Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (604)

Search Parameters:
Keywords = mechanisms of gas permeability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4322 KiB  
Article
Fly-Ash-Based Microbial Self-Healing Cement: A Sustainable Solution for Oil Well Integrity
by Lixia Li, Yanjiang Yu, Qianyong Liang, Tianle Liu, Guosheng Jiang, Guokun Yang and Chengxiang Tang
Sustainability 2025, 17(15), 6989; https://doi.org/10.3390/su17156989 (registering DOI) - 1 Aug 2025
Abstract
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and [...] Read more.
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and elevated operational expenditures. This study investigates the development of a novel microbial self-healing well cement slurry system, employing fly ash as microbial carriers and sustained-release microcapsules encapsulating calcium sources and nutrients. Systematic evaluations were conducted, encompassing microbial viability, cement slurry rheology, fluid loss control, anti-channeling capability, and the mechanical strength, permeability, and microstructural characteristics of set cement stones. Results demonstrated that fly ash outperformed blast furnace slag and nano-silica as a carrier, exhibiting superior microbial loading capacity and viability. Optimal performance was observed with additions of 3% microorganisms and 3% microcapsules to the cement slurry. Microscopic analysis further revealed effective calcium carbonate precipitation within and around micro-pores, indicating a self-healing mechanism. These findings highlight the significant potential of the proposed system to enhance cement sheath integrity through localized self-healing, offering valuable insights for the development of advanced, durable well-cementing materials tailored for challenging downhole environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

19 pages, 4441 KiB  
Article
In Silico and In Vivo Pharmacological Evaluation of Iridoid Compounds: Geniposide and Asperuloside Profile Study Through Molecular Docking Assay and in the Caenorhabditis elegans Model
by Mariana Uczay, Péterson Alves Santos, Pricila Pflüger, Gilsane von Poser, José Brea, Maria Isabel Loza, Patrícia Pereira and José Angel Fontenla
Biomolecules 2025, 15(8), 1105; https://doi.org/10.3390/biom15081105 - 31 Jul 2025
Viewed by 44
Abstract
Iridoids are compounds recognized for their neuroprotective properties and their potential application in the treatment of neurodegenerative diseases. Geniposide (GP) and asperuloside (ASP) are iridoids that have demonstrated some biological activities. In this study, the potential neuroprotective effects of these iridoids were evaluated [...] Read more.
Iridoids are compounds recognized for their neuroprotective properties and their potential application in the treatment of neurodegenerative diseases. Geniposide (GP) and asperuloside (ASP) are iridoids that have demonstrated some biological activities. In this study, the potential neuroprotective effects of these iridoids were evaluated through in silico and in vivo assays, using Caenorhabditis elegans (C. elegans) strains CF1553 (sod-3::GFP), GA800 (cat::GFP), and CL2166 (gst-4::GFP). The results suggested that neither compound appears to have good passive permeability through the blood–brain barrier (BBB). However, an active transport mechanism involving the glucose transporter GLUT-1 may be present, as both compounds contain glucose in their molecular structure. In addition, they can inhibit the activity of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). GP at 1 and 2 mM reversed the H2O2-induced increase in sod-3 expression, while ASP at 1 and 2 mM reversed the increase in gst-4 expression. Worm survival was more adversely affected by higher concentrations of GP than ASP, although both similarly reduced acetylcholinesterase activity. These findings suggest that GP and ASP exhibit very low toxicity both in silico and in vivo in C. elegans, and positively modulate key enzymes involved in antioxidant pathways, highlighting their potential for neuroprotective applications. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

17 pages, 2495 KiB  
Article
Production Capacity and Temperature–Pressure Variation Laws in Depressurization Exploitation of Unconsolidated Hydrate Reservoir in Shenhu Sea Area
by Yuanwei Sun, Yuanfang Cheng, Yanli Wang, Jian Zhao, Xian Shi, Xiaodong Dai and Fengxia Shi
Processes 2025, 13(8), 2418; https://doi.org/10.3390/pr13082418 - 30 Jul 2025
Viewed by 171
Abstract
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law [...] Read more.
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law under depressurization exploitation. Therefore, a thermal–fluid–solid–chemical coupling model for natural gas hydrate depressurization exploitation in the Shenhu sea area was constructed to analyze the variation law of reservoir parameters and productivity. The results show that within 0–30 days, rapid near-well pressure drop (13.83→9.8 MPa, 36.37%) drives peak gas production (25,000 m3/d) via hydrate dissociation, with porosity (0.41→0.52) and permeability (75→100 mD) increasing. Within 30–60 days, slower pressure decline (9.8→8.6 MPa, 12.24%) and fines migration cause permeability fluctuations (120→90 mD), reducing gas production to 20,000 m3/d. Within 60–120 days, pressure stabilizes (~7.6 MPa) with residual hydrate saturation < 0.1, leading to stable low permeability (60 mD) and gas production (15,000 m3/d), with cumulative production reaching 2.2 × 106 m3. This study clarifies that productivity is governed by coupled “pressure-driven dissociation–heat limitation–fines migration” mechanisms, providing key insights for optimizing depressurization strategies (e.g., timed heat supplementation, anti-clogging measures) to enhance commercial viability of unconsolidated hydrate reservoirs. Full article
Show Figures

Figure 1

24 pages, 11697 KiB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 136
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 234
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

32 pages, 7424 KiB  
Review
Gas Migration in Low-Permeability Geological Media: A Review
by Yangyang Mo, Alfonso Rodriguez-Dono, Ivan Puig Damians, Sebastia Olivella and Rémi de La Vaissière
Geotechnics 2025, 5(3), 49; https://doi.org/10.3390/geotechnics5030049 - 21 Jul 2025
Viewed by 250
Abstract
This article provides a comprehensive review of gas flow behavior in low-permeability geological media, focusing on its implications for the long-term performance of engineered barriers in underground radioactive waste repositories. Key mechanisms include two-phase flow and gas-driven fracturing, both critical for assessing repository [...] Read more.
This article provides a comprehensive review of gas flow behavior in low-permeability geological media, focusing on its implications for the long-term performance of engineered barriers in underground radioactive waste repositories. Key mechanisms include two-phase flow and gas-driven fracturing, both critical for assessing repository safety. Understanding the generation and migration of gas is crucial for the quantitative assessment of repository performance over extended timescales. The article synthesizes the current research on various types of claystone considered as potential host rocks for repositories, providing a comprehensive analysis of gas transport mechanisms and constitutive models. In addressing the challenges related to multi-field coupling, the article provides practical insights and outlines potential solutions and areas for further research, underscoring the importance of interdisciplinary collaboration to tackle these challenges and push the field forward. In addition, the article evaluates key research projects, such as GMT, FORGE, and DECOVALEX, shedding light on their methodologies, findings, and significant contributions to understanding gas migration in low-permeability geological media. In this context, mathematical modeling becomes indispensable for predicting long-term repository performance under hypothetical future conditions, enhancing prediction accuracy and supporting long-term safety assessments. Finally, the growing interest in gas-driven fracturing is explored, critically assessing the strengths and limitations of current numerical simulation tools, such as TOUGH, the phase-field method, and CODE_BRIGHT. Noteworthy advancements by the CODE_BRIGHT team in gas injection simulation are highlighted, although knowledge gaps remain. The article concludes with a call for innovative approaches to simulate gas fracturing processes more effectively, advocating for advanced modeling techniques and rigorous experimental validation to address existing challenges. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

14 pages, 2616 KiB  
Article
Evaluation Model of Water Production in Tight Gas Reservoirs Considering Bound Water Saturation
by Wenwen Wang, Bin Zhang, Yunan Liang, Sinan Fang, Zhansong Zhang, Guilan Lin and Yue Yang
Processes 2025, 13(7), 2317; https://doi.org/10.3390/pr13072317 - 21 Jul 2025
Viewed by 242
Abstract
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for [...] Read more.
Tight gas is an unconventional resource abundantly found in low-porosity, low-permeability sandstone reservoirs. Production can be significantly reduced due to water production during the development process. Therefore, it is necessary to predict water production during the logging phase to formulate development strategies for tight gas wells. This study analyzes the water production mechanism in tight sandstone reservoirs and identifies that the core of water production evaluation in the Shihezi Formation of the Linxing block is to clarify the pore permeability structure of tight sandstone and the type of intra-layer water. The primary challenge lies in the accurate characterization of bound water saturation. By integrating logging data with core experiments, a bound water saturation evaluation model based on grain size diameter and pore structure index was established, achieving a calculation accuracy of 92% for the multi-parameter-fitted bound water saturation. Then, based on the high-precision bound water saturation, a gas–water ratio prediction model for the first month of production, considering water saturation, grain size diameter, and fluid type, was established, improving the prediction accuracy to 87.7%. The bound water saturation evaluation and water production evaluation models in this study can achieve effective water production prediction in the early stage of production, providing theoretical support for the scientific development of tight gas in the Linxing block. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

19 pages, 13286 KiB  
Article
Differential Evolutionary Mechanisms of Tight Sandstone Reservoirs and Their Influence on Reservoir Quality: A Case Study of Carboniferous–Permian Sandstones in the Shenfu Area, Ordos Basin, China
by Xiangdong Gao, You Guo, Hui Guo, Hao Sun, Xiang Wu, Mingda Zhang, Xirui Liu and Jiawen Deng
Minerals 2025, 15(7), 744; https://doi.org/10.3390/min15070744 - 16 Jul 2025
Viewed by 151
Abstract
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling [...] Read more.
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling factors remain unclear, hindering the effective selection and development of favorable tight gas intervals in the study area. Through comprehensive analysis of casting thin section (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), particle size and sorting, porosity and permeability data from Upper Paleozoic tight sandstone samples, combined with insights into depositional environments, burial history, and chemical reaction processes, this study clarifies the characteristics of tight sandstone reservoirs, reveals the key controlling factors of reservoir quality, confirms the differential evolutionary mechanisms of tight sandstone of different formations, reconstructs the diagenetic sequence, and constructs an evolution model of reservoir minerals and porosity. The research results indicate depositional processes laid the foundation for the original reservoir properties. Sandstones deposited in tidal flat and deltaic environments exhibit superior initial reservoir qualities. Compaction is a critical factor leading to the decline in reservoir quality across all formations. However, rigid particles such as quartz can partially mitigate the pore reduction caused by compaction. Early diagenetic carbonate cementation reduces reservoir quality by occupying primary pores and hindering the generation of secondary porosity induced by acidic fluids, while later-formed carbonate further densifies the sandstone by filling secondary intragranular pores. Clay mineral cements diminish reservoir porosity and permeability by filling intergranular and intragranular pores. The Shanxi and Taiyuan Formations display relatively poorer reservoir quality due to intense illitization. Overall, the reservoir quality of Benxi Formation is the best, followed by Xiashihezi Formation, with the Taiyuan and Shanxi Formations exhibiting comparatively lower qualities. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

16 pages, 4299 KiB  
Article
Gas Barrier Properties of Organoclay-Reinforced Polyamide 6 Nanocomposite Liners for Type IV Hydrogen Storage Vessels
by Dávid István Kis, Pál Hansághy, Attila Bata, Nándor Nemestóthy, Péter Gerse, Ferenc Tajti and Eszter Kókai
Nanomaterials 2025, 15(14), 1101; https://doi.org/10.3390/nano15141101 - 16 Jul 2025
Viewed by 266
Abstract
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their [...] Read more.
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their mechanical properties, this study focuses on their crystallinity, morphology, and gas barrier performance. The precise inorganic content was determined using thermal gravimetry analysis (TGA), while differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and scanning electron microscopy (SEM) were used to characterize the structural and morphological changes induced by varying filler content. The results showed that generally higher OMMT concentrations promoted γ-phase formation but also led to increased agglomeration and reduced crystallinity. The PA6/OMMT-1 wt. % sample stood out with higher crystallinity, well-dispersed clay, and low hydrogen permeability. In contrast, the PA6/OMMT-2.5 and -5 wt. % samples showed increased permeability, which corresponded to WAXD and SEM evidence of agglomeration and DSC results indicating a lower degree of crystallinity. PA6/OMMT-10 wt. % showed the most-reduced hydrogen permeability compared to all other samples. This improvement, however, is attributed to a tortuous path effect created by the high filler loading rather than optimal crystallinity or dispersion. SEM images revealed significant OMMT agglomeration, and DSC analysis confirmed reduced crystallinity, indicating that despite the excellent barrier performance, the compromised microstructure may negatively impact mechanical reliability, showing PA6/OMMT-1 wt. % to be the most balanced candidate combining both mechanical integrity and hydrogen impermeability for Type IV COPV liners. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

22 pages, 5400 KiB  
Article
Polyaniline/Ti3C2 MXene Composites with Artificial 3D Biomimetic Surface Structure of Natural Macaw Feather Applied for Anticorrosion Coatings
by Chen-Cheng Chien, Yu-Hsuan Liu, Kun-Hao Luo, Ting-Yun Liu, Yi-Ting Kao, Shih-Harn Yang and Jui-Ming Yeh
Biomimetics 2025, 10(7), 465; https://doi.org/10.3390/biomimetics10070465 - 15 Jul 2025
Viewed by 316
Abstract
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D [...] Read more.
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D Ti3C2 MXene nanosheets were prepared by treating the Ti3AlC2 using the optimized minimally intensive layer delamination (MILD) method, followed by characterization via XRD and SEM. Subsequently, the PMC was prepared by the oxidative polymerization of aniline monomers in the presence of Ti3C2 MXene nanosheets, followed by characterization via FTIR, XRD, SEM, TEM, CV, and UV–Visible. Eventually, the PMC coatings with the artificial biomimetic surface structure of a macaw feather were prepared by the nano-casting technique. The corrosion resistance of the PMC coatings, evaluated via Tafel polarization and Nyquist impedance measurements, shows that increasing the MXene loading up to 5 wt % shifts the corrosion potential (Ecorr) on steel from −588 mV to −356 mV vs. SCE, reduces the corrosion current density (Icorr) from 1.09 µA/cm2 to 0.035 µA/cm2, and raises the impedance modulus at 0.01 Hz from 67 kΩ to 3794 kΩ. When structured with the hierarchical feather topography, the PMC coating (Bio-PA-MX-5) further advances the Ecorr to +103.6 mV, lowers the Icorr to 7.22 × 10−4 µA/cm2, and boosts the impedance to 96,875 kΩ. Compared to neat coatings without biomimetic structuring, those with engineered biomimetic surfaces showed significantly improved corrosion protection performance. These enhancements arise from three synergistic mechanisms: (i) polyaniline’s redox catalysis accelerates the formation of a dense passive oxide layer; (ii) MXene nanosheets create a tortuous gas barrier that cuts the oxygen permeability from 11.3 Barrer to 0.9 Barrer; and (iii) the biomimetic surface traps air pockets, raising the water contact angle from 87° to 135°. This integrated approach delivers one of the highest combined corrosion potentials and impedance values reported for thin-film coatings, pointing to a general strategy for durable steel protection. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

24 pages, 9520 KiB  
Article
An Integrated Assessment Approach for Underground Gas Storage in Multi-Layered Water-Bearing Gas Reservoirs
by Junyu You, Ziang He, Xiaoliang Huang, Ziyi Feng, Qiqi Wanyan, Songze Li and Hongcheng Xu
Sustainability 2025, 17(14), 6401; https://doi.org/10.3390/su17146401 - 12 Jul 2025
Viewed by 384
Abstract
In the global energy sector, water-bearing reservoir-typed gas storage accounts for about 30% of underground gas storage (UGS) reservoirs and is vital for natural gas storage, balancing gas consumption, and ensuring energy supply stability. However, when constructing the UGS in the M gas [...] Read more.
In the global energy sector, water-bearing reservoir-typed gas storage accounts for about 30% of underground gas storage (UGS) reservoirs and is vital for natural gas storage, balancing gas consumption, and ensuring energy supply stability. However, when constructing the UGS in the M gas reservoir, selecting suitable areas poses a challenge due to the complicated gas–water distribution in the multi-layered water-bearing gas reservoir with a long production history. To address this issue and enhance energy storage efficiency, this study presents an integrated geomechanical-hydraulic assessment framework for choosing optimal UGS construction horizons in multi-layered water-bearing gas reservoirs. The horizons and sub-layers of the gas reservoir have been quantitatively assessed to filter out the favorable areas, considering both aspects of geological characteristics and production dynamics. Geologically, caprock-sealing capacity was assessed via rock properties, Shale Gouge Ratio (SGR), and transect breakthrough pressure. Dynamically, water invasion characteristics and the water–gas distribution pattern were analyzed. Based on both geological and dynamic assessment results, the favorable layers for UGS construction were selected. Then, a compositional numerical model was established to digitally simulate and validate the feasibility of constructing and operating the M UGS in the target layers. The results indicated the following: (1) The selected area has an SGR greater than 50%, and the caprock has a continuous lateral distribution with a thickness range from 53 to 78 m and a permeability of less than 0.05 mD. Within the operational pressure ranging from 8 MPa to 12.8 MPa, the mechanical properties of the caprock shale had no obvious changes after 1000 fatigue cycles, which demonstrated the good sealing capacity of the caprock. (2) The main water-producing formations were identified, and the sub-layers with inactive edge water and low levels of water intrusion were selected. After the comprehensive analysis, the I-2 and I-6 sub-layer in the M 8 block and M 14 block were selected as the target layers. The numerical simulation results indicated an effective working gas volume of 263 million cubic meters, demonstrating the significant potential of these layers for UGS construction and their positive impact on energy storage capacity and supply stability. Full article
Show Figures

Figure 1

20 pages, 15499 KiB  
Article
Molecular Dynamics Unveiled: Temperature–Pressure–Coal Rank Triaxial Coupling Mechanisms Governing Wettability in Gas–Water–Coal Systems
by Lixin Zhang, Songhang Zhang, Shuheng Tang, Zhaodong Xi, Jianxin Li, Qian Zhang, Ke Zhang and Wenguang Tian
Processes 2025, 13(7), 2209; https://doi.org/10.3390/pr13072209 - 10 Jul 2025
Viewed by 268
Abstract
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared [...] Read more.
Water within coal reservoirs exerts dual effects on methane adsorption–desorption by competing for adsorption sites and reducing permeability. The bound water effect, caused by coal wettability, significantly constrains coalbed methane (CBM) production, rendering investigations into coal wettability crucial for efficient CBM development. Compared with other geological formations, coals are characterized by a highly developed microporous structure, making the CO2 sequestration mechanism in coal seams closely linked to the microscale interactions among gas, water, and coal matrixes. However, the intrinsic mechanisms remain poorly understood. In this study, molecular dynamics simulations are employed to investigate the wettability behaviors of CO2, CH4, and water on different coal matrix surfaces under varying temperature and pressure conditions, for coal macromolecules representative of four coal ranks. The study reveals the evolution of water wettability in response to CO2 and CH4 injection, identifies wettability differences among coal ranks, and analyzes the microscopic mechanisms governing wettability. The results show the following: (1) The contact angle increases with gas pressure, and the variation in wettability is more pronounced in CO2 environments than in CH4. As pressure increases, the number of hydrogen bonds decreases, while the peak gas density of CH4 and CO2 increases, leading to larger contact angles. (2) Simulations under different temperatures for the four coal ranks indicate that temperature has minimal influence on low-rank Hegu coal, whereas for higher-rank coals, gas adsorption on the coal surface increases, resulting in reduced wettability. Interfacial tension analysis further suggests that higher temperatures reduce water surface tension, cause dispersion of water molecules, and consequently improve wettability. Understanding the wettability variations among different coal ranks under variable pressure–temperature conditions provides a fundamental model and theoretical basis for investigating deep coal seam gas–water interactions and CO2 geological sequestration mechanisms. These findings have significant implications for the advancement of CO2-ECBM technology. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

21 pages, 4000 KiB  
Article
Structure-Properties Correlations of PVA-Cellulose Based Nanocomposite Films for Food Packaging Applications
by Konstantinos Papapetros, Georgios N. Mathioudakis, Dionysios Vroulias, Nikolaos Koutroumanis, George A. Voyiatzis and Konstantinos S. Andrikopoulos
Polymers 2025, 17(14), 1911; https://doi.org/10.3390/polym17141911 - 10 Jul 2025
Viewed by 360
Abstract
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations [...] Read more.
Bio-nanocomposites based on poly (vinyl alcohol) (PVA) and cellulosic nanostructures are favorable for active food packaging applications. The current study systematically investigates the mechanical properties, gas permeation, and swelling parameters of PVA composites with cellulose nanocrystals (CNC) or nano lignocellulose (NLC) fibers. Alterations in these macroscopic properties, which are critical for food packaging applications, are correlated with structural information at the molecular level. Strong interactions between the fillers and polymer host matrix were observed, while the PVA crystallinity exhibited a maximum at ~1% loading. Finally, the orientation of the PVA nanocrystals in the uniaxially stretched samples was found to depend non-monotonically on the CNC loading and draw ratio. Concerning the macroscopic properties of the composites, the swelling properties were reduced for the D1 food simulant, while for water, a considerable decrease was observed only when high NLC loadings were involved. Furthermore, although the water vapor transmission rates are roughly similar for all samples, the CO2, N2, and O2 gas permeabilities are low, exhibiting further decrease in the 1% and 1–5% loading for CNC and NLC composites, respectively. The mechanical properties were considerably altered as a consequence of the good dispersion of the filler, increased crystallinity of the polymer matrix, and morphology of the filler. Thus, up to ~50%/~170% enhancement of the Young’s modulus and up to ~20%/~50% enhancement of the tensile strength are observed for the CNC/NLC composites. Interestingly, the elongation at break is also increased by ~20% for CNC composites, while it is reduced by ~40% for the NLC composites, signifying the favorable/unfavorable interactions of cellulose/lignin with the matrix. Full article
(This article belongs to the Special Issue Cellulose and Its Composites: Preparation and Applications)
Show Figures

Graphical abstract

31 pages, 4719 KiB  
Review
Exploring the Gas Permeability of Type IV Hydrogen Storage Cylinder Liners: Research and Applications
by Xinshu Li, Qing Wang, Shuang Wu, Dongyang Wu, Chunlei Wu, Da Cui and Jingru Bai
Materials 2025, 18(13), 3127; https://doi.org/10.3390/ma18133127 - 1 Jul 2025
Viewed by 579
Abstract
As hydrogen fuel cell vehicles gain momentum as crucial zero-emission transportation solutions, the urgency to address hydrogen permeability through the polymer liner becomes paramount for ensuring the safety, efficiency, and longevity of Type IV hydrogen storage tanks. This paper synthesizes existing research findings, [...] Read more.
As hydrogen fuel cell vehicles gain momentum as crucial zero-emission transportation solutions, the urgency to address hydrogen permeability through the polymer liner becomes paramount for ensuring the safety, efficiency, and longevity of Type IV hydrogen storage tanks. This paper synthesizes existing research findings, analyzes the influence of different materials and structures on gas permeability, elucidates the dissolution and diffusion mechanisms of hydrogen in plastic liners, and discusses their engineering applications. We focus on measurement methods, influencing factors, and improvement strategies for liner gas permeability. Additionally, we explore the prospects of Type IV hydrogen storage tanks in fields such as automotive, aerospace, and energy storage industries. Through this comprehensive review of liner gas permeability, critical insights are provided to guide the development of efficient and safe hydrogen storage and transportation systems. These insights are vital for advancing the widespread application of hydrogen energy technology and fostering sustainable energy development, significantly contributing to efforts aimed at enhancing the performance and safety of Type IV hydrogen storage tanks. Full article
Show Figures

Figure 1

17 pages, 3907 KiB  
Review
Polyamide 6 as a Liner Material for Type IV Hydrogen Storage Cylinders: Performance Challenges and Modification Strategies
by Wenyan Wang, Guanxi Zhao, Xiao Ma, Dengxun Ren, Min Nie and Rui Han
Polymers 2025, 17(13), 1848; https://doi.org/10.3390/polym17131848 - 1 Jul 2025
Viewed by 405
Abstract
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical [...] Read more.
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical resistance, and gas barrier properties. However, challenges remain, including high hydrogen permeability and insufficient mechanical performance under extreme temperature and pressure conditions. This review systematically summarizes recent advances in modification strategies to enhance PA6’s suitability for Type IV hydrogen storage cylinders. Incorporating nanofillers (e.g., graphene, montmorillonite, and carbon nanotubes) significantly reduces hydrogen permeability. In situ polymerization and polymer blending techniques improve toughness and interfacial adhesion (e.g., ternary blends achieve a special increase in impact strength). Multiscale structural design (e.g., biaxial stretching) and process optimization further enhance PA6’s overall performance. Future research should focus on interdisciplinary innovation, standardized testing protocols, and industry–academia collaboration to accelerate the commercialization of PA6-based composites for hydrogen storage applications. This review provides theoretical insights and engineering guidelines for developing high-performance liner materials. Full article
Show Figures

Figure 1

Back to TopTop