Plant Abiotic Stress: Mechanisms, Tolerance and Sustainable Management

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 3616

Special Issue Editors


E-Mail Website
Guest Editor
Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
Interests: environmental science; agricultural plant science; plant physiology; environmental stresses; food science
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Adaptive Cropping Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
Interests: photosynthesis; plant–water relations; climate change; elevated CO2; water stress; high-temperature stress; plant adaptation to environment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plants face increasingly frequent and severe abiotic stresses in their environments, most notably drought, salinity, extreme temperatures, nutrient deficiencies, and heavy metal toxicity. All of these stresses could have serious adverse effects on plant growth, development, and productivity, thus posing serious challenges to food security and the sustainability of agriculture.

In this Special Issue, we explore recent advances and discoveries on the following topics:

  • Mechanisms of plant response to abiotic stresses;
  • Signal pathways and regulatory networks involved in stress perception and adaptation;
  • Biotechnological approaches and breeding strategies for engineering and developing abiotic stress resilient cultivars;
  • Agronomic and management practices for sustainable cultivation under abiotic stress conditions;
  • Applications of omics technologies to unravel the complexities of plant stress biology;
  • Field evaluation of abiotic stress management methods.

Prof. Dr. Mohamed El Yamani
Dr. James A. Bunce
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant abiotic stress
  • drought
  • salinity
  • nutrient deficiency
  • stress tolerance
  • stress management
  • sustainable agriculture
  • omics technologies
  • biotechnological approaches
  • breeding strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 7427 KiB  
Article
Genome-Wide Analysis of Soybean Polyamine Oxidase Genes Reveals Their Roles in Flower Development and Response to Abiotic Stress
by Yang Yu, Bohuai Jin, Meina Gao, Ke Zhang, Zhouli Liu and Xiangbo Duan
Plants 2025, 14(12), 1867; https://doi.org/10.3390/plants14121867 - 18 Jun 2025
Viewed by 422
Abstract
Polyamine oxidase (PAO) is an important enzyme that functions in the catabolism of polyamines. While plant PAOs have been studied in several species, there is a lack of research on this gene family in soybean (Glycine max L.), one of the major [...] Read more.
Polyamine oxidase (PAO) is an important enzyme that functions in the catabolism of polyamines. While plant PAOs have been studied in several species, there is a lack of research on this gene family in soybean (Glycine max L.), one of the major food crops worldwide. Here, a genome-wide analysis identified 16 GmPAOs from the soybean genome, which were unevenly distributed in nine soybean chromosomes and were then phylogenetically classified into three groups. Collinearity analysis identified 17 duplicated gene pairs from the GmPAO family, and their Ka/Ks values were all less than one, indicating that the GmPAO family has undergone purifying selection during evolution. Analyses of the conserved motif and gene structure revealed the sequence differences among the GmPAOs of the three groups, suggestive of their functional differentiation. Additionally, the prediction of the secondary and tertiary structure of the GmPAOs provided a further basis for revealing their biological functions. A number of cis-acting elements relevant to development, phytohormone, and stress response were discovered in the promoter regions of the GmPAOs, which might be responsible for their functional diversities. Expression pattern analysis indicated that more than half of the GmPAOs showed preference in flower, two showed specificity in stem and shoot apical meristem, whereas four were barely expressed in all samples. Expression profiling of the GmPAOs also revealed that they were involved in the response to abiotic stresses, including cold, drought, and especially submergence stress. All these results lay an important foundation for further characterizing the functional roles of GmPAOs in soybean development and response to abiotic stresses. Full article
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 4773 KiB  
Review
Structure-Based Function of Humic Acid in Abiotic Stress Alleviation in Plants: A Review
by Farhan Nabi, Ahmed Sarfaraz, Rakhwe Kama, Razia Kanwal and Huashou Li
Plants 2025, 14(13), 1916; https://doi.org/10.3390/plants14131916 - 22 Jun 2025
Viewed by 892
Abstract
Humic acid (HA), a major component of soil organic matter, is a naturally occurring macromolecule formed through the decomposition of plant and microbial residues. Its molecular structure comprises functional groups such as carboxyl, phenolic, hydroxyl, and carbonyl functional groups, which enable HA to [...] Read more.
Humic acid (HA), a major component of soil organic matter, is a naturally occurring macromolecule formed through the decomposition of plant and microbial residues. Its molecular structure comprises functional groups such as carboxyl, phenolic, hydroxyl, and carbonyl functional groups, which enable HA to interact with soil particles, nutrients, and biological systems. These interactions significantly contribute to soil fertility and overall plant productivity. Functionally, HA enhances soil health by increasing cation exchange capacity, improving water retention, and promoting the formation and stabilization of soil aggregates. In addition to its role in soil conditioning, HA is essential in mitigating plant stress. It achieves this by modulating antioxidant enzyme activity, stabilizing cellular membranes, and alleviating the adverse effects of abiotic stressors such as salinity, drought, and heavy metal toxicity. This review highlights the structural characteristics of HA, its structure-based functions, and the mechanisms involved in plant stress alleviation. Additionally, we explore how HA can be modified through physical, chemical, and biological approaches to enhance its agronomic performance. These modifications are designed to improve HA agronomic efficiency by increasing nutrient bioavailability, reducing environmental losses through minimized leaching and volatilization, and supporting sustainable agricultural practices. Overall, this review underscores the multifaceted roles of HA in promoting plant resilience to environmental stress, highlighting its potential as a key agent in the development of sustainable and eco-friendly crop production systems. Full article
Show Figures

Figure 1

25 pages, 2837 KiB  
Review
Oxidative Stress in Rice (Oryza sativa): Mechanisms, Impact, and Adaptive Strategies
by Lady Edlenill J. Tavu and Mark Christian Felipe R. Redillas
Plants 2025, 14(10), 1463; https://doi.org/10.3390/plants14101463 - 14 May 2025
Viewed by 1093
Abstract
Oxidative stress, arising from environmental challenges such as drought, salinity, extreme temperatures, and pathogen attack, significantly impairs rice (Oryza sativa) growth, yield, and grain quality. This review provides a comprehensive synthesis of the mechanisms underlying oxidative stress in rice, with a [...] Read more.
Oxidative stress, arising from environmental challenges such as drought, salinity, extreme temperatures, and pathogen attack, significantly impairs rice (Oryza sativa) growth, yield, and grain quality. This review provides a comprehensive synthesis of the mechanisms underlying oxidative stress in rice, with a focus on the generation of reactive oxygen species (ROS), their physiological and molecular impacts, and the antioxidant defense systems employed for mitigation. The roles of enzymatic and non-enzymatic antioxidants, along with key transcription factors, signaling pathways, and stress-responsive genes, are explored in detail. This study further highlights varietal differences in oxidative stress tolerance, emphasizing traditional, modern, and genetically engineered rice cultivars. Recent advances in breeding strategies, gene editing technologies, and multi-omics integration are discussed as promising approaches for enhancing stress resilience. The regulatory influence of epigenetic modifications and small RNAs in modulating oxidative stress responses is also examined. Finally, this paper identifies critical research gaps—including the need for multi-stress tolerance, long-term field validation, and deeper insights into non-coding RNA functions—and offers recommendations to inform the development of climate-resilient rice varieties through integrative, sustainable strategies. Full article
Show Figures

Figure 1

Back to TopTop