Mycological Research in Mexico

A special issue of Journal of Fungi (ISSN 2309-608X).

Deadline for manuscript submissions: closed (30 September 2025) | Viewed by 4357

Special Issue Editor


E-Mail
Guest Editor
National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, Jiutepec 62550, MR, Mexico
Interests: the possible biotechnological use of edible mushroom bioproducts for controlling plant and animal parasitic nematodes

Special Issue Information

Dear Colleagues,

The study of mycology in Mexico has evolved significantly, reflecting the country’s rich biodiversity and deep-rooted cultural connections to fungi. From early ethnomycological studies documenting the sacred and medicinal uses of fungi and edible mushrooms among indigenous communities to contemporary research in fungal taxonomy, ecology, biotechnology, and omics, Mexican mycology has made notable contributions to science and society. This Special Issue aims to highlight the key milestones in the development of mycological research in Mexico, emphasizing the transition from descriptive studies to integrative approaches that utilize molecular tools and interdisciplinary frameworks. Mexican researchers have explored diverse ecosystems, uncovering unique fungal species and their ecological roles while fostering collaborations to address global challenges, such as sustainable agriculture, bioremediation, and food security. The establishment of specialized institutions, academic programs, and networks has strengthened this field, enabling innovative studies on edible and medicinal mushrooms, endophytes, and fungal pathogens. By synthesizing the historical and current trajectories of mycological research in Mexico, this Special Issue aims to underscore its relevance to national and international scientific priorities. The findings that will be presented within aim to inspire further exploration and conservation of fungal biodiversity, highlighting its potential for ecological, economic, and societal benefits.  

Dr. Liliana Aguilar-Marcelino
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mycology in Mexico
  • fungal biodiversity
  • ethnomycology
  • edible and medicinal mushrooms
  • fungal taxonomy and ecology
  • molecular tools in mycology
  • sustainable agriculture
  • bioremediation
  • food security
  • conservation of fungal biodiversity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

14 pages, 2520 KB  
Article
Distribution of Airborne Fungi in Vehicles and Its Association with Usage Patterns
by Raúl Asael Rodríguez-Villarreal, Mariana Elizondo-Zertuche, Nydia Orué-Arreola, Juan Adame-Rodríguez, Larissa E. Gordillo-Mata, Miguel González-Enríquez, Brandon Ortega-Castillo, Patricio Adrián Zapata-Morín and Efrén Robledo-Leal
J. Fungi 2025, 11(10), 725; https://doi.org/10.3390/jof11100725 - 10 Oct 2025
Abstract
Airborne fungal exposure in confined indoor environments is a growing public health concern, however the microbial composition of air inside private vehicles remains underexplored. This study aimed to characterize culturable airborne fungi in vehicle cabins and evaluate their association with environmental and behavioral [...] Read more.
Airborne fungal exposure in confined indoor environments is a growing public health concern, however the microbial composition of air inside private vehicles remains underexplored. This study aimed to characterize culturable airborne fungi in vehicle cabins and evaluate their association with environmental and behavioral variables. Air samples (100 L) were collected from 69 vehicles using a standardized culture-based method. Simultaneously, a detailed survey was administered to vehicle owners to document usage patterns, maintenance habits, and odor perception. Results revealed a total culturable fungal load of 31,901 CFU/m3, with Cladosporium, Aspergillus, and Penicillium as the most frequently isolated genera. Statistical analysis showed that fungal abundance and community composition were significantly associated with vehicle usage factors such as air disturbance, parking environment, air filter maintenance, and perception of musty odors. Vehicles parked outdoors had significantly higher Bipolaris levels, while lack of regular filter replacement was strongly associated with elevated Alternaria abundance. The presence of musty or moldy odors correlated with a 2.5-fold increase in Aspergillus levels. Redundancy analysis confirmed that odor perception and parking behavior were the strongest predictors of fungal community structure, with specific genera displaying distinct ecological preferences across usage conditions. Usage patterns and maintenance habits significantly influence in-cabin fungal communities, with implications for respiratory health, particularly due to the presence of allergenic and opportunistic genera like Aspergillus, Alternaria, and Bipolaris. Regular air filter maintenance and attention to odor cues may help reduce fungal load and associated health risks. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Figure 1

15 pages, 4989 KB  
Article
Production of Mycelium Mats for Textile Applications
by Reyes K. Romero-Cedillo, Efrén R. Robledo-Leal, Liliana Aguilar-Marcelino, Ma. de Lourdes Acosta-Urdapilleta and Maura Téllez-Téllez
J. Fungi 2025, 11(10), 700; https://doi.org/10.3390/jof11100700 - 26 Sep 2025
Viewed by 585
Abstract
A mycelium is a network of hyphae that possesses the ability to self-assemble and grow into various shapes, acting as a natural binder that minimises the need for intensive chemical and energy processes, making it an alternative capable of forming structures that may [...] Read more.
A mycelium is a network of hyphae that possesses the ability to self-assemble and grow into various shapes, acting as a natural binder that minimises the need for intensive chemical and energy processes, making it an alternative capable of forming structures that may eventually outperform traditional fibres such as animal leather and polyester. In this work, two mycelium mats were created, and their thickness, water absorption, coverage, and tear strength for the sewing process were determined. Fibre mats were grown in vitro or on a jute substrate. The mats were treated with salt, tannin or citric acid solutions, then air- or oven-dried. In general, the treatment that least modified the colour and appearance of the mycelium mats was citric acid, and when dried by airflow, the thickness averaged 1.4 mm. The highest tear strengths were 10.55 N/mm and 12.7 N/mm for the mycelium mats treated with citric acid without and with jute, respectively. A high percentage of water absorption was observed, reaching 267% (mycelium mats treated with tannins and dried at 65 °C) and 28% (mycelium mats treated with citric acid and air-dried). In general, all mycelium mats can be sewn, except for those treated with citric acid, which have a viscous texture and require slow sewing to prevent the mycelium from breaking. The Trametes fungus can be utilised in the production of mycelial materials, allowing for the optimisation of growth conditions to obtain mycelial mats that meet the requirements for use as an environmentally friendly alternative in the textile and related industries. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Graphical abstract

12 pages, 14706 KB  
Article
Ectomycorrhizal Fungi Associated with Pinus cembroides subsp. orizabensis, an Endemic Pine in the Arid Zones of the Oriental Basin, Puebla, Mexico
by Yajaira Baeza-Guzmán, Marian Silvana Vásquez-Jiménez, Elvira Morgado-Viveros, Luz Amelia Sánchez-Landero and Dora Trejo-Aguilar
J. Fungi 2025, 11(9), 677; https://doi.org/10.3390/jof11090677 - 16 Sep 2025
Viewed by 525
Abstract
Ectomycorrhizal fungi (EMF) associated with the roots of Pinus cembroides subsp. orizabensis, a key pinyon pine species for local forestry in the Oriental Basin, Puebla, Mexico, were identified and analyzed. The study aimed to evaluate the diversity of EMF in this endemic [...] Read more.
Ectomycorrhizal fungi (EMF) associated with the roots of Pinus cembroides subsp. orizabensis, a key pinyon pine species for local forestry in the Oriental Basin, Puebla, Mexico, were identified and analyzed. The study aimed to evaluate the diversity of EMF in this endemic pine across three sampling transects (T1, T2, T3), each located in sites with different vegetation compositions and pine cover. In each site, a 100 m × 25 m transect was established, and root tips colonized by EMF were collected for morphological and molecular identification. Alpha (α) and beta (β) diversity were calculated for each transect. A total of 16 EMF morphotypes were identified, and molecular analysis confirmed four taxa: Geopora arenicola, Rhizopogon aff. subpurpurascens, Tomentella sp. 1, and Tricholoma sp. 1. The transect with the highest P. cembroides cover showed the greatest fungal richness. Beta diversity, as measured by Sørensen index partitioning, revealed a 30% species turnover between T1 and T2 and a 60% turnover between T2 and T3, suggesting distinct fungal communities. In contrast, no turnover but a nested pattern was observed between T1 and T3, indicating that the less diverse community is a subset of the richer one. These results show that EMF composition varies with pine cover and vegetation heterogeneity, highlighting the influence of disturbance on fungal diversity. This is the first report of EMF fungi associated with Pinus cembroides subsp. orizabensis, as well as the first record of G. arenicola in arid pine forests in Mexico. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Figure 1

Review

Jump to: Research, Other

16 pages, 687 KB  
Review
Proteases from Pleurotus spp.: Properties, Production and Biotechnological Applications
by Adriane Toledo da Silva, Liliana Aguilar-Marcelino, Amanda do Carmo Alves, Débora Castro Toledo de Souza, Ana Carolina Silva, Jhennifer Cristina de Souza Alves, Yanick Leontino Langa, Elias Honorato Gomes and Filippe Elias de Freitas Soares
J. Fungi 2025, 11(10), 702; https://doi.org/10.3390/jof11100702 - 27 Sep 2025
Viewed by 410
Abstract
Proteases (EC 3.4) are hydrolytic enzymes widely used in biotechnological processes, representing about 60 to 70% of the global industrial enzyme market. Edible mushrooms of the genus Pleurotus stand out as excellent producers of these enzymes, in addition to exhibiting high nutritional value [...] Read more.
Proteases (EC 3.4) are hydrolytic enzymes widely used in biotechnological processes, representing about 60 to 70% of the global industrial enzyme market. Edible mushrooms of the genus Pleurotus stand out as excellent producers of these enzymes, in addition to exhibiting high nutritional value and medicinal properties. The proteases produced by these species exhibit broad adaptability to different experimental conditions, including variations in optimal pH and temperature, as well as distinct sensitivities to inhibitors. The production of these enzymes can be intensified by solid-state fermentation (SSF) using low-cost agro-industrial substrates, such as wheat bran, which favors sustainable applications aligned with the circular economy. Parameters such as carbon/nitrogen (C/N) ratio, medium pH, cultivation time, and inoculum age directly influence enzyme productivity. Proteases from Pleurotus spp. show high potential in the biochemical control of parasites such as Meloidogyne incognita, Haemonchus spp., Taenia solium, and Moniezia sp., catalyzing the degradation of the cuticle or eggshell. Other biotechnological applications include milk coagulation, thrombolytic therapies, keratin bioconversion, increased protein digestibility, and use as additives in the food, detergent, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Figure 1

14 pages, 1413 KB  
Review
From the Metabolic Effects and Mechanism of Monovalent Cation Transport to the Actual Measurement of the Plasma Membrane Potential in Yeast
by Antonio Peña, Norma Silvia Sánchez and Martha Calahorra
J. Fungi 2025, 11(7), 522; https://doi.org/10.3390/jof11070522 - 15 Jul 2025
Viewed by 563
Abstract
The effects of potassium (K+) on yeast metabolism were documented as early as 1940. Studies proposing a mechanism for its transport started in 1950, and in 1953, a mechanism for the stimulation of fermentation was suggested. However, it was not until [...] Read more.
The effects of potassium (K+) on yeast metabolism were documented as early as 1940. Studies proposing a mechanism for its transport started in 1950, and in 1953, a mechanism for the stimulation of fermentation was suggested. However, it was not until the 1970s that both mechanisms were clarified in Mexico, and the actual internal pH of the cells was measured. The presence of an H+-ATPase that generates an electric plasma membrane difference (PMP), which is used by specific transporters to facilitate the influx of K+ and other cations into the cells, was discovered. For years, many efforts were made to estimate and measure the value of the PMP; the obtained results were variable and erratic. In the 1980s, a methodology was developed to estimate the plasma membrane potential by following the fluorescence changes in the DiSC3(3) dye and measuring its accumulation, which provided actual but inaccurate values. Similar values were obtained by measuring the accumulation of tetraphenylphosphonium. The most reliable method of measuring the actual values of the plasma membrane potential was only recently devised using the also fluorescent dye thioflavin T. This review presents the attempts and outcomes of these experiments necessary to clarify the results reported by different research groups. Innovative research with Genetically Encoded Voltage Indicators (GEVIs) is also included. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Figure 1

Other

Jump to: Research, Review

20 pages, 1812 KB  
Systematic Review
Pine Forest Plantations in the Neotropics: Challenges and Potential Use of Ectomycorrhizal Fungi and Bacteria as Inoculants
by Yajaira Baeza-Guzmán, Sara Lucía Camargo-Ricalde, Dora Trejo-Aguilar and Noé Manuel Montaño
J. Fungi 2025, 11(5), 393; https://doi.org/10.3390/jof11050393 - 20 May 2025
Cited by 1 | Viewed by 1211
Abstract
Forest plantations in the Neotropics aim to alleviate pressure on primary forests. This study synthesizes knowledge on pine species used in these plantations, emphasizing the challenges and potential of ectomycorrhizal fungi and bacteria as inoculants. An analysis of 98 articles identifies 23 pine [...] Read more.
Forest plantations in the Neotropics aim to alleviate pressure on primary forests. This study synthesizes knowledge on pine species used in these plantations, emphasizing the challenges and potential of ectomycorrhizal fungi and bacteria as inoculants. An analysis of 98 articles identifies 23 pine species in Mexico and Central America and about 16 fast-growing species in South America. While pine plantations provide a habitat for generalist species, they reduce the richness of specialist species. Ectomycorrhizal fungi and bacterial diversity in plantations with introduced pines is up to 20% lower compared to native ecosystems. Suillus and Hebeloma are commonly used as mycorrhizal inoculants for Neotropical and introduced species, including Pinus ponderosa and Pinus radiata in South America. Commercial inoculants predominantly feature the fungal species Pisolithus tinctorius, alongside bacterial genera such as Bacillus, Cohnella, and Pseudomonas. This study emphasizes the importance of leveraging native microbial communities and their synergistic interactions with ECM fungi and bacteria to enhance seedling growth and quality. Such a combined approach can improve plantation survival, boost resilience to environmental stressors, and promote long-term productivity. These findings underscore the need to incorporate native fungi and bacteria into inoculant strategies, advancing sustainable forestry practices and ecosystem adaptation in the Neotropics. Full article
(This article belongs to the Special Issue Mycological Research in Mexico)
Show Figures

Figure 1

Back to TopTop