Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = medicinal and edible mushrooms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4384 KB  
Article
Study on the Mechanism of Ganoderma lucidum Polysaccharides for Ameliorating Dyslipidemia via Regulating Gut Microbiota and Fecal Metabolites
by Wenshuai Wang, Rui Sun, Jianjun Zhang, Le Jia and Yuanjun Dong
Biomolecules 2026, 16(1), 153; https://doi.org/10.3390/biom16010153 - 14 Jan 2026
Viewed by 8
Abstract
In today’s world, unhealthy living habits have contributed to the rise in metabolic disorders like hyperlipidemia. Recognized as a popular edible and medicinal mushroom in China and various eastern nations, Ganoderma lucidum is a promising high-value functional and medicinal food with multiple biological [...] Read more.
In today’s world, unhealthy living habits have contributed to the rise in metabolic disorders like hyperlipidemia. Recognized as a popular edible and medicinal mushroom in China and various eastern nations, Ganoderma lucidum is a promising high-value functional and medicinal food with multiple biological activities. Our earlier research has demonstrated that G. lucidum polysaccharides (GLP) showed distinct lipid-lowering abilities by enhancing the response to oxidative stress and inflammation, adjusting bile acid production and lipid regulation factors, and facilitating reverse cholesterol transport through Nrf2-Keap1, NF-κB, LXRα-ABCA1/ABCG1, CYP7A1-CYP27A1, and FXR-FGF15 pathways, hence we delved deeper into the effects of GLP on hyperlipidemia, focusing on its structural characterization, gut microbiota, and fecal metabolites. Our findings showed that GLP changed the composition and structure of gut microbiota, and 10 key biomarker strains screened by LEfSe analysis markedly increased the abundance of energy metabolism, and cell growth and death pathways which were found by PICRUSt2. In addition, GLP intervention significantly altered the fecal metabolites, which enriched in amino acid metabolism and lipid metabolism pathways. The results of structural characterization showed that GLP, with the molecular weight of 12.53 kDa, consisted of pyranose rings and was linked by α-type and β-type glycosidic bonds, and its overall morphology appeared as an irregular flaky structure with some flecks and holes in the surface. Collectively, our study highlighted that the protective effects of GLP were closely associated with the modification of gut microbiota and the regulation of metabolites profiles, thus ameliorating dyslipidemia. Full article
Show Figures

Graphical abstract

12 pages, 2275 KB  
Article
Penicillium bialowiezense Causing Blue Mold on Bag-Cultivated Shiitake (Lentinula edodes) in China: Morphological, Molecular and Pathogenic Characterization
by Tan Wang, Enping Zhou, Caixia Wang, Zhifeng Zhang, Yingjun Zhang, Siliang Huang and Qiuhong Niu
Horticulturae 2026, 12(1), 86; https://doi.org/10.3390/horticulturae12010086 - 12 Jan 2026
Viewed by 138
Abstract
Lentinula edodes (shiitake) is a major edible and medicinal mushroom and a key component of the horticultural mushroom industry in East Asia. During April–June 2024 cropping season, a widespread blue mold outbreak was observed on bag-cultivated shiitake in Xixia County, Henan Province, China. [...] Read more.
Lentinula edodes (shiitake) is a major edible and medicinal mushroom and a key component of the horticultural mushroom industry in East Asia. During April–June 2024 cropping season, a widespread blue mold outbreak was observed on bag-cultivated shiitake in Xixia County, Henan Province, China. Affected cultivation rooms showed extensive blue-green sporulation on the exposed surfaces of substrate blocks and on developing and mature fruiting bodies, leading to rapid loss of marketability. To clarify the etiology of this disease, we coupled field surveys with morphological, molecular, and pathogenicity analyses. Fifty-five Penicillium isolates were obtained from symptomatic cultivation bags. Three representative isolates (LE06, LE15, and LE26) were characterized in detail. Colonies on PDA produced velutinous to floccose mycelia with blue-green conidial masses and terverticillate penicilli bearing smooth-walled, globose conidia. Sequencing of four loci—the internal transcribed spacer (ITS1-5.8S-ITS2), β-tubulin (benA), calmodulin gene (CaM), and RNA polymerase II second largest subunit (rpb2)—followed by multilocus phylogenetic analysis placed all three isolates in a well-supported clade with the ex-type CBS 227.28 of Penicillium bialowiezense. Inoculation of healthy shiitake cultivation bags with conidial suspensions (1 × 106 conidia mL−1) reproduced typical blue mold symptoms on substrate surfaces and fruiting bodies within 40 days post inoculation, whereas mock-inoculated controls remained symptomless. The pathogen was consistently reisolated from diseased tissues and showed identical ITS and benA sequences to the inoculated strains, thereby fulfilling Koch’s postulates. This is the first confirmed report of P. bialowiezense causing blue mold on shiitake, and it expands the known host range of this species. Our findings highlight the vulnerability of bag cultivation systems to airborne Penicillium contaminants and underscore the need for improved hygiene, environmental management, and targeted diagnostics in commercial shiitake production. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Figure 1

26 pages, 1529 KB  
Article
Sustainable Valorization of Tsipouro Liquid Waste via Fermentation for Hericium erinaceus Biomass Production
by Eirini Stini, Ilias Diamantis, Stamatina Kallithraka, Seraphim Papanikolaou and Panagiota Diamantopoulou
Processes 2026, 14(1), 168; https://doi.org/10.3390/pr14010168 - 4 Jan 2026
Viewed by 214
Abstract
This study investigates the potential of tsipouro liquid waste (TLW) as a sustainable substrate for cultivating the edible–medicinal mushroom Hericium erinaceus under static liquid fermentation. TLW naturally contains high glycerol levels and significant quantities of phenolic compounds; therefore, five media (0–50% v/ [...] Read more.
This study investigates the potential of tsipouro liquid waste (TLW) as a sustainable substrate for cultivating the edible–medicinal mushroom Hericium erinaceus under static liquid fermentation. TLW naturally contains high glycerol levels and significant quantities of phenolic compounds; therefore, five media (0–50% v/v TLW) with varying phenolic concentrations and a standard initial glycerol level (~20 g/L) were prepared to simulate TLW-type substrates. Throughout fermentation, physicochemical parameters in the culture medium (pH, electrical conductivity, total sugars, free amino nitrogen, proteins, laccase activity, total phenolics, ethanol, glycerol) and biomass composition (intracellular polysaccharides, proteins, lipids, phenolic compounds, flavonoids, triterpenoids, antioxidant activity) were determined. Results showed that increasing TLW concentration enhanced biomass production and bioactive metabolite accumulation. The highest dry biomass (22.8 g/L) and protein (4.06 g/L) content were obtained in 50% v/v TLW, while maximum polysaccharides (6.8 g/L) occurred in 17% v/v TLW. Fungal growth led to a reduction of up to 74% in total phenolic content, indicating simultaneous bioremediation potential. Fruiting body formation—rare and uncommon in liquid cultures—occurred at the end of fermentation period. Fruiting bodies contained higher protein (24.5% w/w) and total phenolic compounds (13.36 mg GAE/g), whereas mycelium accumulated more polysaccharides (49% w/w). This study demonstrates that TLW can serve as a cost-effective, ecofriendly medium for producing high-value H. erinaceus biomass and bioactive metabolites, supporting circular bioeconomy applications in the alcoholic beverage sector. Full article
(This article belongs to the Special Issue Resource Utilization of Food Industry Byproducts)
Show Figures

Graphical abstract

23 pages, 4266 KB  
Article
Symbiosis Among Naematelia aurantialba, Stereum hirsutum, and Their Associated Microbiome in the Composition of a Cultivated Mushroom Complex JinEr
by Kaixuan Zhang, Yingli Cai, Xiaofei Shi, Zhuyue Yan, Qiuchen Huang, Jesus Perez-Moreno, Dong Liu, Zhenyan Yang, Chengmo Yang, Fuqiang Yu and Wei Liu
J. Fungi 2026, 12(1), 41; https://doi.org/10.3390/jof12010041 - 4 Jan 2026
Viewed by 421
Abstract
The JinEr mushroom (“Golden Ear”), a globally rare edible and medicinal macrofungus, comprises a symbiotic complex formed by the symbiotic association of Naematelia aurantialba (Tremellomycetes) and Stereum hirsutum (Agaricomycetes). However, the interactions between these fungi and their associated microbiome [...] Read more.
The JinEr mushroom (“Golden Ear”), a globally rare edible and medicinal macrofungus, comprises a symbiotic complex formed by the symbiotic association of Naematelia aurantialba (Tremellomycetes) and Stereum hirsutum (Agaricomycetes). However, the interactions between these fungi and their associated microbiome remain poorly understood. This study employed high-throughput amplicon sequencing, in situ microbial isolation and culture, and microbial confrontation assays to analyze microbial diversity, community structure, and potential functional roles of the endomycotic bacterial community within JinEr basidiomata and its cultivation substrate. Molecular analysis confirmed the heterogenous composition of the basidiomata, revealing N. aurantialba constitutes less than 20% of the fungal biomass, while S. hirsutum predominates, accounting for approximately 80%. Endomycotic fungi accounted for 0.33% (relative abundance) of the fungal community. Prokaryotic analysis identified Delftia and Sphingomonas as the dominant endomycotic bacterial genera within basidiomata, comprising 85.42% of prokaryotic sequences. Endomycotic bacterial diversity differed significantly (p < 0.05) between basidiomata and substrate, indicating host-specific selection. Cultivation-based approaches yielded 140 culturable bacterial isolates (spanning four families and seven genera) from basidiomata core tissues. In vitro co-culture experiments demonstrated that eight representative bacterial strains exhibited compatible growth with both hosts, while one Enterobacteriaceae strain displayed antagonism towards them. These findings confirm that the heterogeneous JinEr basidiomata harbor a specific prokaryotic assemblage potentially engaged in putative symbiotic or commensal associations with the host fungi. This research advances the understanding of microbial ecology in this unique fungal complex and establishes a culture repository of associated bacteria. This collection facilitates subsequent screening for beneficial bacterial strains to enhance the JinEr cultivation system through the provision of symbiotic microorganisms. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

19 pages, 8438 KB  
Article
Looking at the Possibility of Using Mushroom Mycelium for Developing Leather-like Materials Aligned with Eco-Friendly and Sustainable Fashion Trends
by Worawoot Aiduang, Thanawin Patipattanakul, Yutthaphum Keduk, Apiwit Rattanapat, Phumin Phumila, Praween Jinanukul, Phongeun Sysouphanthong, Orlavanh Xayyavong, Kritsana Jatuwong and Saisamorn Lumyong
Life 2025, 15(11), 1746; https://doi.org/10.3390/life15111746 - 13 Nov 2025
Viewed by 1810
Abstract
The growing demand for sustainable alternatives to animal and synthetic leathers has accelerated interest in mycelium-based materials as an eco-friendly solution for the fashion industry. This study explores the potential of mushroom mycelium to create leather-like materials that align with circular fashion principles. [...] Read more.
The growing demand for sustainable alternatives to animal and synthetic leathers has accelerated interest in mycelium-based materials as an eco-friendly solution for the fashion industry. This study explores the potential of mushroom mycelium to create leather-like materials that align with circular fashion principles. Five species of edible and medicinal mushrooms were cultivated on sawdust substrates and evaluated for their growth performance, physical properties, and suitability as leather substitutes. Growth analysis revealed distinct species-specific behaviors: Cubamyces flavidus and Lentinus squarrosulus exhibited rapid colonization, achieving full substrate coverage within five days and forming dense mycelial networks at 14 days. In contrast, despite growing more slowly, Sanghuangporus vaninii and Ganoderma gibbosum formed thicker, more compact mats that might be suitable for strong leather-like materials. Visual and structural assessments showed diverse textures, colors, and hyphal architectures resembling natural leather. Physical characterization revealed shrinkage ranging from 13.17% to 24.09%, higher than for cow tanned leather (>5%) and PU microfiber (0.1–1.2%), suggesting a need for stabilization treatments. Apparent densities ranged from 0.13 g/cm3 to 0.30 g/cm3, lower than those of cow leather (0.49 g/cm3) and PU leather (0.38 g/cm3), highlighting species-specific hyphal structures that influence flexibility, porosity, and strength. SEM imaging confirmed the presence of interwoven hyphal mats resembling the fibrous architecture of natural leather, with S. vaninii showing the most uniform and continuous structure. Water absorption was significantly higher in mycelium sheets, consistent with their microporous nature, though S. vaninii showed the lowest uptake, reflecting possible natural water absorption. Thermogravimetric analysis revealed three-stage degradation profiles, with S. vaninii and G. gibbosum retaining >35% mass at 400 °C, indicating strong thermal stability for processing techniques such as hot pressing and finishing. Overall, the results demonstrate mycelium-based leathers as a biodegradable, low-impact alternative that can replicate the visual and functional characteristics of traditional leather, with opportunities for further improvement in substrate optimization, eco-tanning, surface coating, and scalable production toward a sustainable fashion future. Full article
(This article belongs to the Special Issue Trends in Microbiology 2025)
Show Figures

Figure 1

19 pages, 1936 KB  
Article
Domestication Cultivation and Nutritional Analysis of Hericium coralloides
by Yun Li, Jiarong Cai, Xiaomin Li, Xin Hu, Junli Zhang, Xiaoping Wu and Junsheng Fu
J. Fungi 2025, 11(11), 785; https://doi.org/10.3390/jof11110785 - 31 Oct 2025
Viewed by 1108
Abstract
Hericium coralloides is a valuable medicinal and edible mushroom renowned for its unique bioactive compounds. This study focuses on the isolation of a wild strain (SH001) exhibiting promising cultivation potential and health promoting properties. A wild fungal strain from the Tibetan Plateau was [...] Read more.
Hericium coralloides is a valuable medicinal and edible mushroom renowned for its unique bioactive compounds. This study focuses on the isolation of a wild strain (SH001) exhibiting promising cultivation potential and health promoting properties. A wild fungal strain from the Tibetan Plateau was isolated and identified as a novel H. coralloides based on its morphological and molecular characteristics. The optimal growth conditions were found to be 30 °C, pH 7.0, fructose as the preferred carbon source, and yeast extract as the optimal nitrogen source. Nutritional analysis revealed that the fruiting bodies were rich in protein (15.4 g/100 g dry weight), dietary fiber (34.7 g/100 g dry weight), and minerals, while being low in fat (3.5 g/100 g dry weight). The most abundant amino acids were glutamic acid, followed by aspartic acid. The polysaccharides exhibited significant antioxidant activity, with ABTS+ scavenging comparable to that of Vitamin C (Vc), achieving a clearance rate of 96.95% at concentrations between 0.25–5.00 mg/mL. At a concentration of 5 mg/mL, the DPPH and OH radical scavenging activities reached their peak (83.77% and 67.31%, respectively), along with the highest iron ion reducing capacity (FRAP value: 4.43 mmol/L. Polysaccharides also exhibited notable anticancer activity, inhibiting HepG2 liver cancer cells and MDA-MB-468 breast cancer cells, with IC50 values of 3.896 mg/mL and 2.561 mg/mL, respectively. This study demonstrates that wild H. coralloides can be successfully cultivated in vitro. In conclusion, the fruiting bodies possess substantial nutritional value, and the polysaccharides extracted from them show promising antioxidant and anticancer activities, particularly against HepG2 liver cancer cells and MDA-MB-468 breast cancer cells. Full article
(This article belongs to the Special Issue Research Progress on Edible Fungi)
Show Figures

Figure 1

26 pages, 1975 KB  
Review
Green-Synthesized Nanomaterials from Edible and Medicinal Mushrooms: A Sustainable Strategy Against Antimicrobial Resistance
by Gréta Törős, Hassan El-Ramady, Duyen H. H. Nguyen, Walaa Alibrahem, Nihad Kharrat Helu, Reina Atieh, Arjun Muthu, Szintia Jevcsák, Dávid Semsey, Neama Abdalla, Tamer Elsakhawy, Alexandra Florence Tóth, Péter Tamás Nagy and József Prokisch
Pharmaceutics 2025, 17(11), 1388; https://doi.org/10.3390/pharmaceutics17111388 - 27 Oct 2025
Viewed by 1225
Abstract
Antimicrobial resistance (AMR) poses an escalating global health crisis, projected to cause up to 10 million deaths annually by 2050. Conventional antibiotics are increasingly ineffective due to microbial adaptation, overuse, and disruption of gut microbiota. Nanotechnology offers promising alternatives, but traditional nanoparticle synthesis [...] Read more.
Antimicrobial resistance (AMR) poses an escalating global health crisis, projected to cause up to 10 million deaths annually by 2050. Conventional antibiotics are increasingly ineffective due to microbial adaptation, overuse, and disruption of gut microbiota. Nanotechnology offers promising alternatives, but traditional nanoparticle synthesis often relies on toxic chemicals and energy-intensive processes. This review explores mushroom-derived nanoparticles (myco-NPs) as sustainable, eco-friendly antimicrobials. Edible and medicinal mushrooms contain bioactive compounds, including polysaccharides, flavonoids, and proteins, that act as reducing and stabilizing agents in nanoparticle biosynthesis. Myco-NPs exhibit antimicrobial activity through membrane disruption, oxidative stress, immune modulation, and biofilm inhibition, while also demonstrating synergistic effects with antibiotics and potential roles in regulating the gut microbiota. Recent advances highlight their potential applications in medicine, food safety, and environmental protection. However, challenges remain regarding standardization, safety evaluation, and large-scale production. We emphasize interdisciplinary collaboration as essential to translating mushroom-based nanotechnology into effective clinical and industrial solutions. Full article
(This article belongs to the Special Issue Advances in Nanotechnology-Based Drug Delivery Systems, 2nd Edition)
Show Figures

Graphical abstract

32 pages, 5250 KB  
Review
Artificial Intelligence in Edible Mushroom Cultivation, Breeding, and Classification: A Comprehensive Review
by Muharagi Samwel Jacob, Anran Xu, Keqing Qian, Zhengxiang Qi, Xiao Li and Bo Zhang
J. Fungi 2025, 11(11), 758; https://doi.org/10.3390/jof11110758 - 22 Oct 2025
Cited by 1 | Viewed by 3043
Abstract
Edible mushrooms have gained global popularity due to their nutritional value, medicinal properties, bioactive compounds and industrial applications. Despite their long-standing roles in ecology, nutrition, and traditional medicine, their additional functions in cultivation, breeding, and classification processes are still in their infancy due [...] Read more.
Edible mushrooms have gained global popularity due to their nutritional value, medicinal properties, bioactive compounds and industrial applications. Despite their long-standing roles in ecology, nutrition, and traditional medicine, their additional functions in cultivation, breeding, and classification processes are still in their infancy due to technological constraints. The advent of Artificial Intelligence (AI) technologies has transformed the cultivation process of mushrooms, genetic breeding, and classification methods. However, the analysis of the application of AI in the mushroom production cycle is currently scattered and unorganized. This comprehensive review explores the application of AI technologies in mushroom cultivation, breeding, and classification. Four databases (Scopus, IEEE Xplore, Web of Science, and PubMed) and one search engine (Google Scholar) were used to perform a thorough review of the literature on the utility of AI in various aspects of the mushroom production cycle, including intelligent environmental control, disease detection, yield prediction, germplasm characterization, genotype–phenotype integration, genome editing, gene mining, multi-omics, automatic species identification and grading. In order to fully realize the potential of these edge-cutting AI technologies in transforming mushroom breeding, classification, and cultivation, this review addresses challenges and future perspectives while calling for interdisciplinary approaches and multimodal fusion. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi, 4th Edition)
Show Figures

Figure 1

20 pages, 3649 KB  
Article
Transcriptome Analysis and Its Application in Screening Genes Related to the Growth and Development of Sarcomyxa edulis
by Wanzhu Jiang, Xiao Huang, Peng Wang, Bilal Ahmad, Ting Yang, Ziyuan Wang, Tianyu Ren and Jize Xu
J. Fungi 2025, 11(10), 750; https://doi.org/10.3390/jof11100750 - 20 Oct 2025
Viewed by 1008
Abstract
Sarcomyxa edulis is a characteristic edible and medicinal mushroom found in Northeast China that is highly valued by consumers for its tender texture, pleasant flavor, and high nutritional value. To gain a deeper understanding of the molecular mechanisms underlying the development of S. [...] Read more.
Sarcomyxa edulis is a characteristic edible and medicinal mushroom found in Northeast China that is highly valued by consumers for its tender texture, pleasant flavor, and high nutritional value. To gain a deeper understanding of the molecular mechanisms underlying the development of S. edulis fruiting bodies, this study utilized the Illumina NovaSeq platform to perform transcriptome sequencing at three growth and development stages of S. edulis strain SE8, namely primordia (SE8–P), fruiting body differentiation (SE8–F), and mature fruiting body (SE8–M). A total of 54.67 Gb of clean data was obtained, with a GC content of around 51%. After assembly, 36,423 Unigenes were obtained. Functional annotation was performed on the Unigenes, resulting in 21,206 Unigene annotation results. Differential expression gene analysis showed that 79,606 and 523 DEGs were annotated in at least one database during the SE8–P vs. SE8–F, SE8–F vs. SE8–M, and SE8–P vs. SE8–M processes, respectively. Among these, the genes encoding aldehyde dehydrogenase and fungal hydrophobins were consistently downregulated, playing a negative regulatory role in the growth and development of S. edulis. The genes encoding glycoside hydrolase and AB hydrolase superfamily proteins were consistently upregulated, playing a positive regulatory role in growth and development. Among these, the genes encoding aldehyde dehydrogenase were annotated to the Tryptophan metabolism (ko00380) pathway through KEGG, suggesting that aldehyde dehydrogenase regulates indoacetate formation in the fruiting body of S. edulis. The accuracy of RNA–Seq and DEG analysis was validated using quantitative PCR. This study enriches our knowledge of the genetic information and provides a theoretical basis for the molecular mechanisms of fruiting body development of S. edulis. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Figure 1

16 pages, 687 KB  
Review
Proteases from Pleurotus spp.: Properties, Production and Biotechnological Applications
by Adriane Toledo da Silva, Liliana Aguilar-Marcelino, Amanda do Carmo Alves, Débora Castro Toledo de Souza, Ana Carolina Silva, Jhennifer Cristina de Souza Alves, Yanick Leontino Langa, Elias Honorato Gomes and Filippe Elias de Freitas Soares
J. Fungi 2025, 11(10), 702; https://doi.org/10.3390/jof11100702 - 27 Sep 2025
Viewed by 976
Abstract
Proteases (EC 3.4) are hydrolytic enzymes widely used in biotechnological processes, representing about 60 to 70% of the global industrial enzyme market. Edible mushrooms of the genus Pleurotus stand out as excellent producers of these enzymes, in addition to exhibiting high nutritional value [...] Read more.
Proteases (EC 3.4) are hydrolytic enzymes widely used in biotechnological processes, representing about 60 to 70% of the global industrial enzyme market. Edible mushrooms of the genus Pleurotus stand out as excellent producers of these enzymes, in addition to exhibiting high nutritional value and medicinal properties. The proteases produced by these species exhibit broad adaptability to different experimental conditions, including variations in optimal pH and temperature, as well as distinct sensitivities to inhibitors. The production of these enzymes can be intensified by solid-state fermentation (SSF) using low-cost agro-industrial substrates, such as wheat bran, which favors sustainable applications aligned with the circular economy. Parameters such as carbon/nitrogen (C/N) ratio, medium pH, cultivation time, and inoculum age directly influence enzyme productivity. Proteases from Pleurotus spp. show high potential in the biochemical control of parasites such as Meloidogyne incognita, Haemonchus spp., Taenia solium, and Moniezia sp., catalyzing the degradation of the cuticle or eggshell. Other biotechnological applications include milk coagulation, thrombolytic therapies, keratin bioconversion, increased protein digestibility, and use as additives in the food, detergent, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Figure 1

20 pages, 3564 KB  
Article
Advancing Industrial Production of White Grifola frondosa: Liquid Inoculum Culture Parameter Optimization and Molecular Insights into Fruiting Body Development
by Hui-Hui Ren, Jia-Ye Zhang, Jia-Yuan Wang, Shang-Shang Xiao, Su-Ya Liu, Bao-Yue Sun, Shou-Mian Li, Ming Li, Zhi-Qiang Wen and Xiao Li
Horticulturae 2025, 11(10), 1151; https://doi.org/10.3390/horticulturae11101151 - 25 Sep 2025
Cited by 1 | Viewed by 929
Abstract
Grifola frondosa is a valuable medicinal and edible mushroom whose industrial cultivation and developmental mechanisms remain poorly understood. In this study, we systematically investigated the optimal cultivation parameters and molecular basis of fruiting body development using the white strain Gr0001+3 through integrated physiological [...] Read more.
Grifola frondosa is a valuable medicinal and edible mushroom whose industrial cultivation and developmental mechanisms remain poorly understood. In this study, we systematically investigated the optimal cultivation parameters and molecular basis of fruiting body development using the white strain Gr0001+3 through integrated physiological and transcriptomic approaches. The results showed that the optimal liquid medium composition was glucose (28.5 g/L), yeast extract (11.5 g/L), and MgSO4 (2 g/L), with a C/N ratio of 10:1. This composition achieved a mycelial biomass of 2.333 g/L via an orthogonal design. Ideal culture conditions were 100 mL/250 mL liquid volume, 10% inoculum size, and pH 4.0 in single-factor experiments. The fruiting body developmental transcriptomes were analyzed in four stages: early primordia (EP), middle primordia (MP), late primordia (LP), and mature fruiting body (FB). Principal component analysis revealed distinct transcriptional profiles, with greater similarities among later developmental stages. Differential gene expression peaked during the LP vs. FB transition. Functional enrichment (GO/KEGG) showed conserved biological processes in the MP-LP-FB transitions. Heat shock proteins (hsp_78/hsp_82) and the cAMP signaling pathway component (PKAC) were involved in fruiting body development, based on RT-qPCR. This work establishes practical cultivation parameters and offers fundamental insights into the molecular regulation of G. frondosa development, providing a comprehensive foundation for advancing the industrial production of this mushroom. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

28 pages, 1694 KB  
Review
Proteins from Edible Mushrooms: Nutritional Role and Contribution to Well-Being
by Mariana Ionescu, Mirela-Nicoleta Dincă, Mariana Ferdeș, Bianca-Ștefania Zăbavă, Gigel Paraschiv and Georgiana Moiceanu
Foods 2025, 14(18), 3201; https://doi.org/10.3390/foods14183201 - 14 Sep 2025
Cited by 5 | Viewed by 5549
Abstract
Edible mushrooms represent great promise for the future of food and medicine due to their excellent nutritional, functional, and therapeutic properties. Macrofungi synthesize numerous bioactive compounds, among which proteins stand out for their remarkable diversity, both in terms of structure and their nutritional [...] Read more.
Edible mushrooms represent great promise for the future of food and medicine due to their excellent nutritional, functional, and therapeutic properties. Macrofungi synthesize numerous bioactive compounds, among which proteins stand out for their remarkable diversity, both in terms of structure and their nutritional and functional roles. Fungi from the phylum Basidiomycota have a high protein content, characterized by a complete and balanced amino acid composition. Proteins and peptides from mushrooms have both nutritional and functional roles, with numerous health benefits, such as antimicrobial, antiviral, antioxidant, anticancer, hypotensive, angiotensin-converting enzyme (ACE) inhibition, immunomodulatory, and enzymatic activities. Functional proteins include lectins, immunomodulatory proteins, enzymes (laccase, cellulase, ribonuclease), enzyme inhibitors, ribosome-inactivating proteins, and hydrophobins. In addition to traditional cultivation, mushrooms can be grown as mycelium on solid substrates or in submerged culture, followed by protein separation and extraction. The main trends in protein biosynthesis from Basidiomycota involve both improving the properties of the producing strains and optimizing the cultivation methods in submerged culture and on solid substrates. Moreover, new techniques in the fields of genomics, proteomics, and metabolomics will enable increasingly promising results. This paper provides a systematic overview of the types and properties of proteins from edible mushrooms, with a focus on the main beneficial effects of their consumption. Full article
(This article belongs to the Special Issue Mushrooms and Edible Fungi as Future Foods)
Show Figures

Figure 1

22 pages, 1817 KB  
Review
Research Progress on Nutritional Components, Functional Active Components, and Pharmacological Properties of Floccularia luteovirens
by Siyuan Gou, Lihua Tang, Huange Huang, Yanqing Ni, Tongjia Shi, Wensheng Li, Yan Wan and Xu Zhao
Curr. Issues Mol. Biol. 2025, 47(9), 742; https://doi.org/10.3390/cimb47090742 - 10 Sep 2025
Viewed by 1056
Abstract
Edible and medicinal fungi are a general term for large fungi with both edible and medicinal values. As a unique wild edible and medicinal fungus in the Qinghai-Tibet Plateau, the ‘Four Medical Classics’ of the Tang Dynasty has recorded Floccularia luteovirens effects of [...] Read more.
Edible and medicinal fungi are a general term for large fungi with both edible and medicinal values. As a unique wild edible and medicinal fungus in the Qinghai-Tibet Plateau, the ‘Four Medical Classics’ of the Tang Dynasty has recorded Floccularia luteovirens effects of external application and internal administration on swelling, cold disease, and neck stiffness. At present, it has not been artificially domesticated and has significant development potential. The mushroom is rich in nutrients. The crude protein content of 100 g dried product is 33~39% (up to 38.71 g, about 2.2 times that of Flammulina velutipes). It contains 19 amino acids (including 8 essential amino acids for the human body; tryptophan accounts for 21.55~22.63%). It is also rich in minerals such as selenium, zinc (0.09 g/kg), and iron (0.3 g/kg) and vitamins B1 (0.10 mg), B2 (1.10 mg), C (4.50 mg), and E (6.20 mg). Among the functional active substances, polysaccharides (containing 20.1% β-glucan and 5.7% mannan-oligosaccharide) had antioxidant and immunomodulatory effects, which could alleviate the weight loss of diabetic rats. The IC50 of DPPH free radical scavenging rate of phenolics (ferulic acid, etc.; total phenolic content of 4.21 ± 0.06 mg/g) was 43.85 μg/mL; there was also adenosine, volatile oil, and other components. Pharmacologically, the DPPH free radical scavenging rate of the extract was 65 ± 0.46%, the tumor inhibition rate of the polysaccharide on the tumor-bearing mice was 42.48%, the gastrodin was biocatalyzed (conversion rate 85.2%), and the extracellular polysaccharide could inhibit the color change in shrimp to achieve preservation. This paper reviews its related research progress and provides a reference for its development in the fields of healthy food and biomedicine. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

31 pages, 4184 KB  
Article
Investigating the Neuroprotective, Hepatoprotective, and Antimicrobial Effects of Mushroom Extracts
by Menna-Allah E. Abdelkader, Hatungimana Mediatrice, Zhanxi Lin, Christopher Rensing, Mohamed M. Yacout, Dongmei Lin and Sarah A. Aggag
Int. J. Mol. Sci. 2025, 26(17), 8440; https://doi.org/10.3390/ijms26178440 - 29 Aug 2025
Cited by 2 | Viewed by 2093
Abstract
Mushrooms, renowned for their nutritional value and bioactive compounds, offer potential health benefits, including antioxidants and anti-aging properties. Aging, characterized by cellular and tissue decline, is often associated with autophagy dysfunction, a crucial cellular cleaning process. This study aimed to investigate the neuroprotective, [...] Read more.
Mushrooms, renowned for their nutritional value and bioactive compounds, offer potential health benefits, including antioxidants and anti-aging properties. Aging, characterized by cellular and tissue decline, is often associated with autophagy dysfunction, a crucial cellular cleaning process. This study aimed to investigate the neuroprotective, hepatoprotective, and antimicrobial properties of extracts from four medicinal and edible mushrooms: Ganoderma lucidum, Hericium erinaceus, Pleurotus ostreatus, and Agaricus bisporus. The protein, total phenol, and flavonoid content of mushroom extracts were determined. Aging was induced with 120 mg/kg D-galactose and treated with 500 mg/kg mushroom extracts. The study evaluated liver enzyme levels, histopathological changes in liver and brain tissues, gene expression correlated to neurodegeneration (SEPT5-SV2B-ATXN2-PARK2), telomere length, and immunomodulatory and pro-inflammatory (IL-2-IL-4-IL-6) gene expression pathways. Additionally, the antimicrobial potential of mushroom extracts was assessed against several bacteria (Lysinibacillus odyssey, Lysinibacillus fusiformis, Klebsiella oxytoca, and Escherichia coli) using agar well diffusion and lowest minimum inhibitory concentration (MIC) methods. By exploring these diverse aspects, this study aimed to provide a foundation for a better understanding of the potential of mushrooms as natural neuroprotective, hepatoprotective, and antimicrobial agents and their potential applications in human health. Results indicated that all mushroom extracts effectively mitigated oxidative stress. Agaricus bisporus exhibited the highest protein and flavonoid content, and Pleurotus ostreatus displayed the highest phenolic content. Notably, Hericium erinaceus and Ganoderma lucidum extracts demonstrated significant neuroprotective and hepatoprotective properties against D-galactose-induced aging, as evidenced by histopathological examination. All extracts exhibited a significant decrease (p < 0.001) in liver function (serum levels of aspartate aminotransferase (GOT) and alanine aminotransferase (GPT)) and showed immunomodulatory and anti-inflammatory effects, characterized by upregulated IL-2 and IL-4 gene expression and downregulated IL-6 gene expression. Hericium erinaceus demonstrated the most pronounced upregulation (p < 0.001) of SEPT5, SV2B, and telomere length gene expression, suggesting potential anti-aging effects. Furthermore, all mushroom extracts displayed antimicrobial activity against the tested bacterial strains, except Hericium erinaceus, which exhibited antibacterial activity solely against E. coli. Agaricus bisporus exhibited the largest inhibition zones (22 ± 0.06 mm) against Lysinibacillus odyssey, while Hericium erinaceus displayed the largest inhibition zone against E. coli. The MIC value was observed with Agaricus bisporus extract against Lysinibacillus odyssey (1.95 ± 0.16 mg/mL). Lysinibacillus fusiformis exhibited the highest resistance to the tested mushroom extracts. These findings suggest that these edible and medicinal mushrooms possess a wide range of health-promoting properties, including neuroprotective, hepatoprotective, and antimicrobial activities. Further research is needed to fully understand the underlying mechanisms and optimize applications. However, our results provide a strong foundation for exploring these mushrooms as potential natural agents that promote overall health and combat age-related decline. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

19 pages, 10865 KB  
Article
Evaluation of Immunoprotective Activities of White Button Mushroom (Agaricus bisporus) Water Extract Against Major Pathogenic Bacteria (Aeromonas hydrophila or Vibrio fluvialis) in Goldfish (Carassius auratus)
by Shujun Sun, Jing Chen, Pan Cui, Xiaoxiao Yang, Yuhan Zheng, Zijian Ma, Yong Liu and Xiang Liu
Animals 2025, 15(15), 2257; https://doi.org/10.3390/ani15152257 - 1 Aug 2025
Viewed by 1007
Abstract
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it [...] Read more.
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it was found that the polysaccharide, protein, and polyphenol components of AB-WE were 9.11%, 3.3%, and 1.5%, respectively. The 246 compounds were identified in AB-WE, and the major small-molecule components included L-Isoleucine, L-Tyrosine, L-Valine, and Linoleic acid by HPLC-Q Exactive-Orbitrap-MS. Secondly, the AB-WE was evaluated for its immunological activities through dietary administration and pathogen challenge (Aeromonas hydrophila and Vibrio fluvialis) in goldfish (Carassius auratus). The results showed that the levels of immune factors of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM) increased (p < 0.05) in goldfish, and the relative percentage survival of AB-WE against A. hydrophila and V. fluvialis were 80.00% (p < 0.05) and 81.82% (p < 0.05), respectively. The AB-WE reduced the bacterial content in renal tissue, enhanced the phagocytic activity of leukocytes, and exhibited antioxidant and anti-inflammatory effects by reducing the expression of antioxidant-related factors and inflammatory factors. Through histopathological and immunofluorescence techniques, it was found that AB-WE maintained the integrity of visceral tissues and reduced renal tissue apoptosis and DNA damage. Therefore, AB-WE exhibits immunoprotective activity against A. hydrophila and V. fluvialis infections in fish, and holds promise as an immunotherapeutic agent against major pathogenic bacteria in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

Back to TopTop