Proteases from Pleurotus spp.: Properties, Production and Biotechnological Applications
Abstract
1. Introduction
2. Classification and Biochemical Characterization of Pleurotus Proteases
3. Physiological Aspects of Protease Production by Pleurotus spp.
4. Production and Optimization of Pleurotus Proteases
5. Applications of Pleurotus Proteases
5.1. Nematicide Applications and Biological Control
5.2. Food
5.3. Biomedical
5.4. Industrial
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bano, S.; Dahot, M.U.; Naqvi, S.H.A. Optimization of culture conditions for the production of protease by Pleurotus eryngii. Pak. J. Biotechnol. 2016, 13, 193–198. [Google Scholar]
- Cruz-Vázquez, A.; Tomasini, A.; Armas-Tizapantzi, A.; Marcial-Quino, J.; Montiel-González, A.M. Extracellular proteases and laccases produced by Pleurotus ostreatus PoB: The effects of proteases on laccase activity. Int. Microbiol. 2022, 25, 495–502. [Google Scholar] [CrossRef]
- Silva, G.L.; Chevreuil, L.R.; Vasconcelos, A.D.S.; Aguiar, L.V.B.; Pessoa, V.A.; Pereira, D.B.; Soares, L.B.N.; Gouvêa, P.R.S.; Campos, C.S. Destacando o potencial de um shimeji amazônico (Pleurotus ostreatus) por meio da comparação com linhagens comerciais: Crescimento micelial e produção de protease em diferentes meios de cultura. SSRN 2025. [Google Scholar] [CrossRef]
- Inácio, F.D.; Ferreira, R.O.; Araújo, C.A.; Brugnari, T.; Castoldi, R.; Peralta, R.M.; Souza, C.G. Proteases of wood rot fungi with emphasis on the genus Pleurotus. Biomed Res. Int. 2015, 2015, 290161. [Google Scholar] [CrossRef] [PubMed]
- Nolli, M.M.; Contato, A.G.; Brugnari, T.; Buzzo, A.J.D.R.; Aranha, G.M.; Inácio, F.D.; Souza, C.G.M. Evaluation of the milk clotting potential and characterization of proteases from Aspergillus sp. and Pleurotus albidus. Acta Sci. Technol. 2022, 44, e57766. [Google Scholar] [CrossRef]
- Pessoa, V.A.; Soares, L.B.N.; Silva, G.L.; Vasconcelos, A.S.; Silva, J.F.; Fariña, J.I.; Chevreuil, L.R. Production of mycelial biomass, proteases and protease inhibitors by Ganoderma lucidum under different submerged fermentation conditions. Braz. J. Biol. 2023, 83, e270316. [Google Scholar] [CrossRef]
- Brito, A.K.P.; Pimenta, L.; Barbosa, E.E.P.; Batista, S.C.P.; Coelho, M.P.S.L.V.; Castillo, T.A.; Teixeira, M.F.S. Evaluation of tropical forest substrates for cultivation and production of proteases by Pleurotus djamor. Res. Soc. Dev. 2021, 10, e31810313385. [Google Scholar] [CrossRef]
- Naureen, U.; Kayani, A.; Akram, F.; Rasheed, A.; Saleem, M. Protease production and molecular characterization of a protease dipeptidyl aminopeptidase gene from different strains of Sordaria fimicola. Braz. J. Biol. 2022, 84, e255692. [Google Scholar] [CrossRef]
- Silva, M.D.C.; Costa, R.B.; do Nascimento, J.S.; Gomes, M.M.O.d.S.; Ferreira, A.N.; Grillo, L.A.M.; Pereira, H.J.V. Production of milk-coagulating protease by fungus Pleurotus djamor through solid state fermentation using wheat bran as the low-cost substrate. Prep. Biochem. Biotechnol. 2025, 55, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, M.; Wan, J.; Liu, H.; Wang, Y.; Yang, R.; Wu, Y.; Bao, D.; Chen, H.; Zou, G.; et al. Enhancing digestibility and intestinal peptide release of Pleurotus eryngii protein: An enzymatic approach. J. Fungi 2024, 10, 890. [Google Scholar] [CrossRef]
- Goswami, B.; Majumdar, S.; Dutta, R.; Bhowal, J. Optimization of enzymatic hydrolysis of Pleurotus ostreatus derived proteins through RSM and evaluation of nutritional and functional qualities of mushroom protein hydrolysates. Braz. J. Food Technol. 2022, 25, e2020186. [Google Scholar] [CrossRef]
- Contato, A.G.; Inácio, F.D.; Bueno, P.S.A.; Nolli, M.M.; Janeiro, V.; Peralta, R.M.; Souza, C.G.M. Pleurotus pulmonarius: A protease-producing white rot fungus in lignocellulosic residues. Int. Microbiol. 2023, 26, 43–50. [Google Scholar] [CrossRef]
- Silva, A.T.D.; Figueroa, L.B.P.; Souza, D.C.; Ferreira, D.P.; Santos, P.H.D.; Dias, E.S.; Braga, F.R.; Soares, F.E.F. Use of agricultural waste for optimization of protease production by Pleurotus djamor and evaluation of its anthelmintic activity. Braz. J. Microbiol. 2025, 56, 1391–1398. [Google Scholar] [CrossRef]
- Silva, A.T.D.; Ferreira, D.P.; de Souza, D.C.D.; de Araújo, J.C.; Silva, A.C.; Dias, E.S.; de Freitas Soares, F.E.D.F. Nematicidal activity of metabolites from Pleurotus djamor on Meloidogyne incognita under greenhouse conditions. Cad. Pedagógico 2024, 21, e9944. [Google Scholar] [CrossRef]
- Silva, A.T.D.; Figueroa, L.B.P.; de Souza, D.C.D.; Dias, E.S.; Albuquerque, L.B.; Moreira, T.F.; Soares, F.E.F. Evaluation of the nematicidal and enzymatic activity of Pleurotus djamor on Trichostrongylus spp. and Strongyloides papillosus. Biocontrol Sci. Technol. 2024, 34, 875–884. [Google Scholar] [CrossRef]
- Song, P.; Zhang, X.; Wang, S.; Xu, W.; Wang, F.; Fu, R.; Wei, F. Microbial proteases and their applications. Front. Microbiol. 2023, 14, 1236368. [Google Scholar] [CrossRef] [PubMed]
- Santana, R.D.S.; Mendes, F.D.S.; Paula da Silva, B.J.; Lima, E.S.; Nascimento, T.P.; Carneiro da Cunha, M.N.; Gomes, W.R. Recovery and partial purification of fibrinolytic protease from Pleurotus ostreatus and P. eryngii and cytotoxic and antioxidant activity of their extracts. Prep. Biochem. Biotechnol. 2024, 54, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Benmrad, M.O.; Mechri, S.; Jaouadi, N.Z.; Elhoul, M.B.; Rekik, H.; Sayadi, S.; Bejar, S.; Kechaou, N.; Jaouadi, B. Purification and biochemical characterization of a novel thermostable protease from the oyster mushroom Pleurotus sajor-caju strain CTM10057 with industrial interest. BMC Biotechnol. 2019, 19, 43. [Google Scholar] [CrossRef]
- Cui, L.; Liu, Q.H.; Wang, H.X.; Ng, T.B. An alkaline protease from fresh fruiting bodies of the edible mushroom Pleurotus citrinopileatus. Appl. Microbiol. Biotechnol. 2007, 75, 81–85. [Google Scholar] [CrossRef]
- Silva, A.T.D.; de Souza, D.C.D.; de Souza, S.A.; de Souza Alves, J.C.; Dias, E.S.; Aguilar-Marcelino, L.; Soares, F.E.F. Linking the protease activity to the nematicidal action of edible mushroom. World J. Microbiol. Biotechnol. 2024, 40, 170. [Google Scholar] [CrossRef]
- Martim, S.R.; Silva, L.S.C.; de Souza, L.B.; do Carmo, E.J.; Alecrim, M.M.; de Vasconcellos, M.C.; Oliveira, I.M.A.; Teixeira, M.F.S. Pleurotus albidus: A new source of milk-clotting proteases. Afr. J. Microbiol. Res. 2017, 11, 660–667. [Google Scholar] [CrossRef]
- Kuforiji, O.O.; Fasidi, I.O. Enzyme activities of Pleurotus tuber-regium (Fries) Singer, cultivated on selected agricultural wastes. Bioresour. Technol. 2008, 99, 4275–4278. [Google Scholar] [CrossRef]
- Martim, S.R.; Silva, L.S.C.; Alecrim, M.M.; Teixeira, L.S.; Teixeira, M.F.S. Milk-clotting proteases from Pleurotus albidus: An innovative alternative for the production of Minas frescal cheese. Acta Sci. Biol. Sci. 2021, 43, e57275. [Google Scholar] [CrossRef]
- Silva, R.S.; de Farias, V.G.; de Souza Sevalho, E.; Candido, K.; Carpio, K.C.R.; Gomes, W.R.; Carvalho, R.P. Cultivation conditions and biochemical characterization of the proteolytic enzymes with fibrinolytic action obtained from mushrooms in the last ten years. Res. Soc. Dev. 2022, 11, e530111436652. [Google Scholar] [CrossRef]
- Shukla, E.; Bendre, A.D.; Gaikwad, S.M. Hydrolases: The most diverse class of enzymes. In Hydrolases; IntechOpen: London, UK, 2022. [Google Scholar]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef]
- Cha, W.S.; Park, S.S.; Kim, S.J.; Choi, D. Biochemical and enzymatic properties of a fibrinolytic enzyme from Pleurotus eryngii cultivated under solid-state conditions using corn cob. Bioresour. Technol. 2010, 101, 6475–6481. [Google Scholar] [CrossRef]
- Petraglia, T.; Latronico, T.; Fanigliulo, A.; Crescenzi, A.; Rossano, R. Hydrolytic enzymes in the secretome of the mushrooms P. eryngii and P. ostreatus: A comparison between the two species. Molecules 2025, 30, 2505. [Google Scholar] [CrossRef]
- Yin, C.; Zheng, L.; Chen, L.; Tan, Q.; Shang, X.; Ma, A. Cloning, expression, and characterization of a milk-clotting aspartic protease gene (Po-Asp) from Pleurotus ostreatus. Appl. Biochem. Biotechnol. 2014, 172, 2119–2131. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Matthew, M.A.; Yao, C. Roles of cysteine proteases in biology and pathogenesis of parasites. Microorganisms 2023, 11, 1397. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kim, D.W.; Kim, S.; Kim, S.J. Purification and partial characterization of a fibrinolytic enzyme from the fruiting body of the medicinal and edible mushroom Pleurotus ferulae. Prep. Biochem. Biotechnol. 2017, 47, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Joh, J.H.; Kim, B.G.; Kong, W.S.; Yoo, Y.B.; Kim, N.K.; Park, H.R.; Lee, C.S. Cloning and developmental expression of a metalloprotease cDNA from the metzincin family of the oyster mushroom Pleurotus ostreatus. FEMS Microbiol. Lett. 2004, 239, 57–62. [Google Scholar] [CrossRef]
- Genier, H.L.A.; Soares, F.E.F.; Queiroz, J.H.; Gouveia, A.S.; Araújo, J.V.; Braga, F.R.; Kasuya, M.C.M. Activity of the fungus Pleurotus ostreatus and of its proteases on Panagrellus sp. larvae. Afr. J. Biotechnol. 2015, 14, 1496–1503. [Google Scholar] [CrossRef]
- Choi, H.S.; Shin, H.H. Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia 1998, 90, 674–679. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Vidal-Diez de Ulzurrun, G.; Schwarz, E.M.; Stajich, J.E.; Hsueh, Y.-P. Genome sequence of the oyster mushroom Pleurotus ostreatus strain PC9. G3 Genes Genomes Genet. 2021, 11, jkaa008. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, M.; Castanera, R.; Lavín, J.L.; Grigoriev, I.V.; Oguiza, J.A.; Ramírez, L.; Pisabarro, A.G. Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus. Environ. Microbiol. 2016, 18, 821–837. [Google Scholar] [CrossRef]
- Faraco, V.; Palmieri, G.; Festa, G.; Monti, M.; Sannia, G.; Giardina, P. A new subfamily of fungal subtilases: Structural and functional analysis of a Pleurotus ostreatus member. Microbiology 2005, 151, 457–466. [Google Scholar] [CrossRef]
- Wang, H.; Ng, T.B. Pleureryn, a novel protease from fresh fruiting bodies of the edible mushroom Pleurotus eryngii. Biochem. Biophys. Res. Commun. 2001, 289, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.; Bianco, C.; Cennamo, G.; Giardina, P.; Marino, G.; Monti, M.; Sannia, G. Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl. Environ. Microbiol. 2001, 67, 2754–2759. [Google Scholar] [CrossRef]
- Shen, M.H.; Kim, J.S.; Sapkota, K.; Park, S.E.; Choi, B.S.; Kim, S.; Kim, S.J. Purification, characterization, and cloning of fibrinolytic metalloprotease from Pleurotus ostreatus mycelia. J. Microbiol. Biotechnol. 2007, 17, 1271–1283. [Google Scholar]
- Sakovich, V.V.; Zhernosekov, D.D.; Rebriev, A.V.; Korolova, D.S.; Marunych, R.Y.; Chernyshenko, V.O. Metalloprotease from the cultural liquid of Pleurotus ostreatus. Biotechnol. Acta 2019, 12, 35–45. [Google Scholar] [CrossRef]
- Campos, C.; Dias, D.C.; Valle, J.S.D.; Colauto, N.B.; Linde, G.A. Produção de biomassa, proteases e exopolissacarídeos por Pleurotus ostreatus em cultivo líquido. Arq. Ciênc. Vet. Zool. UNIPAR 2010, 13. Available online: https://revistas.unipar.br/index.php/veterinaria/article/view/3372 (accessed on 24 September 2025).
- Inácio, F.D.; Martins, A.F.; Contato, A.G.; Brugnari, T.; Peralta, R.M.; Souza, C.G.M. Biodegradation of human keratin by protease from the basidiomycete Pleurotus pulmonarius. Int. Biodeterior. Biodegrad. 2018, 127, 124–129. [Google Scholar] [CrossRef]
- Machado, A.R.G.; Martim, S.R.; Alecrim, M.M.; Teixeira, M.F.S. Production and characterization of proteases from edible mushrooms cultivated on Amazonian tubers. Afr. J. Biotechnol. 2017, 16, 2160–2166. [Google Scholar] [CrossRef]
- Ravikumar, G.; Gomathi, D.; Kalaiselvi, M.; Uma, C. A protease from the medicinal mushroom Pleurotus sajor-caju: Production, purification and partial characterization. Asian Pac. J. Trop. Biomed. 2012, 2, S411–S417. [Google Scholar] [CrossRef]
- Silva, A.T.D.; Figueroa, L.B.P.; de Souza, D.C.D.; do Carmo Alves, A.; Facury, T.M.; Dias, E.S.; Braga, F.R.; de Freitas Soares, F.E.F. Proteolytic profile and nematicidal potential of proteases produced by Pleurotus djamor in coprocultures. Res. Vet. Sci. 2025, 184, 105528. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C.; Das, U.; Panda, S.K.; Saranraj, P. Microorganisms in fermentation. In Essentials of Fermentation Technology; Springer: Cham, Switzerland, 2019; pp. 1–39. [Google Scholar] [CrossRef]
- Sosa-Martínez, J.D.; Montañez, J.; Contreras-Esquivel, J.C.; Balagurusamy, N.; Gadi, S.K.; Morales-Oyervides, L. Agroindustrial and food processing residues valorization for solid-state fermentation processes: A case for optimizing the co-production of hydrolytic enzymes. J. Environ. Manag. 2023, 347, 119067. [Google Scholar] [CrossRef]
- Liu, X.L.; Zheng, X.Q.; Qian, P.Z.; Kopparapu, N.K.; Deng, Y.P.; Nonaka, M.; Harada, N. Purification and characterization of a novel fibrinolytic enzyme from culture supernatant of Pleurotus ostreatus. J. Microbiol. Biotechnol. 2014, 24, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Benmrad, M.O.; Gargouri, W.; Mahfoudh, D.; Kriaa, M.; Jaouadi, B.; Kechaou, N. Response surface methodology optimization of milk-clotting protease produced by Pleurotus sajor-caju strain CTM 10057 and its technico-economical evaluation. Alger. J. Environ. Sci. Technol. 2020, 6. [Google Scholar]
- Barbosa, E.E.P.; Pimenta, L.; Araújo, K.S.; Brito, A.K.P.; Batista, S.C.P.; Martim, S.R.; Teixeira, M.F.S. Production and partial characterization of a new fibrinolytic protease from salmon oyster mushroom from Amazonia. Braz. J. Biol. 2025, 85, e289933. [Google Scholar] [CrossRef]
- Ergun, S.O.; Urek, R.O. Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann. Agrar. Sci. 2017, 15, 273–277. [Google Scholar] [CrossRef]
- Souza, D.C.; Gomes, E.H.; Puentes, L.B.F. Duddingtonia flagrans and its crude proteolytic extract: Concomitant action in sheep coprocul-tures. Vet. Res. Commun. 2024, 48, 3423–3427. [Google Scholar] [CrossRef]
- Figueroa, L.B.P.; Mamani, R.C.C.; Souza, D.C.; Alves, J.C.D.S.; Souza, S.A.; Ferreira, C.B.; Soares, F.E.F. Enzyme production by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae and their application in the control of nematodes (Haemonchus spp. and Meloidogyne incognita) in vitro. J. Nat. Pestic. Res. 2024, 8, 100077. [Google Scholar] [CrossRef]
- Sainos, E.; Díaz-Godínez, G.; Loera, O.; Montiel-González, A.M.; Sánchez, C. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: C. Appl. Microbiol. Biotechnol. 2006, 72, 812–815. [Google Scholar] [CrossRef]
- Grimm, D.; Wösten, H.A.B. Mushroom cultivation in the circular economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef]
- Machado, A.R.G.; Teixeira, M.F.S.; Kirsch, L.S.; Campelo, M.C.L.; Oliveira, I.M.A. Nutritional value and proteases of Lentinus citrinus produced by solid state fermentation of lignocellulosic waste from tropical region. Saudi J. Biol. Sci. 2016, 23, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Elissishvili, V.; Kachishvili, E.; Penninckx, M.J. Profile of lignocellulolytic enzymes during the growth and fruiting of Pleurotus ostreatus in wheat straw and tree leaves. Microbiol. Minutes 2008, 55, 157–168. [Google Scholar]
- Mujtaba, M.; Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 400, 136815. [Google Scholar] [CrossRef]
- Degenkolb, T.; Vilcinskas, A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: Metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl. Microbiol. Biotechnol. 2016, 100, 3813–3824. [Google Scholar] [CrossRef]
- Cruz-Arévalo, J.; Hernández-Velázquez, V.M.; Cardoso-Taketa, A.T.; González-Cortazar, M.; Sánchez-Vázquez, J.E.; Peña-Chora, G.; Aguilar-Marcelino, L. Hydroalcoholic extracts from Pleurotus ostreatus spent substrate with nematocidal activity against Nacobbus aberrans phytonematode and the non-target species Panagrellus redivivus. Plants 2024, 13, 1777. [Google Scholar] [CrossRef]
- Sufiate, B.L.; Soares, F.E.F.; Moreira, S.S.; Gouveia, A.S.; Monteiro, T.S.A.; Freitas, L.G.; Queiroz, J.H. Nematicidal action of Pleurotus eryngii metabolites. Biocatal. Agric. Biotechnol. 2017, 12, 216–219. [Google Scholar] [CrossRef]
- Corrêa, S.J.P.; de Oliveira Barretto, L.C.; de Oliveira Júnior, A.M. Estudos prospectivos da produção de queijos nacionais e do seu potencial para a indicação geográfica. Obs. Econ. Latinoamericana 2023, 21, 11932–11954. [Google Scholar] [CrossRef]
- Mensah, G.A.; Fuster, V.; Roth, G.A. A Heat-Healthy and Stroke-Free World: Using Data to Inform Global Action. JACC J. 2023, 82, 2343–2349. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, L.; Barbosa, E.E.P.; Araújo, K.S.; Brito, A.K.P.; Batista, S.C.P.; Martim, S.R.; Teixeira, M.F.S. Bioconversion of Amazonian vegetables by Pleurotus albidus: Production of fibrinolytic enzyme. Braz. J. Biol. 2025, 85, e290015. [Google Scholar] [CrossRef]
- Leonhardt, R.H.; Krings, U.; Berger, R.G.; Linke, D. Heterologous production of the stain-solving peptidase PPP1 from Pleurotus pulmonarius. Bioproc. Biosyst. Eng. 2016, 39, 845–853. [Google Scholar] [CrossRef]
- Guan, G.P.; Zhang, G.Q.; Wu, Y.Y.; Wang, H.X.; Ng, T.B. Purification and characterization of a novel serine protease from the mushroom Pholiota nameko. J. Biosci. Bioeng. 2011, 111, 641–645. [Google Scholar] [CrossRef] [PubMed]
Species | Molecular Weight (kDa) | Optimal pH | Optimal Temperature (°C) | Km | Vmáx | Sensitivity to Inhibitors | Influence of Metal ions on Enzymatic Activity |
---|---|---|---|---|---|---|---|
P. eryngii | 11.5 [38] 14 [29] | 5.0 [38] 6.5 [1] | 40 [27] | 0.18 mM [10] | 53.5 U/mL [10] | Pepstatin A inhibits pleureryn; PMSF does not affect it [38]. The fibrinolytic enzyme was completely inhibited by PMSF [27] | - |
P. citrinopileatus | 28 [19] | 10 [19] | 50 [19] | 3.44 mg/mL [19] | 0.139 mg/ mL·min [19] | PMSF completely inhibited, EDTA did not inhibit, Pepstatin A moderately inhibited [19] | Activation by K+, Li+, and Mg2+; inhibition by Al3+, Cu2+, Hg2+, Zn2+, Pb2+, Co2+, Mn2+, and Ca2+ [19] |
P. ostreatus | 18.2–97 [24,28,29,34,39,40,41] | 6.5–9 [20,33,39,42] | 35–75 [33,34,41,42] | - | - | PMSF completely inhibited [2,32,39], Pepstatin A inhibits acid protease [2], P. ostreatus subtilisin-like protease was not inhibited by Pepstatin A [39], EDTA inhibited it completely [33], and protease was inhibited by EDTA only for a certain period of time to 74.3% [2] | Ca2+ has a positive effect on activity [39]. Cu2+, Al3+, and Hg2+ cause inhibition. Activity was restored by Zn2+ or Co2+ [19] |
P. pulmonarius | 16 [43] | 5.5 [12] | 45 [12] | 0.61 mg/mL | 1.79 mM/min | Pepstatin A (56% inhibition), PMSF (63.4% inhibition), EDTA (81.0% maximum inhibition) [12] | Inhibition by Mn2+, Ba2+, Fe2+, and Ca2+. Slight increase by Mg2+ [12] |
P. albidus | 36 [5] | 7.0 [5] 5.0 [23] | 40–50 [5,23] | - | - | PMSF (30% inhibition) [23]. Pepstatin A and EDTA did not inhibit [21] | Mn2+, Cu2+, Na+, Mg2+, K+, Zn2+, and Ca2+ cause slight inhibition. Fe2+ increased activity [21,23] |
P. ostreatoroseus | - | 7.0 [44] | 40 [44] | - | - | PMSF (94% inhibition). EDTA (87% inhibition) [21] | Cu2+, Zn2+, and Mn2+ cause inhibition, while Fe2+, Mg2+, Ca2+, K+, and Na+ cause slight inhibition [21] |
P. sajor-caju | 48 and 65 [18,45] | 8.0 [45] | 60 [45] | 0.275 mg/mL | 79 μmol/ mg/min | PMSF completely inhibited, EDTA slightly inhibited, and pepstatin A did not inhibit [18] | Cd2+, Ni2+, Hg2+ were inhibited completely. Co2+, Ba2+, Zn2+ inhibited partially. Activation by Ca2+, Mg2+, Mn2+, and Fe2+ increased activity [18] |
P. djamor | 75–100 [46] | 5.0 and 8.0 [9,20] | 50 [20] | - | - | PMSF (45% inhibition) and EDTA (69% inhibition) [9] | - |
Agro-Industrial Residues | Pleurotus Species | Proteolytic Activity (U/mL) | Study |
---|---|---|---|
Glucose, yeast extract | P. ostreatus | 90.0 | [33] |
Glucose, yeast Extract, peptone | P. albidus | 73.39 | [21] |
Potato dextrose broth | P. sajor-caju | 10.5 | [18] |
Yeast Malt | P. ostreatus | 1015.1 | [17] |
Yeast Malt | P. eryngii | 1552.8 | [17] |
Sabouraud dextrose, yeast extract | P. ostreatus | 1512.0 | [17] |
Sabouraud dextrose, yeast extract | P. eryngii | 1086.4 | [17] |
Glucose, peptone, yeast extract | P. ostreatoroseus | 1361.73 | [51] |
Malt, glucose, peptone, yeast extract | P. ostreatoroseus | 262.02 | [51] |
Malt | P. ostreatoroseus | 382.32 | [51] |
Agro-Industrial Residues | Pleurotus Species | Proteolytic Activity (U/mL) | Study |
---|---|---|---|
Wheat Bran | P. albidus | 5.029 | [5] |
Wheat Bran | P. djamor | 31.61 | [13] |
Wheat Bran | P. pulmonarius | 76.3 | [12] |
Wheat Bran | P. sajor-caju | 22 | [45] |
wheat grains | P. ostreatus (SB) | 5.0 | [20] |
wheat grains | P. ostreatus (Pearl) | 4.0 | [20] |
Oat bran | P. pulmonarius | 73.0 | [12] |
Corn Cob | P. eryngii | 53.5 | [28] |
Corn Flour | P. sajor-caju | 45 | [45] |
Corn pomace | P. pulmonarius | 94.0 | [12] |
Pleurotus Species | Cultivation Method | Specific Activity | Fibrinolytic Activity | Evaluation Method | Study |
---|---|---|---|---|---|
P. ostreatus | Fermentation in submerged culture | 1.199, 75 U/mg | - | Fibrin plate method | [49] |
P. ostreatus | Soybean Bran + Yeast Extract | - | 100.14 U/mL | Formation of an artificial thrombus | [17] |
P. ostreatus | Yeast Extract Malt broth | - | 71.5 ± 0.56 U/mL | Formation of an artificial thrombus | [17] |
P. eryngii | Yeast Extract Malt broth | - | 226.47 U/mL | Formation of an artificial thrombus | [17] |
P. eryngii | Soybean Bran + Yeast Extract | - | 71.49 U/mL | Formation of an artificial thrombus | [17] |
P. albidus | Solid state fermentation (Black-eyed peas) | 850 U/mg | 181.11 U/mL | Fibrin plate method | [65] |
P. albidus | Solid state fermentation (Thorn yam) | 310 U/mg | 156.01 U/mL | Fibrin plate method | [65] |
P. albidus | Solid state fermentation (Wheat grain) | 180 U/mg | 128.40 U/mL | Fibrin plate method | [65] |
P. ostreatus | Malt extract agar | 6.45 mm2 | - | Fibrin plate method | [3] |
P. ferulae | - | 1.253, 33 U/mg | 376 U/mL | Fibrin plate method | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, A.T.; Aguilar-Marcelino, L.; Alves, A.d.C.; de Souza, D.C.T.; Silva, A.C.; Alves, J.C.d.S.; Langa, Y.L.; Gomes, E.H.; Soares, F.E.d.F. Proteases from Pleurotus spp.: Properties, Production and Biotechnological Applications. J. Fungi 2025, 11, 702. https://doi.org/10.3390/jof11100702
da Silva AT, Aguilar-Marcelino L, Alves AdC, de Souza DCT, Silva AC, Alves JCdS, Langa YL, Gomes EH, Soares FEdF. Proteases from Pleurotus spp.: Properties, Production and Biotechnological Applications. Journal of Fungi. 2025; 11(10):702. https://doi.org/10.3390/jof11100702
Chicago/Turabian Styleda Silva, Adriane Toledo, Liliana Aguilar-Marcelino, Amanda do Carmo Alves, Débora Castro Toledo de Souza, Ana Carolina Silva, Jhennifer Cristina de Souza Alves, Yanick Leontino Langa, Elias Honorato Gomes, and Filippe Elias de Freitas Soares. 2025. "Proteases from Pleurotus spp.: Properties, Production and Biotechnological Applications" Journal of Fungi 11, no. 10: 702. https://doi.org/10.3390/jof11100702
APA Styleda Silva, A. T., Aguilar-Marcelino, L., Alves, A. d. C., de Souza, D. C. T., Silva, A. C., Alves, J. C. d. S., Langa, Y. L., Gomes, E. H., & Soares, F. E. d. F. (2025). Proteases from Pleurotus spp.: Properties, Production and Biotechnological Applications. Journal of Fungi, 11(10), 702. https://doi.org/10.3390/jof11100702