El Massaoudi, M.; Mourabit, F.; Akichouh, E.H.; Ahari, M.; Amhamdi, H.; et al. Exploring the potent corrosion inhibition properties of phenolic Schiff bases on mild steel in acidic environments, part A: Coupling experimental and theoretical investigations. Environ. Sci. Pollut. Res. 2024, 31, 63652–63670. [Google Scholar] [CrossRef] [PubMed]
- Ozoemena, C.P.; Boekom, E.J.; Akpan, G.J.; Asuquo, I.G.; Edet, E.K.; Jacob, A.E. Computational Modelling and Comparative Analysis of a Schiff Base Ligand and Its Analog as Inhibitors Against Mild Steel Corrosion in 1M HCl. J. Sustain. Mater. Process. Manag. 2024, 4, 71–88. [Google Scholar] [CrossRef]
- Iranpour, M.; Babaei, A.; Bagherzadeh, M. Corrosion Inhibition of Carbon Steel by Some Schiff Base Compounds in HCl and H2SO4 Solutions. ChemistrySelect 2024, 9, e202305180. [Google Scholar] [CrossRef]
- Jafari, H.; Ameri, E.; Vakili, M.H.; Berisha, A. Effect of OH position on adsorption behavior of Schiff-base derivatives in corrosion inhibition of carbon steel in 1 M HCl. Electrochem. Commun. 2024, 159, 107653. [Google Scholar] [CrossRef]
- Shashirekha, K.; Aithal, S.; Praveen, B.M.; Pavithra, M.K.; Guruprasad, A.M.; Devendra, B.K.; Rathod, M.R. Experimental, electrochemical and DFT simulation studies of a novel Schiff base derivative as an efficient mild steel corrosion inhibitor in acidic environments. Results Surf. Interfaces 2024, 16, 100246. [Google Scholar] [CrossRef]
- Azzouzi, M.; Daoudi, W.; Dagdag, O.; Berisha, A.; Kim, H.; Oussaid, A.; El Aatiaoui, A.; Oussaid, A. Corrosion inhibition and in silico toxicity assessment of imidazo[1,2-a]pyrimidine-Schiff base derivatives as effective and environmentally friendly corrosion inhibitors for mild steel. RSC Adv. 2025, 15, 12342–12363. [Google Scholar] [CrossRef] [PubMed]
- Soliz, A.; Zamora, P.P.; Muena, J.P.; Bieger, K.; Haribabu, J.; Landaeta, E.; Arulraj, A.; Mangalaraja, R.V. Experimental and DFT analysis of the concentration dependency of corrosion inhibition by a pyridine Schiff base for mild steel in HCl solution. Colloids Surf. A Physicochem. Eng. Asp. 2024, 703, 135283. [Google Scholar] [CrossRef]
- El Mahamdi, M.; Daoudi, W.; Naguib, I.A.; Benhadi, L.; Dagdag, O.; Berisha, A.; Kim, H.; Noureddine, B.; El Aatiaoui, A. Enhanced corrosion protection of copper in saline environments using bio-nanocomposite coatings based on chitosan and chitosan Schiff base. Int. J. Biol. Macromol. 2024, 282, 136702. [Google Scholar] [CrossRef]
- Çelikçi, N.; Zıba, C.A.; Tümer, M. Chitosan-Based Schiff Base Compounds: Synthesis, Chemical Characterization and Antibacterial Properties. J. Fluoresc. 2025, 1–11. [Google Scholar] [CrossRef]
- Li, M.; Li, F.; Hu, J.; Cui, N.; Su, H.; Li, L.; Wang, Z.; Sun, S.; Hu, S. Preparation and corrosion inhibition mechanism of a chitosan ionic liquid Schiff base for the protection of N80 in HCl solution. New J. Chem. 2024, 48, 3064–3079. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, C.; Shen, P.; Liu, Z.; Hu, J.; Zhang, Y. Facile synthesis of recyclable Mn-crosslinked chitosan schiff base composites as heterogeneous catalysts for selective oxidation of methyl phenyl sulfide with H2O2. Int. J. Biol. Macromol. 2025, 311, 144119. [Google Scholar] [CrossRef] [PubMed]
- Verma, C.; Quraishi, M.A.; Alfantazi, A.; Rhee, K.Y. Corrosion inhibition potential of chitosan based Schiff bases: Design, performance and applications. Int. J. Biol. Macromol. 2021, 184, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Miladi, R.; Salahshoori, I.; Golriz, M.; Raji, M.; Ranjbarzadeh-Dibazar, A.; Naderi, G.; Khonakdar, H.A. Computational insights into pectin and chitosan-enhanced MOFs: A green pathway for pollutant remediation. Process Saf. Environ. Prot. 2024, 192, 862–877. [Google Scholar] [CrossRef]
- Kobayashi, M.; Akitsu, T.; Furuya, M.; Sekiguchi, T.; Shoji, S.; Tanii, T.; Tanaka, D. Efficient Synthesis of a Schiff Base Copper(II) Complex Using a Microfluidic Device. Micromachines 2023, 14, 890. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Li, B.; Zhao, X.; Cai, Z.; Wang, X.; Zuo, Z.; Liu, H.; Zhu, L. Chitosan-copper MOF for corrosion inhibition of Q345 steel: Performance, mechanism, and temperature effects. Mater. Des. 2025, 255, 114227. [Google Scholar] [CrossRef]
- Telmenbayar, L.; Gopal Ramu, A.; Yang, D.; Choi, D. Development of mechanically robust and anticorrosion slippery PEO coating with metal–organic framework (MOF) of magnesium alloy. Chem. Eng. J. 2023, 458, 141397. [Google Scholar] [CrossRef]
- Umoren, S.A.; Banera, M.J.; Alonso-Garcia, T.; Gervasi, C.A.; Mirífico, M.V. Inhibition of mild steel corrosion in HCl solution using chitosan. Cellulose 2013, 20, 2529–2545. [Google Scholar] [CrossRef]
- Costa, T.G.; Cunha Ostroski, V.W.; de Souza, F.S. “Self arranged Cactis” as new goethite morphology from the natural corrosion process of SAE 1020 carbon steel. Heliyon 2019, 5, e02771. [Google Scholar] [CrossRef] [PubMed]
- GB/T 16545-2015; Corrosion of Metals and Alloys. Removal of Corrosion Products from Corrosion Test Specimens. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2015.
- de Souza, F.S.; Costa, T.G.; Feldhaus, M.J.; Szpoganicz, B.; Spinelli, A. Nonenzymatic Amperometric Sensors for Hydrogen Peroxide Based on Melanin-Capped Fe3+, Cu2+, or Ni2+ Modified Prussian Blue Nanoparticles. IEEE Sens. J. 2015, 15, 4749–4757. [Google Scholar] [CrossRef]
Items | Codes | Mass Before Corrosion, m1 (g) | Mass After Corrosion, m2 (g) | Corrosion Rate, v (g/(m2·h)) |
---|---|---|---|---|
Blank control group | B-0 | 11.996 | 11.841 | 25.889 |
CS@Cu MOF group | M-30 | 12.351 | 12.336 | 2.500 |
M-50 | 12.446 | 12.430 | 2.667 | |
M-80 | 13.371 | 12.352 | 3.167 | |
M-100 | 12.438 | 12.424 | 2.500 | |
M-200 | 12.435 | 12.421 | 2.333 | |
M-300 | 12.369 | 12.357 | 2.000 | |
Schiff–CS@Cu group | X-30 | 12.392 | 12.378 | 2.333 |
X-50 | 12.345 | 12.328 | 2.833 | |
X-80 | 12.372 | 12.361 | 1.833 | |
X-100 | 12.286 | 12.276 | 1.667 | |
X-200 | 12.226 | 12.217 | 1.500 | |
X-300 | 12.347 | 12.339 | 1.333 |
Corrosion Inhibitors | Concentration (mg/L) | Corrosion Area (Pixels) | |
---|---|---|---|
Magnification 20× | Magnification 50× | ||
CS@Cu MOF | 80 | 833,361 | 1,420,465 |
Schiff–CS@Cu | 80 | 118,731 | 28,033 |
50 | 239,232 | 472,139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Liu, J.; Wan, L.; Li, B.; Wang, X.; Kang, S.; Zhu, L. Comparative Study of Corrosion Inhibition Properties of Q345 Steel by Chitosan MOF and Chitosan Schiff Base. Materials 2025, 18, 3031. https://doi.org/10.3390/ma18133031
Huang L, Liu J, Wan L, Li B, Wang X, Kang S, Zhu L. Comparative Study of Corrosion Inhibition Properties of Q345 Steel by Chitosan MOF and Chitosan Schiff Base. Materials. 2025; 18(13):3031. https://doi.org/10.3390/ma18133031
Chicago/Turabian StyleHuang, Lizhen, Jingwen Liu, Li Wan, Bojie Li, Xianwei Wang, Silin Kang, and Lei Zhu. 2025. "Comparative Study of Corrosion Inhibition Properties of Q345 Steel by Chitosan MOF and Chitosan Schiff Base" Materials 18, no. 13: 3031. https://doi.org/10.3390/ma18133031
APA StyleHuang, L., Liu, J., Wan, L., Li, B., Wang, X., Kang, S., & Zhu, L. (2025). Comparative Study of Corrosion Inhibition Properties of Q345 Steel by Chitosan MOF and Chitosan Schiff Base. Materials, 18(13), 3031. https://doi.org/10.3390/ma18133031