Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,257)

Search Parameters:
Keywords = mean square error of prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1271 KiB  
Article
An Efficient Continuous-Variable Quantum Key Distribution with Parameter Optimization Using Elitist Elk Herd Random Immigrants Optimizer and Adaptive Depthwise Separable Convolutional Neural Network
by Vidhya Prakash Rajendran, Deepalakshmi Perumalsamy, Chinnasamy Ponnusamy and Ezhil Kalaimannan
Future Internet 2025, 17(7), 307; https://doi.org/10.3390/fi17070307 (registering DOI) - 17 Jul 2025
Abstract
Quantum memory is essential for the prolonged storage and retrieval of quantum information. Nevertheless, no current studies have focused on the creation of effective quantum memory for continuous variables while accounting for the decoherence rate. This work presents an effective continuous-variable quantum key [...] Read more.
Quantum memory is essential for the prolonged storage and retrieval of quantum information. Nevertheless, no current studies have focused on the creation of effective quantum memory for continuous variables while accounting for the decoherence rate. This work presents an effective continuous-variable quantum key distribution method with parameter optimization utilizing the Elitist Elk Herd Random Immigrants Optimizer (2E-HRIO) technique. At the outset of transmission, the quantum device undergoes initialization and authentication via Compressed Hash-based Message Authentication Code with Encoded Post-Quantum Hash (CHMAC-EPQH). The settings are subsequently optimized from the authenticated device via 2E-HRIO, which mitigates the effects of decoherence by adaptively tuning system parameters. Subsequently, quantum bits are produced from the verified device, and pilot insertion is executed within the quantum bits. The pilot-inserted signal is thereafter subjected to pulse shaping using a Gaussian filter. The pulse-shaped signal undergoes modulation. Authenticated post-modulation, the prediction of link failure is conducted through an authenticated channel using Radial Density-Based Spatial Clustering of Applications with Noise. Subsequently, transmission occurs via a non-failure connection. The receiver performs channel equalization on the received signal with Recursive Regularized Least Mean Squares. Subsequently, a dataset for side-channel attack authentication is gathered and preprocessed, followed by feature extraction and classification using Adaptive Depthwise Separable Convolutional Neural Networks (ADS-CNNs), which enhances security against side-channel attacks. The quantum state is evaluated based on the signal received, and raw data are collected. Thereafter, a connection is established between the transmitter and receiver. Both the transmitter and receiver perform the scanning process. Thereafter, the calculation and correction of the error rate are performed based on the sifting results. Ultimately, privacy amplification and key authentication are performed using the repaired key via B-CHMAC-EPQH. The proposed system demonstrated improved resistance to decoherence and side-channel attacks, while achieving a reconciliation efficiency above 90% and increased key generation rate. Full article
Show Figures

Graphical abstract

17 pages, 4652 KiB  
Article
Challenge and Bias Correction for Surface Wind Speed Prediction: A Case Study in Shanxi Province, China
by Zengyuan Guo, Zhuozhuo Lyu and Yunyun Liu
Climate 2025, 13(7), 150; https://doi.org/10.3390/cli13070150 (registering DOI) - 17 Jul 2025
Abstract
Accurate prediction of wind speed is critical for wind power generation and bias correction serves as an effective tool to enhance the precision of climate model forecasts. This study evaluates the effectiveness of three bias correction methods—Quantile Regression at the 50th percentile (QR50), [...] Read more.
Accurate prediction of wind speed is critical for wind power generation and bias correction serves as an effective tool to enhance the precision of climate model forecasts. This study evaluates the effectiveness of three bias correction methods—Quantile Regression at the 50th percentile (QR50), Linear Regression (LR), and Optimal Threat Score (OTS)—for improving wind speed predictions at a height of 70 m from the NCEP CFSv2 model in Shanxi Province, China. Using observational data from nine wind towers (2021–2024) and corresponding model hindcasts, we analyze systematic biases across lead times of 1–45 days. Results reveal persistent model errors: overestimation of low wind speeds (<6 m/s) and underestimation of high wind speeds (>6 m/s), with the Root Mean Square Error (RMSE) exceeding 1.5 m/s across all lead times. Among the correction methods, QR50 demonstrates the most robust performance, reducing the mean RMSE by 11% in October 2023 and 10% in February 2024. Correction efficacy improves significantly at longer lead times (>10 days) and under high RMSE conditions. These findings underscore the value of regression-based approaches in complex terrain while emphasizing the need for dynamic adjustments during extreme wind events. Full article
(This article belongs to the Special Issue Wind‑Speed Variability from Tropopause to Surface)
Show Figures

Figure 1

13 pages, 2051 KiB  
Article
Near-Infrared Spectroscopy and Machine Learning for Fast Quality Prediction of Bottle Gourd
by Xiao Guo, Hongyu Huang, Haiyan Wang, Chang Cai, Ying Wang, Xiaohua Wu, Jian Wang, Baogen Wang, Biao Zhu and Yun Xiang
Foods 2025, 14(14), 2503; https://doi.org/10.3390/foods14142503 (registering DOI) - 17 Jul 2025
Abstract
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and [...] Read more.
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and predict protein and free amino acids (FAAs) of bottle gourd. Specifically, the content of protein and FAAs were measured through conventional methods. Then a near-infrared analyzer was utilized to obtain the spectral data, which were processed using multiple scattering correction (MSC) and standard normalized variate (SNV). The processed spectral data were further processed using feature importance selection to select the feature bands that had the highest correlation with protein and FAAs, respectively. The models for protein and FAAs estimation were developed using support vector regression (SVR), ridge regression (RR), random forest regression (RFR), and fully connected neural networks (FCNNs). Among them, ridge regression achieved the optimal performance, with determination coefficients (R2) of 0.96 and 0.77 on the protein and FAAs test sets, respectively, and root mean square error (RMSE) values of 0.23 and 0.5, respectively. Based on this, we developed a precise and rapid prediction model for the important quality indices of bottle gourd. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

23 pages, 2859 KiB  
Article
Air Quality Prediction Using Neural Networks with Improved Particle Swarm Optimization
by Juxiang Zhu, Zhaoliang Zhang, Wei Gu, Chen Zhang, Jinghua Xu and Peng Li
Atmosphere 2025, 16(7), 870; https://doi.org/10.3390/atmos16070870 (registering DOI) - 17 Jul 2025
Abstract
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight [...] Read more.
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight particle swarm optimization (AWPSO) algorithm with a back propagation neural network (BPNN). First, the random forest (RF) algorithm is used to scree the influencing factors of AQI concentration. Second, the inertia weights and learning factors of the standard PSO are improved to ensure the global search ability exhibited by the algorithm in the early stage and the ability to rapidly obtain the optimal solution in the later stage; we also introduce an adaptive variation algorithm in the particle search process to prevent the particles from being caught in local optima. Finally, the BPNN is optimized using the AWPSO algorithm, and the final values of the optimized particle iterations serve as the connection weights and thresholds of the BPNN. The experimental results show that the RFAWPSO-BP model reduces the root mean square error and mean absolute error by 9.17 μg/m3, 5.7 μg/m3, 2.66 μg/m3; and 9.12 μg/m3, 5.7 μg/m3, 2.68 μg/m3 compared with the BP, PSO-BP, and AWPSO-BP models, respectively; furthermore, the goodness of fit of the proposed model was 14.8%, 6.1%, and 2.3% higher than that of the aforementioned models, respectively, demonstrating good prediction accuracy. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 6348 KiB  
Article
A Framework for Predicting Winter Wheat Yield in Northern China with Triple Cross-Attention and Multi-Source Data Fusion
by Shuyan Pan and Liqun Liu
Plants 2025, 14(14), 2206; https://doi.org/10.3390/plants14142206 - 16 Jul 2025
Abstract
To solve the issue that existing yield prediction methods do not fully capture the interaction between multiple factors, we propose a winter wheat yield prediction framework with triple cross-attention for multi-source data fusion. This framework consists of three modules: a multi-source data processing [...] Read more.
To solve the issue that existing yield prediction methods do not fully capture the interaction between multiple factors, we propose a winter wheat yield prediction framework with triple cross-attention for multi-source data fusion. This framework consists of three modules: a multi-source data processing module, a multi-source feature fusion module, and a yield prediction module. The multi-source data processing module collects satellite, climate, and soil data based on the winter wheat planting range, and constructs a multi-source feature sequence set by combining statistical data. The multi-source feature fusion module first extracts deeper-level feature information based on the characteristics of different data, and then performs multi-source feature fusion through a triple cross-attention fusion mechanism. The encoder part in the production prediction module adds a graph attention mechanism, forming a dual branch with the original multi-head self-attention mechanism to ensure the capture of global dependencies while enhancing the preservation of local feature information. The decoder section generates the final predicted output. The results show that: (1) Using 2021 and 2022 as test sets, the mean absolute error of our method is 385.99 kg/hm2, and the root mean squared error is 501.94 kg/hm2, which is lower than other methods. (2) It can be concluded that the jointing-heading stage (March to April) is the most crucial period affecting winter wheat production. (3) It is evident that our model has the ability to predict the final winter wheat yield nearly a month in advance. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

23 pages, 8891 KiB  
Article
Mapping Soil Available Nitrogen Using Crop-Specific Growth Information and Remote Sensing
by Xinle Zhang, Yihan Ma, Shinai Ma, Chuan Qin, Yiang Wang, Huanjun Liu, Lu Chen and Xiaomeng Zhu
Agriculture 2025, 15(14), 1531; https://doi.org/10.3390/agriculture15141531 - 15 Jul 2025
Viewed by 74
Abstract
Soil available nitrogen (AN) is a critical nutrient for plant absorption and utilization. Accurately mapping its spatial distribution is essential for improving crop yields and advancing precision agriculture. In this study, 188 AN soil samples (0–20 cm) were collected at Heshan Farm, Nenjiang [...] Read more.
Soil available nitrogen (AN) is a critical nutrient for plant absorption and utilization. Accurately mapping its spatial distribution is essential for improving crop yields and advancing precision agriculture. In this study, 188 AN soil samples (0–20 cm) were collected at Heshan Farm, Nenjiang County, Heihe City, Heilongjiang Province, in 2023. The soil available nitrogen content ranged from 65.81 to 387.10 mg kg−1, with a mean value of 213.85 ± 61.16 mg kg−1. Sentinel-2 images and normalized vegetation index (NDVI) and enhanced vegetation index (EVI) time series data were acquired on the Google Earth Engine (GEE) platform in the study area during the bare soil period (April, May, and October) and the growth period (June–September). These remote sensing variables were combined with soil sample data, crop type information, and crop growth period data as predictive factors and input into a Random Forest (RF) model optimized using the Optuna hyperparameter tuning algorithm. The accuracy of different strategies was evaluated using 5-fold cross-validation. The research results indicate that (1) the introduction of growth information at different growth periods of soybean and maize has different effects on the accuracy of soil AN mapping. In soybean plantations, the introduction of EVI data during the pod setting period increased the mapping accuracy R2 by 0.024–0.088 compared to other growth periods. In maize plantations, the introduction of EVI data during the grouting period increased R2 by 0.004–0.033 compared to other growth periods, which is closely related to the nitrogen absorption intensity and spectral response characteristics during the reproductive growth period of crops. (2) Combining the crop types and their optimal period growth information could improve the mapping accuracy, compared with only using the bare soil period image (R2 = 0.597)—the R2 increased by 0.035, the root mean square error (RMSE) decreased by 0.504%, and the mapping accuracy of R2 could be up to 0.632. (3) The mapping accuracy of the bare soil period image differed significantly among different months, with a higher mapping accuracy for the spring data than the fall, the R2 value improved by 0.106 and 0.100 compared with that of the fall, and the month of April was the optimal window period of the bare soil period in the present study area. The study shows that when mapping the soil AN content in arable land, different crop types, data collection time, and crop growth differences should be considered comprehensively, and the combination of specific crop types and their optimal period growth information has a greater potential to improve the accuracy of mapping soil AN content. This method not only opens up a new technological path to improve the accuracy of remote sensing mapping of soil attributes but also lays a solid foundation for the research and development of precision agriculture and sustainability. Full article
Show Figures

Figure 1

12 pages, 1900 KiB  
Article
Time Series Prediction of Aerodynamic Noise Based on Variational Mode Decomposition and Echo State Network
by Zhoufanxing Lei, Haiyang Meng, Jing Yang, Bin Liang and Jianchun Cheng
Appl. Sci. 2025, 15(14), 7896; https://doi.org/10.3390/app15147896 - 15 Jul 2025
Viewed by 64
Abstract
Time series prediction of aerodynamic noise is critical for oscillatory instabilities analyses in fluid systems. Due to the significant dynamical and non-stationary characteristics of aerodynamic noise, it is challenging to precisely predict its temporal behavior. Here, we propose a method combining variational mode [...] Read more.
Time series prediction of aerodynamic noise is critical for oscillatory instabilities analyses in fluid systems. Due to the significant dynamical and non-stationary characteristics of aerodynamic noise, it is challenging to precisely predict its temporal behavior. Here, we propose a method combining variational mode decomposition (VMD) and echo state network (ESN) to accurately predict the time series of aerodynamic noise induced by flow around a cylinder. VMD adaptively decomposes the noise signal into multiple modes through a constrained variational optimization framework, effectively separating distinct frequency-scale features between vortex shedding and turbulent fluctuations. ESN then employs a randomly initialized reservoir to map each mode into a high-dimensional dynamical system, and learns their temporal evolution by leveraging the reservoir’s memory of past states to predict their future values. Aerodynamic noise data from cylinder flow at a Reynolds number of 90,000 is generated by numerical simulation and used for model validation. With a rolling prediction strategy, this VMD-ESN method achieves accurate prediction within 150 time steps with a root-mean-square-error of only 3.32 Pa, substantially reducing computational costs compared to conventional approaches. This work enables effective aerodynamic noise prediction and is valuable in fluid dynamics, aeroacoustics, and related areas. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 57
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

20 pages, 1902 KiB  
Article
Prediction Model of Household Carbon Emission in Old Residential Areas in Drought and Cold Regions Based on Gene Expression Programming
by Shiao Chen, Yaohui Gao, Zhaonian Dai and Wen Ren
Buildings 2025, 15(14), 2462; https://doi.org/10.3390/buildings15142462 - 14 Jul 2025
Viewed by 80
Abstract
To support the national goals of carbon peaking and carbon neutrality, this study proposes a household carbon emission prediction model based on Gene Expression Programming (GEP) for low-carbon retrofitting of aging residential areas in arid-cold regions. Focusing on 15 typical aging communities in [...] Read more.
To support the national goals of carbon peaking and carbon neutrality, this study proposes a household carbon emission prediction model based on Gene Expression Programming (GEP) for low-carbon retrofitting of aging residential areas in arid-cold regions. Focusing on 15 typical aging communities in Kundulun District, Baotou City, a 17-dimensional dataset encompassing building characteristics, demographic structure, and energy consumption patterns was collected through field surveys. Key influencing factors (e.g., electricity usage and heating energy consumption) were selected using Pearson correlation analysis and the Random Forest (RF) algorithm. Subsequently, a hybrid prediction model was constructed, with its parameters optimized by minimizing the root mean square error (RMSE) as the fitness function. Experimental results demonstrated that the model achieved an R2 value of 0.81, reducing RMSE by 77.1% compared to conventional GEP models and by 60.4% compared to BP neural networks, while significantly improving stability. By combining data dimensionality reduction with adaptive evolutionary algorithms, this model overcomes the limitations of traditional methods in capturing complex nonlinear relationships. It provides a reliable tool for precision-based low-carbon retrofits in aging residential areas of arid-cold regions and offers a methodological advance for research on building carbon emission prediction driven by urban renewal. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 26654 KiB  
Article
Short-Term Electric Load Forecasting Using Deep Learning: A Case Study in Greece with RNN, LSTM, and GRU Networks
by Vasileios Zelios, Paris Mastorocostas, George Kandilogiannakis, Anastasios Kesidis, Panagiota Tselenti and Athanasios Voulodimos
Electronics 2025, 14(14), 2820; https://doi.org/10.3390/electronics14142820 - 14 Jul 2025
Viewed by 213
Abstract
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network [...] Read more.
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), to forecast hourly electricity demand is investigated. The proposed models were trained on historical load data from the Greek power system spanning the years 2013 to 2016. Various deep learning architectures were implemented and their forecasting performances using statistical metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) were evaluated. The experiments utilized multiple time horizons (1 h, 2 h, 24 h) and input sequence lengths (6 h to 168 h) to assess model accuracy and robustness. The best performing GRU model achieved an RMSE of 83.2 MWh and a MAPE of 1.17% for 1 h ahead forecasting, outperforming both LSTM and RNN in terms of both accuracy and computational efficiency. The predicted values were integrated into a dynamic Power BI dashboard, to enable real-time visualization and decision support. These findings demonstrate the potential of deep learning architectures, particularly GRUs, for operational load forecasting and their applicability to intelligent energy systems in a market-strained environment. Full article
Show Figures

Figure 1

35 pages, 6888 KiB  
Article
AirTrace-SA: Air Pollution Tracing for Source Attribution
by Wenchuan Zhao, Qi Zhang, Ting Shu and Xia Du
Information 2025, 16(7), 603; https://doi.org/10.3390/info16070603 - 13 Jul 2025
Viewed by 147
Abstract
Air pollution source tracing is vital for effective pollution prevention and control, yet traditional methods often require large amounts of manual data, have limited cross-regional generalizability, and present challenges in capturing complex pollutant interactions. This study introduces AirTrace-SA (Air Pollution Tracing for Source [...] Read more.
Air pollution source tracing is vital for effective pollution prevention and control, yet traditional methods often require large amounts of manual data, have limited cross-regional generalizability, and present challenges in capturing complex pollutant interactions. This study introduces AirTrace-SA (Air Pollution Tracing for Source Attribution), a novel hybrid deep learning model designed for the accurate identification and quantification of air pollution sources. AirTrace-SA comprises three main components: a hierarchical feature extractor (HFE) that extracts multi-scale features from chemical components, a source association bridge (SAB) that links chemical features to pollution sources through a multi-step decision mechanism, and a source contribution quantifier (SCQ) based on the TabNet regressor for the precise prediction of source contributions. Evaluated on real air quality datasets from five cities (Lanzhou, Luoyang, Haikou, Urumqi, and Hangzhou), AirTrace-SA achieves an average R2 of 0.88 (ranging from 0.84 to 0.94 across 10-fold cross-validation), an average mean absolute error (MAE) of 0.60 (ranging from 0.46 to 0.78 across five cities), and an average root mean square error (RMSE) of 1.06 (ranging from 0.51 to 1.62 across ten pollution sources). The model outperforms baseline models such as 1D CNN and LightGBM in terms of stability, accuracy, and cross-city generalization. Feature importance analysis identifies the main contributions of source categories, further improving interpretability. By reducing the reliance on labor-intensive data collection and providing scalable, high-precision source tracing, AirTrace-SA offers a powerful tool for environmental management that supports targeted emission reduction strategies and sustainable development. Full article
(This article belongs to the Special Issue Machine Learning and Data Mining: Innovations in Big Data Analytics)
Show Figures

Figure 1

20 pages, 1753 KiB  
Article
Hybrid Cloud-Based Information and Control System Using LSTM-DNN Neural Networks for Optimization of Metallurgical Production
by Kuldashbay Avazov, Jasur Sevinov, Barnokhon Temerbekova, Gulnora Bekimbetova, Ulugbek Mamanazarov, Akmalbek Abdusalomov and Young Im Cho
Processes 2025, 13(7), 2237; https://doi.org/10.3390/pr13072237 - 13 Jul 2025
Viewed by 391
Abstract
A methodology for detecting systematic errors in sets of equally accurate, uncorrelated, aggregate measurements is proposed and applied within the automatic real-time dispatch control system of a copper concentrator plant (CCP) to refine the technical and economic performance indicators (EPIs) computed by the [...] Read more.
A methodology for detecting systematic errors in sets of equally accurate, uncorrelated, aggregate measurements is proposed and applied within the automatic real-time dispatch control system of a copper concentrator plant (CCP) to refine the technical and economic performance indicators (EPIs) computed by the system. This work addresses and solves the problem of selecting and obtaining reliable measurement data by exploiting the redundant measurements of process streams together with the balance equations linking those streams. This study formulates an approach for integrating cloud technologies, machine learning methods, and forecasting into information control systems (ICSs) via predictive analytics to optimize CCP production processes. A method for combining the hybrid cloud infrastructure with an LSTM-DNN neural network model has been developed, yielding a marked improvement in TEP for copper concentration operations. The forecasting accuracy for the key process parameters rose from 75% to 95%. Predictive control reduced energy consumption by 10% through more efficient resource use, while the copper losses to tailings fell by 15–20% thanks to optimized reagent dosing and the stabilization of the flotation process. Equipment failure prediction cut the amount of unplanned downtime by 30%. As a result, the control system became adaptive, automatically correcting the parameters in real time and lessening the reliance on operator decisions. The architectural model of an ICS for metallurgical production based on the hybrid cloud and the LSTM-DNN model was devised to enhance forecasting accuracy and optimize the EPIs of the CCP. The proposed model was experimentally evaluated against alternative neural network architectures (DNN, GRU, Transformer, and Hybrid_NN_TD_AIST). The results demonstrated the superiority of the LSTM-DNN in forecasting accuracy (92.4%), noise robustness (0.89), and a minimal root-mean-square error (RMSE = 0.079). The model shows a strong capability to handle multidimensional, non-stationary time series and to perform adaptive measurement correction in real time. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

25 pages, 5867 KiB  
Article
Color-Sensitive Sensor Array Combined with Machine Learning for Non-Destructive Detection of AFB1 in Corn Silage
by Daqian Wan, Haiqing Tian, Lina Guo, Kai Zhao, Yang Yu, Xinglu Zheng, Haijun Li and Jianying Sun
Agriculture 2025, 15(14), 1507; https://doi.org/10.3390/agriculture15141507 - 13 Jul 2025
Viewed by 149
Abstract
Aflatoxin B1 (AFB1) contamination in corn silage poses significant risks to livestock and human health. This study developed a non-destructive detection method for AFB1 using color-sensitive arrays (CSAs). Twenty self-developed CSAs were employed to react with samples, with reflectance [...] Read more.
Aflatoxin B1 (AFB1) contamination in corn silage poses significant risks to livestock and human health. This study developed a non-destructive detection method for AFB1 using color-sensitive arrays (CSAs). Twenty self-developed CSAs were employed to react with samples, with reflectance spectra collected using a portable spectrometer. Spectral data were optimized through seven preprocessing methods, including Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), first-order derivative (1st D), second-order derivative (2nd D), wavelet denoising, and their combinations. Key variables were selected using five feature selection algorithms: Competitive Adaptive Reweighted Sampling (CARS), Principal Component Analysis (PCA), Random Forest (RF), Uninformative Variable Elimination (UVE), and eXtreme Gradient Boosting (XGBoost). Five machine learning models were constructed: Light Gradient Boosting Machine (LightGBM), XGBoost, Support Vector Regression (SVR), RF, and K-Nearest Neighbor (KNN). The results demonstrated significant AFB1-responsive characteristics in three dyes: (2,3,7,8,12,13,17,18-octaethylporphynato)chloromanganese(III) (Mn(OEP)Cl), Bromocresol Green, and Cresol Red. The combined 1st D-PCA-KNN model showed optimal prediction performance, with determination coefficient (Rp2 = 0.87), root mean square error (RMSEP = 0.057), and relative prediction deviation (RPD = 2.773). This method provides an efficient solution for silage AFB1 monitoring. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

18 pages, 1756 KiB  
Article
Ultra-Short-Term Wind Power Prediction Based on Fused Features and an Improved CNN
by Hui Li, Siyao Li, Hua Li and Liang Bai
Processes 2025, 13(7), 2236; https://doi.org/10.3390/pr13072236 - 13 Jul 2025
Viewed by 168
Abstract
It is difficult for a single feature in wind power data to fully reflect the multifactor coupling relationship with wind power, while the forecast model hyperparameters rely on empirical settings, which affects the prediction accuracy. In order to effectively predict the continuous power [...] Read more.
It is difficult for a single feature in wind power data to fully reflect the multifactor coupling relationship with wind power, while the forecast model hyperparameters rely on empirical settings, which affects the prediction accuracy. In order to effectively predict the continuous power in the future time period, an ultra-short-term prediction model of wind power based on fused features and an improved convolutional neural network (CNN) is proposed. Firstly, the historical power data are decomposed using dynamic modal decomposition (DMD) to extract their modal features. Then, considering the influence of meteorological factors on power prediction, the historical meteorological data in the sample data are extracted using kernel principal component analysis (KPCA). Finally, the decomposed power modal and the extracted meteorological components are reconstructed into multivariate time-series features; the snow ablation optimisation algorithm (SAO) is used to optimise the convolutional neural network (CNN) for wind power prediction. The results show that the root-mean-square error of the prediction result is 31.9% lower than that of the undecomposed one after using DMD decomposition; for the prediction of the power of two different wind farms, the root-mean-square error of the improved CNN model is reduced by 39.8% and 30.6%, respectively, compared with that of the original model, which shows that the proposed model has a better prediction performance. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

33 pages, 7266 KiB  
Article
Temperature Prediction and Fault Warning of High-Speed Shaft of Wind Turbine Gearbox Based on Hybrid Deep Learning Model
by Min Zhang, Jijie Wei, Zhenli Sui, Kun Xu and Wenyong Yuan
J. Mar. Sci. Eng. 2025, 13(7), 1337; https://doi.org/10.3390/jmse13071337 - 13 Jul 2025
Viewed by 195
Abstract
Gearbox failure represents one of the most time-consuming maintenance challenges in wind turbine operations. Abnormal temperature variations in the gearbox high-speed shaft (GHSS) serve as reliable indicators of potential faults. This study proposes a Spatio-Temporal Attentive (STA) synergistic architecture for GHSS fault detection [...] Read more.
Gearbox failure represents one of the most time-consuming maintenance challenges in wind turbine operations. Abnormal temperature variations in the gearbox high-speed shaft (GHSS) serve as reliable indicators of potential faults. This study proposes a Spatio-Temporal Attentive (STA) synergistic architecture for GHSS fault detection and early warning by utilizing the in situ monitoring data from a wind farm. This comprehensive architecture involves five modules: data preprocessing, multi-dimensional spatial feature extraction, temporal dependency modeling, global relationship learning, and hyperparameter optimization. It was achieved by using real-time monitoring data to predict the GHSS temperature in 10 min, with an accuracy of 1 °C. Compared to the long short-term memory (LSTM) and convolutional neural network and LSTM hybrid models, the STA architecture reduces the root mean square error of the prediction by approximately 37% and 13%, respectively. Furthermore, the architecture establishes a normal operating condition model and provides benchmark eigenvalues for subsequent fault warnings. The model was validated to issue early warnings up to seven hours before the fault alert is triggered by the supervisory control and data acquisition system of the wind turbine. By offering reliable, cost-effective prognostics without additional hardware, this approach significantly improves wind turbine health management and fault prevention. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop