Sustainable Valorization of Tsipouro Liquid Waste via Fermentation for Hericium erinaceus Biomass Production
Abstract
1. Introduction
2. Materials and Methods
3. Data Analysis
4. Results and Discussion
4.1. Tsipouro Liquid Waste (TLW)
4.2. Biomass Production and Substrate Assimilation
4.3. Reduction in TPC, Decolorization
4.4. Laccase Activity, pH and Electrical Conductivity
4.5. IPS and Protein Synthesis
4.6. Lipid Content and Identification of Lipid Fatty Acids
4.7. TPC and Antioxidant Properties of Biomass
4.8. Comparative Composition of Mycelium and Fruiting Body
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karathanos, A.; Soultani, G.; Kontoudakis, N.; Kotseridis, Y. Impact of different wood types on the chemical composition and sensory profile of aged tsipouro: A comparative study. Beverages 2024, 10, 76. [Google Scholar] [CrossRef]
- Giannakourou, M.; Strati, I.F.; Manika, E.M.; Resiti, V.; Tataridis, P.; Zoumpoulakis, P. Assessment of phenolic content, antioxidant activity, colour and sensory attributes of wood aged “Tsipouro”. Curr. Res. Nutr. Food Sci. J. 2018, 6, 318–328. [Google Scholar] [CrossRef]
- Kokoti, K.; Kosma, I.S.; Tataridis, P.; Badeka, A.V.; Kontominas, M.G. Volatile aroma compounds of distilled “tsipouro” spirits: Effect of distillation technique. Eur. Food Res. Technol. 2023, 249, 1173–1185. [Google Scholar] [CrossRef]
- Geroyiannaki, M.; Lopez-Vázquez, C.; Badeka, A. Fast determination of principal volatile compounds in Greek traditional alcoholic beverages from varietal fermented grape pomace (Vitis vinifera L.). Food Res. Int. 2007, 40, 681–689. [Google Scholar]
- Soufleros, E.H.; Natskoulis, P.; Mygdalia, A.S. Discrimination and risk assessment due to the volatile compounds and the inorganic elements present in the Greek marc distillates Tsipouro and Tsikoudia. OENO One 2005, 39, 31–45. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Paredes, C.; Moral, R.; Moreno-Caselles, J.; Pérez-Espinosa, A.; Pérez-Murcia, M.D. Uses of winery and liquid effluents in agriculture: Characterisation of nutrient and hazardous components. Water Sci. Technol. 2005, 51, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Wolmarans, B.; De Villiers, G.H. Start-up of a UASB effluent treatment plant on liquid wastewater. Water SA 2002, 28, 63–68. [Google Scholar] [CrossRef]
- Strong, P.J.; Burgess, J.E. Treatment methods for wine-related and liquid wastewaters: A review. Bioremediation J. 2008, 12, 70–87. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Rontou, M.; Belka, A.; Athenaki, M.; Gardeli, C.; Mallouchos, A.; Kalantzi, O.; Koutinas, A.A.; Kookos, I.K.; Zeng, A.; et al. Conversion of biodiesel-derived glycerol into biotechnological products by yeast and fungal strains. Eng. Life Sci. 2017, 17, 262–281. [Google Scholar] [CrossRef]
- Šehović, Đ.; Petravić, V.; Marić, V. Glycerol and wine industry glycerol determination in grape must and wine. Kem. Ind. 2004, 53, 505–516. [Google Scholar]
- Diamantopoulou, P.; Aggelis, G.; Papanikolaou, S. Renewable carbon sources as microbial substrates for the production of amylases and lignocellulases. Carbon Resour. Convers. 2026; in press. [Google Scholar] [CrossRef]
- Sarris, D.; Papanikolaou, S. Biotechnological production of ethanol: Biochemistry, processes and technologies. Eng. Life Sci. 2016, 16, 307–329. [Google Scholar] [CrossRef]
- Lante, A.; Crapisi, A.; Krastanov, A.; Spettoli, P. Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochem. 2000, 36, 51–58. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Filippousi, R.; Antoniou, D.; Varfi, E.; Xenopoulos, E.; Sarris, D.; Papanikolaou, S. Production of added-value microbial metabolites during growth of yeast strains on media composed of biodiesel-derived crude glycerol and glycerol/xylose blends. FEMS Microbiol. Lett. 2020, 367, fnaa063. [Google Scholar] [CrossRef]
- Kachrimanidou, V.; Alexandri, M.; Papapostolou, H.; Papadaki, A.; Kopsahelis, N. Valorization of grape pomace for Trametes versicolor mycelial mass and polysaccharides production. Sustainability 2023, 15, 15080. [Google Scholar] [CrossRef]
- Fernandes, J.M.; Sousa, R.M.O.; Fraga, I.; Sampaio, A.; Amaral, C.; Bezerra, R.M.; Dias, A.A. Fungal biodegradation and multi-level toxicity assessment of vinasse from distillation of winemaking by-products. Chemosphere 2020, 238, 124572. [Google Scholar] [CrossRef]
- Pilafidis, S.; Tsouko, E.; Sougleri, G.; Diamantopoulou, P.; Gkatzionis, K.; Ioannou, Z.; Sarris, D. Submerged cultivation of selected macro-fungi to produce mycelia rich in β-glucans and other bioactive compounds, valorizing side streams of the food industry. Carbon Resour. Convers. 2024, 7, 100198. [Google Scholar] [CrossRef]
- Thongbai, B.; Rapior, S.; Hyde, K.D.; Wittstein, K.; Stadler, M. Hericium erinaceus, an amazing medicinal mushroom. Mycol. Prog. 2015, 14, 91. [Google Scholar] [CrossRef]
- Bisen, P.S.; Baghel, R.K.; Singh, R.; Tuli, H.S. Medicinal mushroom (Hericium erinaceus): Ethnomedicinal, phytochemical and pharmacological review. World J. Pharm. Res. 2010, 3, 498–512. [Google Scholar]
- Stamets, P. Growing Gourmet and Medicinal Mushrooms, 3rd ed.; Ten Speed Press: Berkeley, CA, USA, 2000. [Google Scholar]
- Friedman, M. Chemistry, nutrition and health-promoting properties of Hericium erinaceus (Lion’s Mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J. Agric. Food Chem. 2015, 63, 7108–7123. [Google Scholar] [CrossRef] [PubMed]
- Kostanda, E.; Musa, S.; Pereman, I. Unveiling the chemical composition and biofunctionality of Hericium spp. fungi: A comprehensive overview. Int. J. Mol. Sci. 2024, 25, 5949. [Google Scholar] [CrossRef]
- Fazenda, M.L.; Seviour, R.; McNeil, B.; Harvey, L.M. Submerged culture fermentation of “higher fungi”: The macrofungi. Adv. Appl. Microbiol. 2008, 63, 33–103. [Google Scholar]
- Bakratsas, G.; Polydera, A.; Katapodis, P.; Stamatis, H. Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. Future Foods 2021, 4, 100086. [Google Scholar] [CrossRef]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; de Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Imtiaj, A.; Jayasinghe, C.; Lee, G.W.; Shim, M.J.; Rho, H.S.; Lee, H.S.; Hur, H.; Lee, M.W.; Lee, U.Y.; Lee, T.S. Vegetative growth of four strains of Hericium erinaceus collected from different habitats. Mycobiology 2008, 36, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Mykchaylova, O.; Dubova, H.; Lomberg, M.; Negriyko, A.; Poyedinok, N. Influence of low-intensity light on the biosynthetic activity of the edible medicinal mushroom Hericium erinaceus (Bull.: Fr.) Pers. in vitro. Arch. Biol. Sci. 2023, 75, 489–501. [Google Scholar] [CrossRef]
- Ryu, S.H.; Kim, S.H.; Lee, S.J. Optimization of submerged culture conditions for mycelial growth and exo-polysaccharide production by Hericium erinaceus. J. Microbiol. Biotechnol. 2015, 25, 238–246. [Google Scholar]
- Lee, J.S.; Kim, M.J.; Park, J.H.; Lee, S.H. Submerged culture of Hericium erinaceus for the production of bioactive metabolites: Current status and future perspectives. Biotechnol. Adv. 2020, 43, 107573. [Google Scholar]
- Niego, A.G.; Rapior, S.; Thongklang, N.; Raspé, O.; Jaidee, W.; Lumyong, S.; Hyde, K.D. Macrofungi as a nutraceutical source: Promising bioactive compounds and market value. J. Fungi 2021, 7, 397. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Đorđević, D.; Tremlová, B. Grape pomace valorization: A systematic review and meta-analysis. Foods. 2020, 9, 1627. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Rosales, A.; Turienzo, L.R.; Cortina, J.L. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and kinetics study. Food Bioprod. Process. 2018, 109, 74–85. [Google Scholar] [CrossRef]
- Roukas, T. Ethanol production from non-sterilized beet molasses by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. J. Food Eng. 1996, 27, 87–96. [Google Scholar] [CrossRef]
- Lie, S. The EBC-ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 1973, 79, 37–41. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ride, J.P. The effect of induced lignification on the resistance of wheat cell walls to fungal degradation. Physiol. Plant Pathol. 1980, 16, 187–196. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Papanikolaou, S.; Komaitis, M.; Aggelis, G.; Philippoussis, A. Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures. Bioprocess Biosyst. Eng. 2014, 37, 1385–1400. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Fan, J.-P.; He, C.-H. Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high-performance liquid chromatography method. J. Pharm. Biomed. Anal. 2006, 41, 950–956. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Diamantis, I.; Papanikolaou, S.; Michou, S.; Anastasopoulos, V.; Diamantopoulou, P. Yeast lipids from crude glycerol media and utilization of lipid fermentation wastewater as maceration water in cultures of edible and medicinal mushrooms. Processes 2023, 11, 3178. [Google Scholar] [CrossRef]
- Klein, M.; Swinnen, S.; Thevelein, J.M.; Nevoigt, E. Glycerol metabolism and transport in yeast and fungi: Established knowledge and ambiguities. Environ. Microbiol. 2017, 19, 878–893. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulou, P.; Papanikolaou, S.; Katsarou, E.; Komaitis, M.; Aggelis, G.; Philippoussis, A. Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part II: Study of Volvariella volvacea. Appl. Biochem. Biotechnol. 2012, 167, 1890–1906. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulou, P.; Papanikolaou, S.; Aggelis, G.; Philippoussis, A. Adaptation of Volvariella volvacea metabolism in high carbon to nitrogen ratio media. Food Chem. 2016, 196, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chroumpi, T.; Garrigues, S.; Kun, R.S.; Meng, J.; Salazar-Cerezo, S.; Aguilar-Pontes, M.V.; Zhang, Y.; Tejomurthula, S.; Lipzen, A.; et al. The sugar metabolic model of Aspergillus niger can only be reliably transferred to fungi of its phylum. J. Fungi 2022, 8, 1315. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Gardeli, C.; Papanikolaou, S. Impact of olive mill wastewaters on the physiological behavior of a wild-type new Ganoderma resinaceum isolate. Environ. Sci. Pollut. Res. 2021, 28, 20570–20585. [Google Scholar] [CrossRef]
- Diamantis, I.; Melanouri, E.M.; Dedousi, M.; Panagopoulou, I.; Papanikolaou, S.; Stoforos, N.G.; Diamantopoulou, P. Sustainable and eco-friendly conversions of olive mill wastewater-based media by Pleurotus pulmonarius cultures. Fermentation 2022, 8, 129. [Google Scholar] [CrossRef]
- Malinowska, E.; Krzyczkowski, W.; Łapienis, G.; Herold, F. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceus: Optimization using a central composite rotatable design (CCRD). J. Ind. Microbiol. Biotechnol. 2009, 36, 1513–1527. [Google Scholar] [CrossRef]
- Khurana, S.; Sindhu, A.; Sindhu, S.C.; Kumar, V.; Singh, A. Optimization of vegetative growth conditions for submerged cultivation of edible medicinal mushroom Hericium erinaceus by resonance surface. Mushroom Res. 2022, 31, 171–180. [Google Scholar] [CrossRef]
- Sarris, D.; Philippoussis, A.; Mallouchos, A.; Diamantopoulou, P. Valorization of low-cost, carbon-rich substrates by edible ascomycetes and basidiomycetes grown on liquid cultures. FEMS Microbiol. Lett. 2020, 367, fnaa168. [Google Scholar] [CrossRef]
- Bommareddy, R.R.; Sabra, W.; Maheshwari, G.; Zeng, A.P. Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microb. Cell Fact. 2015, 14, 36. [Google Scholar] [CrossRef]
- Castro, I.M.; Loureiro-Dias, M. Glycerol utilization in Fusarium oxysporum var. lini: Regulation of transport and metabolism. J. Gen. Microbiol. 1991, 137, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Iyyappan, J.; Bharathiraja, B.; Baskar, G.; Jayamuthunagai, J.; Barathkumar, S.; Anna Shiny, A. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. Bioresour. Technol. 2018, 251, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Nie, K.; Zhang, X.; Liu, S.; Wang, M.; Deng, L.; Wang, F.; Tan, T. Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus. Bioresour. Technol. 2014, 163, 48–53. [Google Scholar] [CrossRef]
- Dritsas, P.; Aggelis, G. Studies on the co-metabolism of glucose and glycerol in the fungus Umbelopsis isabellina. Carbon Resour. Convers. 2023, 6, 326–333. [Google Scholar] [CrossRef]
- Diamantis, I.; Stamatiadis, S.; Melanouri, E.M.; Papanikolaou, S.; Diamantopoulou, P. From screening to laboratory scale-up: Bioremediation potential of mushroom strains grown on olive mill wastewater. Biomass 2025, 5, 50. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Zervakis, G.I. Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi. BioMed Res. Int. 2014, 2014, 482937. [Google Scholar] [CrossRef] [PubMed]
- Koutrotsios, G.; Larou, E.; Mountzouris, K.C.; Zervakis, G.I. Detoxification of olive mill wastewater and bioconversion of olive crop residues into high-value-added biomass by the choice edible mushroom Hericium erinaceus. Appl. Biochem. Biotechnol. 2016, 180, 195–209. [Google Scholar] [CrossRef]
- Kim, S. Antioxidant compounds for the inhibition of enzymatic browning by polyphenol oxidases in the fruiting body extract of the edible mushroom Hericium erinaceus. Foods 2020, 9, 951. [Google Scholar] [CrossRef]
- Strong, P.J.; Burgess, J.E. Bioremediation of a wine liquid wastewater using white rot fungi and the subsequent production of laccase. Water Sci. Technol. 2007, 56, 179–186. [Google Scholar] [CrossRef]
- Cuamatzi-Flores, J.; Nava-Galicia, S.; Esquivel-Naranjo, E.U.; Munguia, A.L.; Arroyo-Becerra, A.; Villalobos-López, M.A.; Bibbins-Martínez, M. Regulation of dye-decolorizing peroxidase gene expression in Pleurotus ostreatus grown on glycerol as the carbon source. PeerJ 2024, 12, e17467. [Google Scholar] [CrossRef]
- Pinheiro, V.E.; Michelin, M.; Vici, A.C.; de Almeida, P.Z.; Teixeira de Moraes Polizeli, M.D.L. Trametes versicolor laccase production using agricultural wastes: A comparative study in Erlenmeyer flasks, bioreactor and tray. Bioprocess Biosyst. Eng. 2020, 43, 507–514. [Google Scholar] [CrossRef]
- Elisashvili, V.; Kachlishvili, E.; Asatiani, M.D. Efficient production of lignin-modifying enzymes and phenolics removal in submerged fermentation of olive mill by-products by white-rot basidiomycetes. Int. Biodeterior. Biodegrad. 2018, 134, 39–47. [Google Scholar] [CrossRef]
- Tsioulpas, A.; Dimou, D.; Iconomou, D.; Aggelis, G. Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour. Technol. 2002, 84, 251–257. [Google Scholar] [CrossRef]
- Aggelis, G.; Iconomou, D.; Christou, M.; Bokas, D.; Kotzailias, S.; Christou, G.; Tsagou, V.; Papanikolaou, S. Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Res. 2003, 37, 3897–3904. [Google Scholar] [CrossRef]
- Elisashvili, V.; Kachlishvili, E.; Penninckx, M. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzyme production by white-rot basidiomycetes. J. Ind. Microbiol. Biotechnol. 2008, 35, 1531–1538. [Google Scholar] [CrossRef]
- Gonkhom, D.; Luangharn, T.; Hyde, K.D.; Stadler, M.; Thongklang, N. Optimal conditions for mycelial growth of medicinal mushrooms belonging to the genus Hericium. Mycol. Prog. 2022, 21, 82. [Google Scholar] [CrossRef]
- Lee, J.S.; Wee, J.W.; Lee, H.Y.; An, H.S.; Hong, E.K. Effects of ascorbic acid and uracil on exo-polysaccharide production with Hericium erinaceus in liquid culture. Biotechnol. Bioprocess Eng. 2010, 15, 453–459. [Google Scholar] [CrossRef]
- Wolters, N.; Schembecker, G.; Merz, J. Erinacine C: A novel approach to produce the secondary metabolite by submerged cultivation of Hericium erinaceus. Fungal Biol. 2015, 119, 1334–1344. [Google Scholar] [CrossRef] [PubMed]
- Chutimanukul, P.; Phatthanamas, W.; Thepsilvisut, O.; Chantarachot, T.; Thongtip, A.; Chutimanukul, P. Commercial scale production of Yamabushitake mushroom (Hericium erinaceus (Bull.) Pers. 1797) using rubber and bamboo sawdust substrates in tropical regions. Sci. Rep. 2023, 13, 13316. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yan, H.; Chen, J.; Zhang, X. Bioactive proteins from mushrooms. Biotechnol. Adv. 2011, 29, 667–674. [Google Scholar] [CrossRef]
- Yang, B.K.; Park, J.B.; Song, C.H. Hypolipidemic effect of an exo-biopolymer produced from a submerged mycelial culture of Hericium erinaceus. Biosci. Biotechnol. Biochem. 2003, 67, 1292–1298. [Google Scholar] [CrossRef]
- Sarris, D.; Stoforos, N.G.; Mallouchos, A.; Kookos, I.K.; Koutinas, A.A.; Aggelis, G.; Papanikolaou, S. Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Eng. Life Sci. 2017, 17, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulou, P.; Papanikolaou, S.; Kapoti, M.; Komaitis, M.; Aggelis, G.; Philippoussis, A. Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part I: Screening various mushroom species. Appl. Biochem. Biotechnol. 2012, 167, 536–551. [Google Scholar] [CrossRef]
- Rodrigues, D.M.; Freitas, A.C.; Rocha-Santos, T.A.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus. J. Food Sci. Technol. 2015, 52, 6927–6939. [Google Scholar] [CrossRef]
- Kurtzman, R.H., Jr. Mushrooms as a source of food proteins. Protein Nutr. Qual. Foods Feeds 1975, 2, 305–318. [Google Scholar]
- Doğan, N.; Doğan, C.; Atila, F. Parts from life-cycle of H. erinaceus: Response surface methodology approach to optimize extraction conditions and determination of its antioxidant, antidiabetic and antimicrobial effect. J. Med. Food 2021, 10, 1–12. [Google Scholar]
- Sevindik, M.; Gürgen, A.; Khassanov, V.T.; Bal, C. Biological activities of ethanol extracts of Hericium erinaceus obtained as a result of optimization analysis. Foods 2024, 13, 1560. [Google Scholar] [CrossRef]
- Atila, F.; Tuzel, Y.; Fernández, J.A.; Cano, A.F.; Sen, F. The effect of some agro–industrial wastes on yield, nutritional characteristics and antioxidant activities of Hericium erinaceus isolates. Sci. Hortic. 2018, 238, 246–254. [Google Scholar] [CrossRef]
- Mau, J.L.; Lin, H.C.; Ma, J.T.; Song, S.F. Non-volatile taste components of several speciality mushrooms. Food Chem. 2001, 73, 461–466. [Google Scholar] [CrossRef]
- Cohen, N.; Cohen, J.; Asatiani, M.D.; Varshney, V.K.; Yu, H.T.; Yang, Y.C.; Li, Y.H.; Mau, J.L.; Wasser, S.P. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int. J. Med. Mushrooms 2014, 16, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef]
- Yeong, T.R.; Ilham, Z.; Wan, W.A.A.Q.I.; Halim-Lim, S.A.; Usuldin, S.R.A.; Ahmad, R.; Adlim, M. Mushroom oils: A review of their production, composition and potential applications. Heliyon 2024, 10, e31594. [Google Scholar] [CrossRef]
- Araújo-Rodrigues, H.; Tavaria, F.; Relvas, J.; Pintado, M. Characterization of bioactive compounds in biomass of Hericium erinaceus (Hericium-MRL). Presented at the XXII EuroFoodChem, Belgrade, Serbia, 14–16 June 2023; Centro de Biotecnologia e Química Fina, ESB, Universidade Católica Portuguesa: Porto, Portugal, 2023. [Google Scholar]
- Salvatore, M.M.; Elvetico, A.; Gallo, M.; Salvatore, F.; DellaGreca, M.; Naviglio, D.; Andolfi, A. Fatty acids from Ganoderma lucidum spores: Extraction, identification and quantification. Appl. Sci. 2020, 10, 3907. [Google Scholar] [CrossRef]
- Valu, M.V.; Soare, L.C.; Sutan, N.A.; Ducu, C.; Moga, S.; Hritcu, L.; Boiangiu, R.S.; Carradori, S. Optimization of ultrasonic extraction to obtain erinacine A and polyphenols with antioxidant activity from the fungal biomass of Hericium erinaceus. Foods 2020, 9, 1889. [Google Scholar] [CrossRef]
- Abdullah, N.; Ismail, S.M.; Aminudin, N.; Shuib, A.S.; Lau, B.F. Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evid.-Based Complement. Altern. Med. 2012, 2012, 464238. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Sukdee, S.; Prajuabjinda, O.; Thepsilvisut, O.; Panthong, S.; Ehara, H.; Chutimanukul, P. Exogenous application of coconut water to promote growth and increase the yield, bioactive compounds and antioxidant activity for Hericium erinaceus cultivation. Horticulturae 2023, 9, 1131. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Sukdee, S.; Prajuabjinda, O.; Thepsilvisut, O.; Panthong, S.; Athinuwat, D.; Chuaboon, W.; Poomipan, P.; Vachirayagorn, V. The effects of soybean meal on growth, bioactive compounds and antioxidant activity of Hericium erinaceus. Horticulturae 2023, 9, 693. [Google Scholar] [CrossRef]







| Culture Media | TLW-0 | TLW-13 | TLW-17 | TLW-25 | TLW-50 |
|---|---|---|---|---|---|
| Total phenolic content (g/L) | 0 | 0.6 | 0.8 | 1.19 | 2.38 |
| TLW (% v/v) | 0 | 13 | 17 | 25 | 50 |
| Glucose (g/L) | 5 | 5 | 5 | 5 | 5 |
| Yeast extract (g/L) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
| Peptone (g/L) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
| Glycerol (g/L) | 20 | 20 | 20 | 20 | 20 |
| pH | 6.42 | 4.11 | 4.02 | 3.92 | 3.89 |
| EC (mS/cm) | 0.397 | 1.562 | 1.891 | 2.520 | 4.100 |
| Chemical Composition of TLW | |
|---|---|
| Moisture (%) | 93.9 ± 0.2 |
| pH | 3.73 ± 0.1 |
| Electrical conductivity (mS/cm) | 5.10 ± 0.1 |
| Total Sugars (g/L) | 10.0 ± 0.9 |
| Total phenolic content (g/L) | 4.75 ± 0.1 |
| Proteins (g/L) | 1.03 ± 0.1 |
| Glycerol (g/L) | 17.2 ± 0.3 |
| Ethanol (g/L) | 16.5 ± 0.5 |
| FAN (mg/L) | 88.7 ± 0.9 |
| Culture Media | TPC (g/L) | Day | X (g/L) | IPS (g/L) | IPS (% w/w) | L (g/L) | L (% w/w) | P (g/L) | P (% w/w) | Laccase (U/mL) | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| TLW-0 | 0 | a, b, c, d | 37 | 7.8 ± 0.4 | 3.0 ± 0.1 | 38.2 ± 1 | 1.76 ± 0.08 | 23.0 ± 0.9 | 1.16 ± 0.01 | 14.9 ± 0.2 | 7.32 ± 0.04 |
| e | 21 | 3.0 ± 0.1 | 1.0 ± 0.1 | 32.0 ± 1 | 0.65 ± 0.03 | 21.6 ± 0.3 | 0.88 ± 0.01 | 29.4 ± 0.1 | 5.83 ± 0.10 | ||
| TLW-13 | 0.6 | a, b | 37 | 13.0 ± 0.9 | 4.9 ± 0.2 | 37.9 ± 1 | 1.79 ± 0.08 | 14.2 ± 0.7 | 1.90 ± 0.03 | 15.0 ± 0.2 | 54.1 ± 0.11 |
| c | 25 | 9.2 ± 0.4 | 4.0 ± 0.2 | 42.9 ± 1 | 1.34 ± 0.06 | 14.5 ± 0.7 | 1.93 ± 0.01 | 21.0 ± 0.5 | nm * | ||
| d, e | 21 | 6.4 ± 0.3 | 2.5 ± 0.1 | 38.9 ± 1 | 1.28 ± 0.04 | 20.0 ± 0.8 | 1.73 ± 0.02 | 27.2 ± 0.2 | 2.29 ± 0.10 | ||
| TLW-17 | 0.8 | a, b | 37 | 16.0 ± 0.8 | 6.8 ± 0.3 | 42.0 ± 1 | 2.20 ± 0.09 | 13.7 ± 0.6 | 2.77 ± 0.01 | 17.0 ± 0.3 | 113.0 ± 0.12 |
| c | 25 | 10.5 ± 0.5 | 4.5 ± 0.2 | 43.0 ± 2 | 0.73 ± 0.03 | 6.9 ± 0.3 | 2.21 ± 0.01 | 21.2 ± 0.1 | nm | ||
| d | 29 | 13.0 ± 0.6 | 4.7 ± 0.2 | 37.2 ± 1 | 2.30 ± 0.01 | 18.1 ± 0.9 | 2.24 ± 0.01 | 17.8 ± 0.03 | nm | ||
| e | 21 | 8.4 ± 0.4 | 3.2 ± 0.1 | 38.0 ± 1 | 0.67 ± 0.05 | 8.0 ± 0.4 | 2.05 ± 0.02 | 24.5 ± 0.3 | 12.66 ± 0.02 | ||
| TLW-25 | 1.19 | a | 37 | 16.0 ± 0.8 | 5.7 ± 0.2 | 35.1 ± 1 | 2.80 ± 0.09 | 16.8 ± 0.8 | 2.96 ± 0.06 | 18.0 ± 0.4 | 93.7 ± 0.09 |
| b, d | 29 | 15.5 ± 0.1 | 6.1 ± 0.1 | 39.7 ± 1 | 2.60 ± 0.08 | 17.1 ± 0.9 | 2.39 ± 0.02 | 15.5 ± 0.2 | nm | ||
| c | 33 | 15.0 ± 0.7 | 6.0 ± 0.3 | 40.0 ± 1 | 2.00 ± 0.08 | 13.6 ± 0.7 | 2.54 ± 0.05 | 17.0 ± 0.3 | nm | ||
| e | 17 | 8.2 ± 0.4 | 2.6 ± 0.1 | 31.9 ± 1 | 1.30 ± 0.05 | 15.4 ± 0.6 | 2.05 ± 0.04 | 25.0 ± 0.7 | nm | ||
| TLW-50 | 2.38 | a, b | 37 | 22.8 ± 0.9 | 6.4 ± 0.3 | 28.1 ± 1 | 4.40 ± 0.09 | 19.0 ± 0.9 | 4.06 ± 0.03 | 17.8 ± 0.3 | 108.3 ± 0.13 |
| c, e | 25 | 15.0 ± 0.7 | 5.2 ± 0.2 | 34.0 ± 1 | 2.70 ± 0.09 | 17.5 ± 0.8 | 3.27 ± 0.07 | 21.2 ± 0.5 | nm | ||
| d | 33 | 21.0 ± 0.9 | 6.1 ± 0.3 | 29.0 ± 1 | 5.00 ± 0.09 | 23.4 ± 0.9 | 3.63 ± 0.08 | 17.1 ± 0.3 | nm |
| Fatty Acids (% w/w) | TLW-0 | TLW-13 | TLW-17 | TLW-25 | TLW-50 |
|---|---|---|---|---|---|
| Saturated fatty acids | 26.4 ± 0.9 b | 26.5 ± 0.6 b | 20.9 ± 0.2 d | 24.1 ± 0.5 c | 33.6 ± 0.6 a |
| Lauric acid (C12:0) | 0.8 ± 0.1 a | 0.9 ± 0.3 a | 0.3 ± 0.2 b | 0.4 ± 0.1 b | 0.4 ± 0.1 b |
| Myristic acid (C14:0) | 0.3 ± 0.2 a | 0.4 ± 0.2 a | 0.3 ± 0.1 a | 0.5 ± 0.2 a | 0.2 ± 0.1 a |
| Pentadecanoic acid (C15:0) | 1.5 ± 0.1 b | 2.0 ± 0.4 a | 0.4 ± 0.1 d | 1.0 ± 0.3 c | 0.5 ± 0.2 d |
| Palmitic acid (C16:0) | 14.7 ± 0.9 b | 15.1 ± 1.0 b | 12.4 ± 1.2 c | 15.8 ± 1.1 b | 18.3 ± 1.2 a |
| Stearic acid (C18:0) | 7.4 ± 0.5 b | 5.9 ± 0.5 c | 5.9 ± 0.5 c | 4.8 ± 0.6 d | 12.1 ± 1.1 a |
| Arachidic acid (C20:0) | 0.7 ± 0.1 b | 0.8 ± 0.2 b | 0.4 ± 0.1 c | 1.0 ± 0.2 a | 1.2 ± 0.3 a |
| Behenic acid (C22:0) | 0.4 ± 0.2 a | 0.4 ± 0.1 a | 0.5 ± 0.1 a | 0.2 ± 0.2 a | 0.2 ± 0.2 a |
| Tricosanoic acid (C23:0) | 0.5 ± 0.2 c | 1.1 ± 0.3 a | 0.7 ± 0.2 b | 0.4 ± 0.2 c | 0.6 ± 0.2 c |
| Unsaturated fatty acids | 73.6 ± 3.2 b | 73.5 ± 3.1 b | 79.1 ± 2.2 a | 75.9 ± 1.9 b | 66.4 ± 2.0 c |
| Monounsaturated fatty acids | 24.0 ± 0.6 a | 14.3 ± 0.8 c | 11.2 ± 0.6 d | 13.9 ± 0.5 c | 19.3 ± 0.9 b |
| Oleic acid (C18:1, cis-9) | 23.3 ± 0.9 a | 13.8 ± 0.9 c | 8.7 ± 0.9 d | 13.2 ± 1.3 c | 19.2 ± 1.4 b |
| Nervonic acid (C24:1,cis-15) | 0.7 ± 0.2 b | 0.5 ± 0.1 c | 2.5 ± 0.8 a | 0.7 ± 0.2 b | 0.1 ± 0.1 d |
| Polyunsaturated fatty acids | 49.6 ± 2.2 c | 59.2 ± 1.0 b | 67.9 ± 2.7 a | 62.0 ± 1.2 b | 47.1 ± 1.9 d |
| Linoleic acid | 47.0 ± 2.2 d | 57.7 ± 1.1 c | 67.0 ± 2.5 a | 61.1 ± 1.3 b | 46.6 ± 1.1 d |
| cis-11,14-Eicosadienoic acid (C20:2), n6 | 0.3 ± 0.1 a | 0.5 ± 0.2 a | 0.3 ± 0.1 a | 0.5 ± 0.1 a | 0.3 ± 0.2 a |
| cis-4,7,10,13,16,19-Docosahexaenoic acid (C22:6) | 2.3 ± 0.5 a | 1.0 ± 0.3 b | 0.6 ± 0.2 c | 0.4 ± 0.2 c | 0.1 ± 0.1 d |
| Unsaturated/saturated | 2.8 | 2.8 | 3.8 | 3.1 | 2.0 |
| Culture Media | Day | Mycelium (% w/w) | Fruiting Body (% w/w) |
|---|---|---|---|
| TLW-13 | 33 | 88.2 | 11.8 |
| 37 | 80.3 | 19.7 | |
| TLW-17 | 33 | 67.4 | 32.6 |
| 37 | 39.8 | 60.2 | |
| TLW-25 | 33 | 65.4 | 34.6 |
| 37 | 64.0 | 36.0 | |
| TLW-50 | 33 | 56.4 | 43.6 |
| 37 | 48.5 | 51.5 |
| Culture Media | Day | Protein (% w/w) | Lipid (% w/w) | C16:0 (% w/w) | Δ9C18:1 (% w/w) | Δ9,12C18:2 (% w/w) | IPS (% w/w) | TPC (mg GAE/g) | DPPH˙ (mg trx/g) | Triterpenoids (mg UA/g) | Flavonoids (mg RU/g) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| TLW-13 | Mycelium | 33 | 19.2 ± 0.1 e * | 14.0 ± 0.7 d, e | nm ** | nm | nm | 39.0 ± 0.8 b, c | 8.46 ± 0.05 d, e | 0.50 ± 0.03 d | 7.2 ± 0.9 a | 8.6 ± 0.4 c |
| 37 | 13.4 ± 0.1 h | 14.2 ± 0.7 d, e | 14.01 ± 0.3 b | 12.89 ± 0.5 b | 53.66 ± 0.7 b | 38.8 ± 0.5 b, c | 8.73 ± 0.02 b, c, d, e | 0.50 ± 0.03 d | 7.6 ± 0.6 a | 5.2 ± 0.3 e, f | ||
| Fruiting body | 33 | 24.1 ± 0.7 a, b | 13.9 ± 0.6 d, e | nm | nm | nm | 30.0 ± 0.9 e, f, g | 8.53 ± 0.01 c, d, e | 1.30 ± 0.07 b | 7.2 ± 0.1 a | 8.6 ± 0.4 c | |
| 37 | 22.5 ± 0.6 c | 14.1 ± 0.5 d, e | 13.85 ± 0.5 b | 11.74 ± 0.4 b | 54.28 ± 0.3 b | 34.5 ± 0.3 c, d, e | 8.79 ± 0.03 b, c, d, e | 1.20 ± 0.06 b, c | 7.2 ± 0.1 a | 5.3 ± 0.3 e, f | ||
| TLW-17 | Mycelium | 33 | 14.7 ± 0.1 f, g, h | 21.0 ± 0.9 b | nm | nm | nm | 47.0 ± 0.8 a | 8.82 ± 0.07 b, c, d, e | 0.60 ± 0.03 d | 8.2 ± 0.6 a | 13.2 ± 0.7 b |
| 37 | 13.9 ± 0.1 g, h | 13.7 ± 0.7 d, e | 10.81 ± 0.4 c | 7.60 ± 0.7 d | 58.25 ± 0.8 a | 49.0 ± 0.9 a | 12.20 ± 0.06 a | 0.70 ± 0.04 d | 8.5 ± 0.8 a | 5.4 ± 0.3 e, f | ||
| Fruiting body | 33 | 23.0 ± 0.6 b, c | 16.4 ± 0.8 c, d, e | nm | nm | nm | 34.0 ± 0.5 d, e, f | 11.72 ± 0.03 a, b | 2.40 ± 0.09 a | 6.6 ± 0.7 a | 6.8 ± 0.3 c, d, e | |
| 37 | 24.5 ± 0.7 a | 13.8 ± 0.7 d, e | 11.03 ± 0.3 c | 8.10 ± 0.5 d | 57.49 ± 0.5 a | 26.0 ± 0.7 g, h | 12.76 ± 0.03 a | 2.40 ± 0.01 a | 7.0 ± 0.5 a | 6.3 ± 0.3 c, d, e, f | ||
| TLW-25 | Mycelium | 33 | 14.3 ± 0.1 f, g, h | 12.7 ± 0.6 e | nm | nm | nm | 44.0 ± 0.8 b | 11.53 ± 0.01 a, b, c | 0.70 ± 0.04 d | 8.2 ± 0.8 a | 7.9 ± 0.4 c, d |
| 37 | 15.7 ± 0.2 f | 17.8 ± 0.9 b, c, d | 14.44 ± 0.7 b | 10.21 ± 0.9 c | 60.69 ± 0.9 a | 38.0 ± 0.7 c, d | 12.61 ± 0.09 a | 0.80 ± 0.04 c, d | 8.4 ± 0.8 a | 13.3 ± 0.7 b | ||
| Fruiting body | 33 | 21.0 ± 0.5 d | 15.4 ± 0.8 d, e | nm | nm | nm | 32.9 ± 0.4 d, e, f | 13.36 ± 0.05 a | 2.60 ± 0.03 a | 6.5 ± 0.5 a | 7.9 ± 0.4 c, d | |
| 37 | 24.0 ± 0.7 a, b | 15.0 ± 0.8 d, e | 14.30 ± 0.5 b | 15.67 ± 0.5 b | 48.02 ± 0.5 b, c | 28.9 ± 0.4 e, f, g | 13.15 ± 0.01 a | 2.40 ± 0.07 a | 7.1 ± 0.2 a | 6.5 ± 0.8 a | ||
| TLW-50 | Mycelium | 33 | 15.0 ± 0.1 f, g | 26.0 ± 0.9 a | nm | nm | nm | 30.0 ± 0.9 e, f, g | 7.64 ± 0.01 e | 0.80 ± 0.04 c, d | 7.7 ± 0.8 a | 5.6 ± 0.3 d, e, f |
| 37 | 14.4 ± 0.1 f, g, h | 22.0 ± 0.8 a, b | 13.65 ± 0.7 b | 24.44 ± 0.5 a | 46.93 ± 0.5 c | 33.5 ± 0.3 c, d, e | 6.34 ± 0.02 e | 0.60 ± 0.03 d | 7.7 ± 0.5 a | 3.9 ± 0.2 f | ||
| Fruiting body | 33 | 19.8 ± 0.7 d, e | 20.0 ± 0.7 b, c | nm | nm | nm | 27.5 ± 0.2 f, g, h | 10.70 ± 0.03 a, b, c, d | 2.40 ± 0.09 a | 6.5 ± 0.6 a | 5.7 ± 0.3 d, e, f | |
| 37 | 21.0 ± 0.6 d | 15.4 ± 0.8 d, e | 23.19 ± 0.9 a | 11.75 ± 0.7 c | 39.36 ± 0.7 d | 23.0 ± 0.6 h | 13.32 ± 0.01 a | 2.80 ± 0.07 a | 6.9 ± 0.3 a | 4.6 ± 0.2 e, f | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Stini, E.; Diamantis, I.; Kallithraka, S.; Papanikolaou, S.; Diamantopoulou, P. Sustainable Valorization of Tsipouro Liquid Waste via Fermentation for Hericium erinaceus Biomass Production. Processes 2026, 14, 168. https://doi.org/10.3390/pr14010168
Stini E, Diamantis I, Kallithraka S, Papanikolaou S, Diamantopoulou P. Sustainable Valorization of Tsipouro Liquid Waste via Fermentation for Hericium erinaceus Biomass Production. Processes. 2026; 14(1):168. https://doi.org/10.3390/pr14010168
Chicago/Turabian StyleStini, Eirini, Ilias Diamantis, Stamatina Kallithraka, Seraphim Papanikolaou, and Panagiota Diamantopoulou. 2026. "Sustainable Valorization of Tsipouro Liquid Waste via Fermentation for Hericium erinaceus Biomass Production" Processes 14, no. 1: 168. https://doi.org/10.3390/pr14010168
APA StyleStini, E., Diamantis, I., Kallithraka, S., Papanikolaou, S., & Diamantopoulou, P. (2026). Sustainable Valorization of Tsipouro Liquid Waste via Fermentation for Hericium erinaceus Biomass Production. Processes, 14(1), 168. https://doi.org/10.3390/pr14010168

