Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = metal carbonyl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1360 KiB  
Article
Design and Characterization of Mn(II), Co(II), and Zn(II) Complexes with Chrysin: Spectroscopic, Antibacterial, and Anti-Biofilm Insights
by Elżbieta Woźnicka, Anna Miłoś, Lidia Zapała, Małgorzata Kosińska-Pezda, Katarzyna Lecka-Szlachta and Łukasz Byczyński
Processes 2025, 13(8), 2468; https://doi.org/10.3390/pr13082468 - 4 Aug 2025
Viewed by 221
Abstract
This study presents the synthesis and physicochemical characterization of coordination compounds formed between chrysin, a natural flavonoid, and transition metal ions: Mn(II), Co(II), and Zn(II). The complexes were obtained under mildly basic conditions and analyzed using elemental analysis, thermogravimetric analysis (TGA), silver-assisted laser [...] Read more.
This study presents the synthesis and physicochemical characterization of coordination compounds formed between chrysin, a natural flavonoid, and transition metal ions: Mn(II), Co(II), and Zn(II). The complexes were obtained under mildly basic conditions and analyzed using elemental analysis, thermogravimetric analysis (TGA), silver-assisted laser desorption/ionization mass spectrometry (SALDI-MS), FT-IR spectroscopy, and 1H NMR. The spectroscopic data confirm that chrysin coordinates as a bidentate ligand through the 5-hydroxyl and 4-carbonyl groups, with structural differences depending on the metal ion involved. The mass spectrometry results revealed distinct stoichiometries: 1:2 metal-to-ligand ratios for Mn(II) and Co(II), and 1:1 for Zn(II), with additional hydroxide coordination. Biological assays demonstrated that Co(II) and Mn(II) complexes exhibit enhanced antibacterial and anti-biofilm activity compared to free chrysin, particularly against drug-resistant Staphylococcus epidermidis, whereas the Zn(II) complex showed negligible biological activity. Full article
(This article belongs to the Special Issue Metal Complexes: Design, Properties and Applications)
Show Figures

Graphical abstract

15 pages, 2384 KiB  
Article
Optimization of TEMPO-Mediated Oxidation of Chitosan to Enhance Its Antibacterial and Antioxidant Activities
by Abdellah Mourak, Aziz Ait-Karra, Mourad Ouhammou, Abdoussadeq Ouamnina, Abderrahim Boutasknit, Mohamed El Hassan Bouchari, Najat Elhadiri and Abdelhakim Alagui
Polysaccharides 2025, 6(3), 65; https://doi.org/10.3390/polysaccharides6030065 - 28 Jul 2025
Viewed by 170
Abstract
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing [...] Read more.
This study systematically investigated the oxidation of chitosan using the TEMPO/NaClO/NaBr catalytic system under varying experimental conditions, namely temperature, reaction time, and pH, in order to optimize the oxidation process. Response surface methodology (RSM) was employed to determine the optimal parameters for maximizing the efficiency of the reaction. The structural modifications to the chitosan following oxidation were confirmed using Fourier-transform infrared spectroscopy (FTIR), alongside additional analytical techniques, which validated the successful introduction of carbonyl and carboxyl functional groups. Solvent-cast films were prepared from both native and oxidized chitosan in order to evaluate their functional performance. The antibacterial activity of these films was assessed against Gram-negative (Salmonella) and Gram-positive (Streptococcus faecalis) bacterial strains. The oxidized chitosan films exhibited significantly enhanced antibacterial effects, particularly at shorter incubation periods. In addition, antioxidant activity was evaluated using DPPH radical scavenging and ferrous ion chelation assays, which both revealed a marked improvement in radical scavenging ability and metal ion binding capacity in oxidized chitosan. These findings confirm that TEMPO-mediated oxidation effectively enhances the physicochemical and bioactive properties of chitosan, highlighting its potential for biomedical and environmental applications. Full article
Show Figures

Figure 1

13 pages, 25732 KiB  
Article
Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines
by Bingxiao Zheng, Liqin Yang, Yashuang Hei, Ling Yu, Sisi Wen, Lisi Ba, Long Ao and Zhiju Zhao
Molecules 2025, 30(15), 3089; https://doi.org/10.3390/molecules30153089 - 23 Jul 2025
Viewed by 228
Abstract
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO [...] Read more.
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO2(x)) via pyrolysis of silica-supported cobalt–phenanthroline complexes. The optimized Co-Ph@SiO2(900) catalyst achieved exceptional performance (>99% conversion, >98% selectivity) in the reductive amination of acetophenone to 1-phenylethanamine using NH3/H2. Systematic studies revealed that its exceptional performance originates from the in situ pyrolysis of the cobalt–phyllosilicate complex. This process promotes the uniform distribution of metal cobalt nanoparticles, simultaneously enhancing porosity and imparting bifunctional (acidic and basic) properties to the catalyst, resulting in outstanding catalytic activity and selectivity. The catalyst demonstrated broad applicability, efficiently converting diverse ketones (aryl-alkyl, dialkyl, bioactive) and aldehydes (halogenated, heterocyclic, biomass-derived) into primary amines with high yields (up to 99%) and chemoselectivity (>40 examples). This sustainable, non-noble metal-based catalyst system offers significant potential for industrial primary amine synthesis and provides a versatile tool for developing highly selective and active heterogeneous catalysts. Full article
Show Figures

Figure 1

25 pages, 3349 KiB  
Article
Upregulation of the Antioxidant Response-Related microRNAs miR-146a-5p and miR-21-5p in Gestational Diabetes: An Analysis of Matched Samples of Extracellular Vesicles and PBMCs
by Jovana Stevanović, Ninoslav Mitić, Ana Penezić, Ognjen Radojičić, Daniela Ardalić, Milica Mandić, Vesna Mandić-Marković, Željko Miković, Miloš Brkušanin, Olgica Nedić and Zorana Dobrijević
Int. J. Mol. Sci. 2025, 26(14), 6902; https://doi.org/10.3390/ijms26146902 - 18 Jul 2025
Viewed by 245
Abstract
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by [...] Read more.
MicroRNA-based regulatory mechanisms show disturbances related to oxidative stress (OS) interconnected with inflammation (IFM), as well as impairments associated with gestational diabetes (GDM). The aim of this study was to assess the diagnostic and prognostic significance of the OS/IFM-related microRNA in GDM by using peripheral blood mononuclear cells (PBMCs) and serum-derived extracellular vesicles (EVs) as biological samples. We selected the known OS/IFM-associated microRNAs miR-146a-5p, miR-155-5p, and miR-21-5p as candidates for our GDM biomarker analysis. Quantitative RT-PCR was employed for relative quantification of the selected microRNAs from paired samples of PBMCs and EVs derived from patients with GDM and healthy controls (n = 50 per group). The expression levels were analyzed for correlations with lipid and glycemic status indicators; metal ion-related parameters; serum thiol content; protein carbonyl and thiobarbituric acid-reactive substances’ (TBARS) levels; glutathione reductase (GR), Superoxide dismutase (SOD), and catalase (CAT) activity; and NRF2 expression. MiR-146a-5p and miR-21-5p were significantly upregulated in both PBMCs and EVs obtained from GDM patients. EVs-miR-21-5p showed a positive correlation with glycemic status in GDM patients, while miR-155-5p from PBMCs demonstrated correlation with iron-related parameters. The expression of selected microRNAs was found to correlate with NRF2 expression and SOD activity. The level of miR-146a-5p negatively correlated with neonatal anthropometric characteristics, while a higher level of PBMCs-miR-21-5p expression was determined in GDM patients with adverse pregnancy outcomes (p = 0.012). Our data demonstrate a disturbance of OS/IFM-microRNAs in GDM and illustrate their potential to serve as indicators of the associated OS-related changes, neonatal characteristics, and adverse pregnancy outcomes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

37 pages, 9468 KiB  
Review
Carbonyl–Olefin Metathesis and Its Application in Natural Product Synthesis
by Blaž Omahen, Shuhe Zheng and Francisco de Azambuja
Catalysts 2025, 15(7), 639; https://doi.org/10.3390/catal15070639 - 30 Jun 2025
Viewed by 693
Abstract
Carbonyl–olefin metathesis is an important reaction for the formation of new carbon–carbon bonds, specifically double bonds. This critical review presents an overview of the different possibilities of these reactions, highlighting their use in the synthesis of natural products. It features classical photochemical approaches [...] Read more.
Carbonyl–olefin metathesis is an important reaction for the formation of new carbon–carbon bonds, specifically double bonds. This critical review presents an overview of the different possibilities of these reactions, highlighting their use in the synthesis of natural products. It features classical photochemical approaches via [2+2]-cycloadditions, early metal-mediated reports, and emerging catalytic methods through the use of organocatalysts or Lewis or Brønsted acids. Comparisons between methods are presented throughout the text, based primarily on robustness, selectivity, methodology, experimental simplicity, and utilization in the synthesis of natural products. Full article
(This article belongs to the Special Issue Recent Catalysts for Organic Synthesis)
Show Figures

Figure 1

15 pages, 2035 KiB  
Article
Synthesis and Application of FeMg-Modified Hydrochar for Efficient Removal of Lead Ions from Aqueous Solution
by Jelena Petrović, Marija Koprivica, Marija Ercegović, Marija Simić, Jelena Dimitrijević, Mladen Bugarčić and Snežana Trifunović
Processes 2025, 13(7), 2060; https://doi.org/10.3390/pr13072060 - 29 Jun 2025
Viewed by 427
Abstract
This study explores the utilization of waste grape pomace-derived hydrochar as an efficient adsorbent for lead (Pb2+) removal from aqueous solutions. Hydrochar was produced via hydrothermal carbonization (HTC) at 220 °C, followed by doping with magnesium and iron salts, and subsequent [...] Read more.
This study explores the utilization of waste grape pomace-derived hydrochar as an efficient adsorbent for lead (Pb2+) removal from aqueous solutions. Hydrochar was produced via hydrothermal carbonization (HTC) at 220 °C, followed by doping with magnesium and iron salts, and subsequent pyrolysis at 300 °C to obtain Fe/Mg-pyro-hydrochar (FeMg-PHC). The material’s structural and morphological changes after Pb2+ adsorption were examined using FTIR. FTIR revealed chemisorption and ion exchange as key mechanisms, shown by decreased hydroxyl, carbonyl, and metal–oxygen peaks after Pb2+ adsorption. Adsorption tests under varying pH, contact time, and initial Pb2+ concentrations revealed optimal removal at pH 5. Kinetic modeling indicated that the process follows a pseudo-second-order model, suggesting chemisorption as the dominant mechanism. Isotherm analysis showed that the Sips model best describes the equilibrium, with a maximum theoretical adsorption capacity of 157.24 mg/g. Overall, the simple two-step synthesis—HTC followed by pyrolysis—combined with metal doping yields a highly effective and sustainable adsorbent for Pb2+ ion removal from wastewater. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 4773 KiB  
Review
Structure-Based Function of Humic Acid in Abiotic Stress Alleviation in Plants: A Review
by Farhan Nabi, Ahmed Sarfaraz, Rakhwe Kama, Razia Kanwal and Huashou Li
Plants 2025, 14(13), 1916; https://doi.org/10.3390/plants14131916 - 22 Jun 2025
Viewed by 927
Abstract
Humic acid (HA), a major component of soil organic matter, is a naturally occurring macromolecule formed through the decomposition of plant and microbial residues. Its molecular structure comprises functional groups such as carboxyl, phenolic, hydroxyl, and carbonyl functional groups, which enable HA to [...] Read more.
Humic acid (HA), a major component of soil organic matter, is a naturally occurring macromolecule formed through the decomposition of plant and microbial residues. Its molecular structure comprises functional groups such as carboxyl, phenolic, hydroxyl, and carbonyl functional groups, which enable HA to interact with soil particles, nutrients, and biological systems. These interactions significantly contribute to soil fertility and overall plant productivity. Functionally, HA enhances soil health by increasing cation exchange capacity, improving water retention, and promoting the formation and stabilization of soil aggregates. In addition to its role in soil conditioning, HA is essential in mitigating plant stress. It achieves this by modulating antioxidant enzyme activity, stabilizing cellular membranes, and alleviating the adverse effects of abiotic stressors such as salinity, drought, and heavy metal toxicity. This review highlights the structural characteristics of HA, its structure-based functions, and the mechanisms involved in plant stress alleviation. Additionally, we explore how HA can be modified through physical, chemical, and biological approaches to enhance its agronomic performance. These modifications are designed to improve HA agronomic efficiency by increasing nutrient bioavailability, reducing environmental losses through minimized leaching and volatilization, and supporting sustainable agricultural practices. Overall, this review underscores the multifaceted roles of HA in promoting plant resilience to environmental stress, highlighting its potential as a key agent in the development of sustainable and eco-friendly crop production systems. Full article
Show Figures

Figure 1

17 pages, 3002 KiB  
Article
Microwave-Assisted Dried Cells of the Fungus Arthrinium malaysianum as a Potential Biomaterial with Sustainable Bioremediation of Toxic Heavy Metals
by Swagata Roy Chowdhury, Arpita Das, Sanmitra Ghosh, Saptarshi Chatterjee and Rajib Majumder
Appl. Microbiol. 2025, 5(2), 55; https://doi.org/10.3390/applmicrobiol5020055 - 11 Jun 2025
Viewed by 519
Abstract
Significant heavy metals contamination is often caused by rapid industrialization, which is devastating to both public health and the environment. Conventional processes of metal removal also result in the accumulation of secondary waste. This work proposes the use of a novel fungal biomass [...] Read more.
Significant heavy metals contamination is often caused by rapid industrialization, which is devastating to both public health and the environment. Conventional processes of metal removal also result in the accumulation of secondary waste. This work proposes the use of a novel fungal biomass (microwave heat dried) from Arthrinium malaysianum for the biosorption of toxic chromium. We have meticulously explored and investigated the interactions of hexavalent chromium with dried biomass using several cutting-edge techniques like FTIR for studying the involvement of functional groups on the biomass surface, XRD for the surface architecture changes after metal binding, XPS to unravel the reduction of hexavalent chromium into its non-toxic form, and FESEM-EDX for the visualization of the ultra-structure of fungal cell surface. The Langmuir isotherm demonstrates that the maximum removal capacity Qmax of Cr(VI) is 102.310 mgg−1, at a pH of 3.5 with 100% removal of Cr(VI). There were substantial changes in the surface architecture during adsorption, confirmed by FESEM and AFM studies. FTIR and XPS data analysis indicated that carbonyl, hydroxyl, phosphate, and amine groups were responsible for the conversion of Cr(VI) (toxic) to Cr(III) (non-toxic). The IR spectra of biomass treated with Cr showed a decreased C-O stretching intensity and slight shriveling of the -OH band, and the bands in the FTIR spectra at 1642 cm−1 to 1635 cm−1 and at 1549 cm−1 to 1547 cm−1 shifted and appeared quite distinct. XRD revealed that the chromium-treated biomass had greater crystalline features and also the appearance of a wide peak where 2θ = 20°, approximately, indicating an amorphous nature at 576.0 eV and in highly loaded chromium (500 mg/L) biomass, with the Cr2p level displaying a slight shift, eventually terminating in a (576.0 eV) Cr2O3 to Cr(III) peak. Since the FTIR and XPS data obtained revealed that Cr(VI) reduces to Cr(III), this fungal biomass can also be used for generating metallic nanoparticles during biosorption. Thus, we suggest that the above-mentioned fungal biomass could be a very useful biomaterial for future translational research. We are in the process of fabricating beads with powdered biomass for further studies. Full article
Show Figures

Figure 1

12 pages, 1291 KiB  
Article
Non-Destructive Condition and Damage Assessment of Historic Weighted Silk
by Marta Anghelone, Caroline Dalhed and Tanja Kimmel
Fibers 2025, 13(6), 78; https://doi.org/10.3390/fib13060078 - 10 Jun 2025
Viewed by 701
Abstract
Silk weighting is a process used to compensate for the weight loss caused by degumming, achieved by adding agents such as metallic salts to enhance the hand feel and appearance of the fibers. With the development of tin weighting procedures (ca. 1870s), the [...] Read more.
Silk weighting is a process used to compensate for the weight loss caused by degumming, achieved by adding agents such as metallic salts to enhance the hand feel and appearance of the fibers. With the development of tin weighting procedures (ca. 1870s), the production of weighted silk tremendously increased, as the fast decay of such fabrics was attributed to the process itself. The weighted silk was largely used for evening wear and high-fashion garments, many of which nowadays are stored in textile collections, and often characterized by poor conservation conditions. Within the present work, a multi-analytical and interdisciplinary non-destructive protocol was established for studying the finishing techniques, characterizing the materials as well as the state of preservation of historic tin-weighted silk. The protocol involves a visual and haptic approach typical of conservation professionals, as well as analytical investigations such as X-Ray Fluorescence analyses, 3D digital microscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy, and Fourier-transform Infrared Spectroscopy (FTIR) in Attenuated Total Reflection. Elemental analyses are effective for studying the technology of production, while FTIR emerged as a powerful tool for assessing the condition, through the carbonyl and crystallinity indices. Full article
Show Figures

Graphical abstract

12 pages, 7645 KiB  
Article
Searching Optimum Self-Brazing Powder Mixtures Intended for Use in Powder Metallurgy Diamond Tools—A Statistical Approach
by Andrzej Romański, Piotr Matusiewicz and Elżbieta Cygan-Bączek
Materials 2025, 18(12), 2726; https://doi.org/10.3390/ma18122726 - 10 Jun 2025
Viewed by 391
Abstract
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of [...] Read more.
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of the sintered matrix. The experimental process involved the use of various commercially available powders, including carbonyl iron, carbonyl nickel, atomised bronze, atomised copper, and ferrophosphorus. The samples made of different powder mixtures were compacted and sintered and then characterised by dimensional change, density, porosity, and hardness. The obtained results were statistically analysed using an analysis of variance (ANOVA) tool to create linear regression models that relate the material properties to their chemical composition. The investigated materials exhibited excellent sintering behaviour and very low porosity, which are beneficial for diamond retention. Very good sinterability of powder mixtures can be achieved by tin bronze addition, which provides a sufficient content of the liquid phase and promotes the shrinkage during sintering. Statistical analysis revealed that hardness was primarily affected by phosphorous content, with nickel having a lesser but still significant impact. The statistical model can predict the hardness of the matrix based on its chemical composition. This model, with a determination coefficient of approximately 80%, can be valuable for developing new metal matrices for diamond-impregnated tools, particularly for wire saw beads production. Full article
Show Figures

Figure 1

14 pages, 1353 KiB  
Article
One-Pot Syntheses and Characterization of Group VI Carbonyl NHC Coordination Compounds
by Zala Stopar, Evelin Gruden, Melita Tramšek and Gašper Tavčar
Molecules 2025, 30(11), 2433; https://doi.org/10.3390/molecules30112433 - 2 Jun 2025
Viewed by 518
Abstract
The reactions of N-heterocyclic carbenes (IMesNHC and IPrNHC) with transition metal carbonyls of group VI (Cr(CO)6, Mo(CO)6, and W(CO)6) were carried out in acetonitrile in simple one-pot syntheses and led to the formation of the coordination [...] Read more.
The reactions of N-heterocyclic carbenes (IMesNHC and IPrNHC) with transition metal carbonyls of group VI (Cr(CO)6, Mo(CO)6, and W(CO)6) were carried out in acetonitrile in simple one-pot syntheses and led to the formation of the coordination compounds IMesNHC–Cr(CO)5 (1a), IMesNHC–Mo(CO)5 (2a), IMesNHC–W(CO)5 (3a), IPrNHC–Cr(CO)5 (1b), IPrNHC–Mo(CO)5 (2b), and IPrNHC–W(CO)5 (3b). With the exception of 1b, the coordination compounds were formed selectively and in high yields. The method represents an effective and easy-to-perform alternative to the previously described methods for NHC–M(CO)5 (M = Cr, Mo, W). All prepared compounds were characterized by NMR and Raman spectroscopy. Compounds 1a, 2a, 3a, and 2b were also crystallized and structurally characterized by X-ray structure analysis. Finally, the structural features of all compounds were compared with DFT calculations of structurally optimized coordination compounds. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry—2nd Edition)
Show Figures

Graphical abstract

21 pages, 6797 KiB  
Article
The Catalytic Performance of Metal-Oxide-Based Catalysts in the Synthesis of Glycerol Carbonate: Toward the Green Valorization of Glycerol
by Mirna Lea Charif, Rami Doukeh and Dragos Mihael Ciuparu
Catalysts 2025, 15(6), 534; https://doi.org/10.3390/catal15060534 - 27 May 2025
Cited by 1 | Viewed by 592
Abstract
The rising concern over carbon dioxide (CO2) emissions has led to increased research on its conversion into value-added chemicals. Glycerol carbonate (GC), a versatile and eco-friendly compound, can be synthesized via the catalytic carbonylation of glycerol with CO2. This [...] Read more.
The rising concern over carbon dioxide (CO2) emissions has led to increased research on its conversion into value-added chemicals. Glycerol carbonate (GC), a versatile and eco-friendly compound, can be synthesized via the catalytic carbonylation of glycerol with CO2. This study investigates the catalytic performance of three novel mixed metal oxide catalysts, Ti-Al-Mg, Ti-Cr-Mg, and Ti-Fe-Mg, synthesized via co-precipitation. The catalysts were characterized using XRD, SEM, XPS, CO2-TPD, FTIR, TGA-DTG, and nitrogen adsorption–desorption isotherms. Among the tested systems, Ti-Al-Mg demonstrated the highest surface area, optimal porosity, and a balanced acid–base profile, resulting in superior catalytic activity. Under optimized conditions (175 °C, 10 bar CO2, 4 h), Ti-Al-Mg achieved a maximum GC yield of 36.1%, outperforming Ti-Cr-Mg and Ti-Fe-Mg. The improved performance was attributed to the synergistic effects of its physicochemical properties, including high magnesium content and lower CO2 binding energy, which favored CO2 activation and glycerol conversion while minimizing side reactions. These findings highlight the potential of tailored mixed metal oxide systems for efficient CO2 immobilization and sustainable glycerol valorization. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Catalytic Materials)
Show Figures

Figure 1

19 pages, 9889 KiB  
Article
Brazing of Thin-Walled Stainless Steel Using Environmentally Friendly Ni-Cr-P Electrodeposition: Degradation Mechanism of Brazed Joint and Corresponding Improvement Strategy
by Shubin Liu, Yuqi Luan and Ikuo Shohji
Materials 2025, 18(10), 2406; https://doi.org/10.3390/ma18102406 - 21 May 2025
Viewed by 422
Abstract
A new brazing process for thin-walled stainless steel was proposed by combining green and efficient Ni-Cr-P electrodeposition with brazing technology. Novel information was attained by analyzing the electrodeposited Ni-Cr-P interlayers and the brazed joints and characterizing them using a combination of advanced techniques. [...] Read more.
A new brazing process for thin-walled stainless steel was proposed by combining green and efficient Ni-Cr-P electrodeposition with brazing technology. Novel information was attained by analyzing the electrodeposited Ni-Cr-P interlayers and the brazed joints and characterizing them using a combination of advanced techniques. The incorporation mechanisms of impurities (i.e., oxygen and carbon) in the Ni-Cr-P interlayers electrodeposited from a Cr(III)–glycine solution were revealed. The oxygen mainly came from the Cr(III)–hydroxy complexes formed by the hydrolysis and olation between Cr(III) complexes and OH ions near the cathode. Glycine did not directly participate in the cathode reactions but decomposed on the anode surface. These byproducts (carbonyl compounds) were directly incorporated into the interlayers in a molecular pattern, forming a weak link to the metallic chromium. Brazing test results showed that a certain amount of Cr2O3 powder, formed by the decomposition of chromium hydroxides in the interlayers under high-temperature catalysis, would cause the degradation of the brazed joints. Using the step-wise brazing method, the brazing sheets were first annealed to eliminate the impurities by utilizing the strong reducing effect of hydrogen and the weak link characteristics between carbonyl compounds and metallic chromium atoms. An excellent joint with a shear strength of 63.0 MPa was obtained by subsequent brazing. The microstructural analysis showed that the brazed seam was mainly composed of a Ni-Fe-Cr solid solution, the Ni3P eutectic phase, and small quantities of the Ni5P2 phase scattered in the Ni3P eutectic phase. Fracture mode observations showed that the cracks extended along the interface between the brittle P-containing phase and the primary phase, resulting in fracture. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

24 pages, 4726 KiB  
Article
Preparation of Ru-Based Systems Through Metal Carbonyl Cluster Decomposition for the Base-Free 5-Hydroxymethylfurfural (HMF) Oxidation
by Francesca Liuzzi, Francesco Di Renzo, Cristiana Cesari, Alice Mammi, Lorenzo Monti, Alessandro Allegri, Stefano Zacchini, Giuseppe Fornasari, Nikolaos Dimitratos and Stefania Albonetti
Molecules 2025, 30(10), 2120; https://doi.org/10.3390/molecules30102120 - 10 May 2025
Viewed by 578
Abstract
Metal carbonyl clusters, which can be seen as monodispersed and atomically defined nanoparticles stabilized by CO ligands, were used to prepare Ru-based catalysts with tuned basic properties to conduct the 5-hydroxymethylfurfural (HMF) aerobic oxidation to produce 2,5-furandicarboxylic acid (FDCA) in base-free conditions. The [...] Read more.
Metal carbonyl clusters, which can be seen as monodispersed and atomically defined nanoparticles stabilized by CO ligands, were used to prepare Ru-based catalysts with tuned basic properties to conduct the 5-hydroxymethylfurfural (HMF) aerobic oxidation to produce 2,5-furandicarboxylic acid (FDCA) in base-free conditions. The controlled decomposition of the carbonyl cluster [HRu3(CO)11], a methodology not yet applied to Ru catalysts for this reaction, on different supports focusing on controlling and tuning the basic properties of support allowed the formation of small Ru nanoparticles with a mean diameter of around 1 nm. The catalytic systems obtained resulted in more activity in the HMF oxidation than those prepared through a more common salt-impregnation technique, and the deposition of Ru nanoparticles on materials with basic functionalities has allowed avoiding the use of basic solutions in the reaction. The characterization by CO2-TPD of Mg(Al)O catalysts obtained from decomposition of layered double hydroxide hydrotalcites with different composition and activation has allowed disclosure of an important correlation between the selectivity of FDCA and the fraction of weak basic sites, which is decreased by the calcination treatment at increased temperature. Full article
Show Figures

Graphical abstract

25 pages, 6816 KiB  
Article
Mechanisms of Cu2+ Immobilization Using Carbonyl Iron Powder–Biochar Composites for Remediating Acidic Soils from Copper Sulfide Mining Areas
by Shuting Wang, Jinchun Xue, Min He, Xiaojuan Wang and Hui Qi
Sustainability 2025, 17(10), 4281; https://doi.org/10.3390/su17104281 - 8 May 2025
Viewed by 644
Abstract
Soil heavy metal contamination poses critical challenges to ecological sustainability in mining regions, particularly in acidic soils from copper sulfide mines. This study developed a sustainable remediation strategy using a carbonyl iron powder–biochar composite (CIP@BC) derived from agricultural waste (rice husk) and industrial [...] Read more.
Soil heavy metal contamination poses critical challenges to ecological sustainability in mining regions, particularly in acidic soils from copper sulfide mines. This study developed a sustainable remediation strategy using a carbonyl iron powder–biochar composite (CIP@BC) derived from agricultural waste (rice husk) and industrial byproducts. The composite was synthesized through an energy-efficient mechanical grinding method at a 10:1 mass ratio of biochar to carbonyl iron powder, aligning with circular economy principles. Material characterization revealed CIP particles uniformly embedded within biochar’s porous structure, synergistically enhancing surface functionality and redox activity. CIP@BC demonstrated exceptional Cu2+ immobilization capacity (910.5 mg·g−1), achieved through chemisorption and monolayer adsorption mechanisms. Notably, the remediation process concurrently improved key soil health parameters. Soil incubation trials demonstrated that 6% CIP@BC application elevated soil pH from 4.27 to 6.19, reduced total Cu content by 29.43%, and decreased DTPA-extractable Cu by 67.26%. This treatment effectively transformed Cu speciation from bioavailable to residual fractions. Concurrent improvements in electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter (OM), and soil water content (SWC) collectively highlighted the composite’s multifunctional remediation potential. This study bridges environmental remediation with sustainable land management through an innovative waste-to-resource approach that remediates acidic mine soils. The dual functionality of CIP@BC in contaminant immobilization and soil quality restoration provides a scalable solution. Full article
Show Figures

Figure 1

Back to TopTop