Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (134)

Search Parameters:
Keywords = marine ecological environment management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1336 KiB  
Article
Modeling Unveils How Kleptoplastidy Affects Mixotrophy Boosting Algal Blooms
by Irena V. Telesh, Gregory J. Rodin, Hendrik Schubert and Sergei O. Skarlato
Biology 2025, 14(7), 900; https://doi.org/10.3390/biology14070900 - 21 Jul 2025
Viewed by 227
Abstract
Kleptoplastidy is a nutrition mode in which cells of protists and some multicellular organisms acquire, maintain, and exploit chloroplasts of prey algae cells as photosynthesis reactors. It is an important aspect of the mixotrophic feeding strategy, which plays a role in the formation [...] Read more.
Kleptoplastidy is a nutrition mode in which cells of protists and some multicellular organisms acquire, maintain, and exploit chloroplasts of prey algae cells as photosynthesis reactors. It is an important aspect of the mixotrophic feeding strategy, which plays a role in the formation of harmful algae blooms (HABs). We developed a new mathematical model, in which kleptoplastidy is regarded as a mechanism of enhancing mixotrophy of protists. The model is constructed using three thought (theoretical) experiments and the concept of biological time. We propose to measure the contribution of kleptoplastidy to mixotrophy using a new ecological indicator: the kleptoplastidy index. This index is a function of two dimensionless variables, one representing the ratio of photosynthetic production of acquired chloroplasts versus native chloroplasts, and the other representing the balance between autotrophic and heterotrophic feeding modes. The index is tested by data for the globally distributed, bloom-forming potentially toxic mixotrophic dinoflagellates Prorocentrum cordatum. The model supports our hypothesis that kleptoplastidy can increase the division rate of algae significantly (by 40%), thus boosting their population growth and promoting blooms. The proposed model can contribute to advancements in ecological modeling aimed at forecasting and management of HABs that deteriorate marine coastal environments worldwide. Full article
(This article belongs to the Section Theoretical Biology and Biomathematics)
Show Figures

Graphical abstract

26 pages, 9214 KiB  
Article
Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives
by Corinne Corbau, Alexandre Lazarou and Umberto Simeoni
J. Mar. Sci. Eng. 2025, 13(7), 1351; https://doi.org/10.3390/jmse13071351 - 16 Jul 2025
Viewed by 359
Abstract
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. [...] Read more.
Plastic pollution in marine environments is a globally recognized concern that poses ecological and economic threats. While 80% of plastic originates from land, 20% comes from sea-based sources like shipping and fishing. Comprehensive assessments of fishing-related plastics are limited but crucial for mitigation. This study analyzed the distribution and temporal evolution of three fishing-related items (EPS fish boxes, fragments, and buoys) along the Bocassette spit in the northern Adriatic Sea, a region with high fishing and aquaculture activity. UAV monitoring (November 2019, June/October 2020) and structured interviews with Po Delta fishermen were conducted. The collected debris was mainly EPS, with boxes (54.8%) and fragments (39.6%). Fishermen showed strong awareness of degradation, identifying plastic as the primary litter type and reporting gear loss. Litter concentrated in active dunes and the southern sector indicates human and riverine influence. Persistent items (61%) at higher elevations suggest longer residence times. Mapped EPS boxes could generate billions of micro-particles (e.g., ~1013). The results reveal a complex interaction between natural processes and human activities in litter distribution. This highlights the need for integrated management strategies, like improved waste management, targeted cleanup, and community involvement, to reduce long-term impacts on vulnerable coastal ecosystems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

18 pages, 4793 KiB  
Article
Assessment of Ecological Quality Status in Shellfish Farms in South Korea Using Multiple Benthic Indices
by Se-Hyun Choi, Jian Liang and Chae-Woo Ma
Animals 2025, 15(14), 2086; https://doi.org/10.3390/ani15142086 - 15 Jul 2025
Viewed by 308
Abstract
South Korea is one of the world’s major centers for marine shellfish aquaculture. Since the industry’s rapid expansion began in the 1980s, concerns have grown regarding its environmental impacts on coastal marine ecosystems. Evaluating the benthic ecological quality status (EcoQs) of shellfish farms [...] Read more.
South Korea is one of the world’s major centers for marine shellfish aquaculture. Since the industry’s rapid expansion began in the 1980s, concerns have grown regarding its environmental impacts on coastal marine ecosystems. Evaluating the benthic ecological quality status (EcoQs) of shellfish farms using benthic indices provides a scientific foundation for the sustainable management of aquaculture areas. In our study, five benthic indices (AZTI’s marine biotic index, BENTIX, benthic opportunistic polychaeta amphipoda index, benthic pollution index, and multivariate AMBI) and one composite index were selected to assess EcoQs of shellfish farms in Gangjin Bay, South Korea. Our results revealed significant differences in macrobenthic community structure and EcoQs between November and December in Gangjin Bay. Spearman correlation analysis and principal coordinates analysis (PCoA) demonstrated that the multivariate AMBI (M-AMBI) exhibited the best overall performance among indices. However, considering the ecological complexity, variability in farming practices, and site-specific conditions typical of shellfish aquaculture environments, the use of five benthic indices and a composite index is recommended to ensure a more comprehensive and robust evaluation of EcoQs in Korean shellfish farms. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

25 pages, 3764 KiB  
Article
An Improved Size and Direction Adaptive Filtering Method for Bathymetry Using ATLAS ATL03 Data
by Lei Kuang, Mingquan Liu, Dongfang Zhang, Chengjun Li and Lihe Wu
Remote Sens. 2025, 17(13), 2242; https://doi.org/10.3390/rs17132242 - 30 Jun 2025
Viewed by 369
Abstract
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) employs a photon-counting detection mode with a 532 nm laser to obtain high-precision Earth surface elevation data and offers a new remote sensing method for nearshore bathymetry. [...] Read more.
The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) employs a photon-counting detection mode with a 532 nm laser to obtain high-precision Earth surface elevation data and offers a new remote sensing method for nearshore bathymetry. The key issues in using ATLAS ATL03 data for bathymetry are achieving automatic and accurate extraction of signal photons in different water environments. Especially for areas with sharply fluctuating topography, the interaction of various impacts, such as topographic fluctuations, sea waves, and laser pulse direction, can result in a sharp change in photon density and distribution at the seafloor, which can cause the signal photon detection at the seafloor to be misinterpreted or omitted during analysis. Therefore, an improved size and direction adaptive filtering (ISDAF) method was proposed for nearshore bathymetry using ATLAS ATL03 data. This method can accurately distinguish between the original photons located above the sea surface, on the sea surface, and the seafloor. The size and direction of the elliptical density filter kernel automatically adapt to the sharp fluctuations in topography and changes in water depth, ensuring precise extraction of signal photons from both the sea surface and the seafloor. To evaluate the precision and reliability of the ISDAF, ATLAS ATL03 data from different water environments and seafloor terrains were used to perform bathymetric experiments. Airborne LiDAR bathymetry (ALB) data were also used to validate the bathymetric accuracy and reliability. The experimental findings show that the ISDAF consistently exhibits effectiveness in detecting and retrieving signal photons, regardless of whether the seafloor terrain is stable or dynamic. After applying refraction correction, the high accuracy of bathymetry was evidenced by a strong coefficient of determination (R2) and a low root mean square error (RMSE) between the ICESat-2 bathymetry data and ALB data. This research offers a promising approach to advancing remote sensing technologies for precise nearshore bathymetric mapping, with implications for coastal monitoring, marine ecology, and resource management. Full article
Show Figures

Figure 1

22 pages, 21422 KiB  
Article
Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea
by Maria Emanuela Mihailov, Alecsandru Vladimir Chiroșca, Elena Daniela Pantea and Gianina Chiroșca
Sustainability 2025, 17(12), 5664; https://doi.org/10.3390/su17125664 - 19 Jun 2025
Viewed by 563
Abstract
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this [...] Read more.
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this form of contamination. Mytilus galloprovincialis, a well-established bioindicator, accumulates microplastics, providing a direct measure of environmental pollution and indicating potential economic consequences deriving from degraded ecosystem services. While previous studies have documented microplastic pollution in the Black Sea, our paper specifically quantified microplastic contamination in M. galloprovincialis collected from four sites along the western Black Sea coast, each characterised by distinct levels of anthropogenic influence: Midia Port, Constanta Port, Mangalia Port, and 2 Mai. We used statistical analysis to quantify site-specific microplastic contamination in M. galloprovincialis and employed machine learning to develop models predicting accumulation patterns based on environmental variables. Our findings demonstrate the efficacy of mussels as bioindicators of marine plastic pollution and highlight the utility of machine learning in developing effective predictive tools for monitoring and managing marine litter contamination in marine environments, thereby contributing to sustainable economic practices. Full article
(This article belongs to the Special Issue Environment and Sustainable Economic Growth, 2nd Edition)
Show Figures

Figure 1

19 pages, 6897 KiB  
Article
The Evolution of Sediment Microorganisms During the Transition from Freshwater to Seawater and Their Dependence on Water Quality
by Qingyu Zhu, Lingli Min, Wenzhou Zhang, Shouping Ji and Yulang Chi
Water 2025, 17(12), 1831; https://doi.org/10.3390/w17121831 - 19 Jun 2025
Viewed by 492
Abstract
Estuarine ecosystems, characterized by dynamic salinity gradients and complex physicochemical interactions, serve as critical transition zones between freshwater and marine environments. This study investigates the spatial evolution of sediment microbial communities across a freshwater–seawater continuum and their correlations with water quality parameters. Five [...] Read more.
Estuarine ecosystems, characterized by dynamic salinity gradients and complex physicochemical interactions, serve as critical transition zones between freshwater and marine environments. This study investigates the spatial evolution of sediment microbial communities across a freshwater–seawater continuum and their correlations with water quality parameters. Five sampling zones (upstream, midstream, downstream, transition zone, and ocean) were established in a typical estuary (Kuiyu Park, China). High-throughput 16S rRNA sequencing revealed significant shifts in microbial composition, with dominant phyla including Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Alpha diversity decreased from freshwater to the transition zone but rebounded in seawater, suggesting habitat filtering and niche differentiation. Redundancy analysis identified salinity, dissolved oxygen, nutrients, and heavy metals as key drivers of microbial community structure. Functional predictions highlighted metabolic adaptations such as methanogenesis, sulfur oxidation, and aerobic chemoheterotrophy across zones. This study explores how sediment microorganisms adapt to water quality variations during the freshwater–seawater transition, offering insights into estuarine resilience under global change. These findings elucidate microbial assembly rules in estuarine ecosystems and provide insights for ecological management under global environmental change. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

20 pages, 3124 KiB  
Article
A Convergent Approach to Investigate the Environmental Behavior and Importance of a Man-Made Saltwater Wetland
by Luigi Alessandrino, Nicolò Colombani, Alessio Usai and Micòl Mastrocicco
Remote Sens. 2025, 17(12), 2019; https://doi.org/10.3390/rs17122019 - 11 Jun 2025
Viewed by 928
Abstract
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management [...] Read more.
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management of protected wetlands necessitates a multidisciplinary approach, the purpose of this study is to provide a comprehensive picture of the hydrological, hydrochemical, and ecological dynamics of a man-made groundwater dependent ecosystem (GDE) by combining remote sensing, hydrochemical data, geostatistical tools, and ecological indicators. The study area, called “Le Soglitelle”, is located in the Campania plain (Italy), which is close to the Domitian shoreline, covering a surface of 100 ha. The Normalized Difference Water Index (NDWI), a remote sensing-derived index sensitive to surface water presence, from Sentinel-2 was used to detect changes in the percentage of the wetland inundated area over time. Water samples were collected in four campaigns, and hydrochemical indexes were used to investigate the major hydrochemical seasonal processes occurring in the area. Geostatistical tools, such as principal component analysis (PCA) and independent component analysis (ICA), were used to identify the main hydrochemical processes. Moreover, faunal monitoring using waders was employed as an ecological indicator. Seasonal variation in the inundation area ranged from nearly 0% in summer to over 50% in winter, consistent with the severe climatic oscillations indicated by SPEI values. PCA and ICA explained over 78% of the total hydrochemical variability, confirming that the area’s geochemistry is mainly characterized by the saltwater sourced from the artesian wells that feed the wetland. The concentration of the major ions is regulated by two contrasting processes: evapoconcentration in summer and dilution and water mixing (between canals and ponds water) in winter. Cl/Br molar ratio results corroborated this double seasonal trend. The base exchange index highlighted a salinization pathway for the wetland. Bird monitoring exhibited consistency with hydrochemical monitoring, as the seasonal distribution clearly reflects the dual behaviour of this area, which in turn augmented the biodiversity in this GDE. The integration of remote sensing data, multivariate geostatistical analysis, geochemical tools, and faunal indicators represents a novel interdisciplinary framework for assessing GDE seasonal dynamics, offering practical insights for wetland monitoring and management. Full article
Show Figures

Figure 1

15 pages, 4479 KiB  
Article
Hue Angle-Based Remote Sensing of Secchi Disk Depth Using Sentinel-3 OLCI in the Coastal Waters of Qinhuangdao, China
by Yongwei Huo, Sufang Zhao, Zhongjie Yuan, Xiang Wang and Lin Wang
J. Mar. Sci. Eng. 2025, 13(6), 1149; https://doi.org/10.3390/jmse13061149 - 10 Jun 2025
Viewed by 398
Abstract
Seawater transparency provides critical insight into marine ecological dynamics and serves as a foundational indicator for fisheries management, environmental monitoring, and coastal resource development. Among various indicators, the Secchi disk depth (SDD) is widely used to quantify seawater transparency in marine environmental monitoring. [...] Read more.
Seawater transparency provides critical insight into marine ecological dynamics and serves as a foundational indicator for fisheries management, environmental monitoring, and coastal resource development. Among various indicators, the Secchi disk depth (SDD) is widely used to quantify seawater transparency in marine environmental monitoring. This study develops a remote sensing inversion model for estimating the SDD in the coastal waters of Qinhuangdao, utilizing Sentinel-3 OLCI satellite imagery and in situ measurements. The model is based on the CIE hue angle and demonstrates high accuracy (R2 = 0.93, MAPE = 7.88%, RMSE = 0.25 m), outperforming traditional single-band, band-ratio, and multi-band approaches. Using the proposed model, we analyzed the monthly and interannual variations of SDD in Qinhuangdao’s coastal waters from 2018 to 2024. The results reveal a clear seasonal pattern, with SDD values generally increasing and then decreasing throughout the year, primarily driven by the East Asian monsoon and other natural factors. Notably, the average annual SDD in 2018 was significantly lower than in subsequent years (2019–2024), which is closely associated with comprehensive water management and pollution reduction initiatives in the Bohai Sea region. These findings highlight marked improvements in the coastal marine environment and underscore the benefits of China’s ecological civilization strategy, particularly the principle that “lucid waters and lush mountains are invaluable assets.” Full article
(This article belongs to the Special Issue Remote Sensing for Maritime Monitoring and Ship Surveillance)
Show Figures

Figure 1

17 pages, 1153 KiB  
Article
Metabolic Profile of Senegalese Sole (Solea senegalensis) Muscle: Effect of Fish–Macroalgae IMTA-RAS Aquaculture
by Flaminia Cesare Marincola, Chiara Palmas, Miguel A. Lastres Couto, Isabel Paz, Javier Cremades, José Pintado, Leonardo Bruni and Gianfranco Picone
Molecules 2025, 30(12), 2518; https://doi.org/10.3390/molecules30122518 - 9 Jun 2025
Viewed by 1027
Abstract
The aquaculture sector is essential for meeting seafood demand while ensuring sustainability. It involves farming fish, mollusks, crustaceans, other invertebrates, and algae in controlled environments, helping to conserve marine resources and reduce ecological pressures. Sustainable practices, such as an integrated multitrophic recirculating aquaculture [...] Read more.
The aquaculture sector is essential for meeting seafood demand while ensuring sustainability. It involves farming fish, mollusks, crustaceans, other invertebrates, and algae in controlled environments, helping to conserve marine resources and reduce ecological pressures. Sustainable practices, such as an integrated multitrophic recirculating aquaculture system (IMTA-RAS) with fish and seaweed, can minimize the environmental impact of fish aquaculture. However, the impact of the introduction of macroalgae on the fish muscle metabolism has not been studied. This research examines the impact of growing Senegalese sole (Solea senegalensis) together with sea lettuce (Ulva ohnoi) on fish metabolism using high-resolution 1H-NMR-based metabolomics. Three farming systems were compared. These were E1, a recirculating aquaculture system (RAS); E2, an IMTA-RAS integrating U. ohnoi for biofiltration; and E3, an IMTA-RAS with U. ohnoi and Phaeobacter sp. strain 4UAC3, a probiotic bacterium isolated from wild U. australis known to counteract fish pathogens. A metabolomic analysis revealed that energy metabolism was enhanced in IMTA-RAS and even more in IMTA-RAS-Phaeobacter–grown fish, increasing overall metabolic activity. These results indicate that the presence of the algae with the probiotic had a clear impact on the physiological state of the fish, and this deserves further investigation. This study contributes to the understanding of the physiological responses of fish to innovative aquaculture practices, supporting the development of more sustainable and efficient management that reduces the environmental impact and increases fish health and welfare. Full article
Show Figures

Figure 1

18 pages, 3162 KiB  
Article
Modeling Desorption Rates and Background Concentrations of Heavy Metals Using a One-Dimensional Approach
by Wendy Tatiana Gonzalez Cano, Serguei Lonin and Kyoungrean Kim
Toxics 2025, 13(6), 421; https://doi.org/10.3390/toxics13060421 - 22 May 2025
Viewed by 549
Abstract
Harmful heavy metals (HHMs) in marine sediments pose significant ecological and human health risks. This research developed a novel one-dimensional mathematical model to investigate the desorption rates and background concentrations (Cbg) of HHMs in cohesive sediments of coastal environments, [...] Read more.
Harmful heavy metals (HHMs) in marine sediments pose significant ecological and human health risks. This research developed a novel one-dimensional mathematical model to investigate the desorption rates and background concentrations (Cbg) of HHMs in cohesive sediments of coastal environments, using Cartagena Bay (CB), Colombia, as a reference for estuarine systems. The model integrates mass balance and molecular diffusion equations incorporating porosity and tortuosity. Both the particulate and dissolved phases of HHMs were considered. Numerical experiments were conducted over 28 years with a daily time step, simulating four primary hydrodynamic processes: molecular diffusion, desorption, sedimentation, and turbulent water exchange. The spatiotemporal evolution of  Cbg provides valuable insights for sediment modeling, policy development, and advancing the understanding of HHM pollution in sediments. Results of the model align closely with empirical data from CB, demonstrating its applicability not only to local conditions but also to similar contaminated areas through a generalized approach. This model can be used as a reliable computational tool for managing coastal environments. Full article
Show Figures

Graphical abstract

17 pages, 1253 KiB  
Review
Metagenome-Assembled Genomes (MAGs): Advances, Challenges, and Ecological Insights
by Salvador Mirete, Mercedes Sánchez-Costa, Jorge Díaz-Rullo, Carolina González de Figueras, Pablo Martínez-Rodríguez and José Eduardo González-Pastor
Microorganisms 2025, 13(5), 985; https://doi.org/10.3390/microorganisms13050985 - 25 Apr 2025
Viewed by 1993
Abstract
Metagenome-assembled genomes (MAGs) have revolutionized microbial ecology by enabling the genome-resolved study of uncultured microorganisms directly from environmental samples. By leveraging high-throughput sequencing, advanced assembly algorithms, and genome binning techniques, researchers can reconstruct microbial genomes without the need for cultivation. These methodological advances [...] Read more.
Metagenome-assembled genomes (MAGs) have revolutionized microbial ecology by enabling the genome-resolved study of uncultured microorganisms directly from environmental samples. By leveraging high-throughput sequencing, advanced assembly algorithms, and genome binning techniques, researchers can reconstruct microbial genomes without the need for cultivation. These methodological advances have expanded the known microbial diversity, revealing novel taxa and metabolic pathways involved in key biogeochemical cycles, including carbon, nitrogen, and sulfur transformations. MAG-based studies have identified microbial lineages form Archaea and Bacteria responsible for methane oxidation, carbon sequestration in marine sediments, ammonia oxidation, and sulfur metabolism, highlighting their critical roles in ecosystem stability. From a sustainability perspective, MAGs provide essential insights for climate change mitigation, sustainable agriculture, and bioremediation. The ability to characterize microbial communities in diverse environments, including soil, aquatic ecosystems, and extreme habitats, enhances biodiversity conservation and supports the development of microbial-based environmental management strategies. Despite these advancements, challenges such as assembly biases, incomplete metabolic reconstructions, and taxonomic uncertainties persist. Continued improvements in sequencing technologies, hybrid assembly approaches, and multi-omics integration will further refine MAG-based analyses. As methodologies advance, MAGs will remain a cornerstone for understanding microbial contributions to global biogeochemical processes and developing sustainable interventions for environmental resilience. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

38 pages, 2926 KiB  
Review
Bioaccumulation and Trophic Transfer of Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts
by Andra Oros
J. Xenobiot. 2025, 15(2), 59; https://doi.org/10.3390/jox15020059 - 18 Apr 2025
Cited by 7 | Viewed by 3935
Abstract
Heavy metal contamination in marine ecosystems poses a critical environmental challenge, with significant implications for biodiversity, trophic dynamics, and human health. Marine fish are key bioindicators of heavy metal pollution because of their role in food webs and their capacity for bioaccumulation and [...] Read more.
Heavy metal contamination in marine ecosystems poses a critical environmental challenge, with significant implications for biodiversity, trophic dynamics, and human health. Marine fish are key bioindicators of heavy metal pollution because of their role in food webs and their capacity for bioaccumulation and trophic transfer. This review synthesizes current knowledge on the pathways and mechanisms of heavy metal accumulation in marine fish, focusing on factors that influence the uptake, retention, and tissue distribution. We explore the processes governing trophic transfer and biomagnification, highlighting species-specific accumulation patterns and the risks posed to apex predators, including humans. Additionally, we assess the ecological consequences of heavy metal contamination at population, community, and ecosystem levels, emphasizing its effects on fish reproduction, community structure, and trophic interactions. By integrating recent findings, this review highlights key knowledge gaps and suggests future research directions to improve environmental monitoring and risk assessment. Given the persistence and bioavailability of heavy metals in marine environments, effective pollution control strategies and sustainable fisheries management are imperative to mitigate long-term ecological and public health risks. Full article
Show Figures

Figure 1

15 pages, 1807 KiB  
Article
Monitoring the Status of Mesophotic Biogenic Reefs in the Northern Adriatic Sea: Comparing a Biotic Index and Multivariate Community Patterns
by Gregorio Motta, Verdiana Vellani, Manuela Piccardo, Matteo De Luca, Saul Ciriaco, Marco Segarich, Lisa Peratoner, Maurizio Spoto, Antonio Terlizzi, Monia Renzi and Stanislao Bevilacqua
Environments 2025, 12(4), 124; https://doi.org/10.3390/environments12040124 - 17 Apr 2025
Viewed by 469
Abstract
Coralligenous bioconstructions are priority habitats crucial for the protection of Mediterranean marine biodiversity. Among these bioconstructions, the mesophotic biogenic reefs of the northern Adriatic are of particular concern due to their ecological relevance and the high levels of human pressure in the region. [...] Read more.
Coralligenous bioconstructions are priority habitats crucial for the protection of Mediterranean marine biodiversity. Among these bioconstructions, the mesophotic biogenic reefs of the northern Adriatic are of particular concern due to their ecological relevance and the high levels of human pressure in the region. Thus, effective monitoring strategies are vital for the conservation and management of these fragile environments. In this study, we investigated the multivariate spatial and temporal patterns of sessile macrobenthos on biogenic reefs within two areas of a Natura 2000 site in the northern Adriatic over a four-year period. We also classified the ecological status of reefs based on the NAMBER index, specifically tailored for these peculiar bioconstructions. Our findings revealed that temporal trajectories of assemblages significantly differed between the two investigated areas, mostly due to larger fluctuations in algal turf abundance in the area closest to the coast, which is putatively more exposed to human impacts. In this area, the index identified a “Moderate” status during the period of peaking turf abundance, while the reef status consistently remained “Good” in other periods and in the area located further from the coast. This highlights the index sensitivity in reflecting actual changes in assemblages potentially associated with reef degradation. Full article
Show Figures

Graphical abstract

36 pages, 68826 KiB  
Article
A Holistic High-Resolution Remote Sensing Approach for Mapping Coastal Geomorphology and Marine Habitats
by Evagoras Evagorou, Thomas Hasiotis, Ivan Theophilos Petsimeris, Isavela N. Monioudi, Olympos P. Andreadis, Antonis Chatzipavlis, Demetris Christofi, Josephine Kountouri, Neophytos Stylianou, Christodoulos Mettas, Adonis Velegrakis and Diofantos Hadjimitsis
Remote Sens. 2025, 17(8), 1437; https://doi.org/10.3390/rs17081437 - 17 Apr 2025
Cited by 4 | Viewed by 1184
Abstract
Coastal areas have been the target of interdisciplinary research aiming to support studies related to their socio-economic and ecological value and their role in protecting backshore ecosystems and assets from coastal erosion and flooding. Some of these studies focus on either onshore or [...] Read more.
Coastal areas have been the target of interdisciplinary research aiming to support studies related to their socio-economic and ecological value and their role in protecting backshore ecosystems and assets from coastal erosion and flooding. Some of these studies focus on either onshore or inshore areas using sensors and collecting valuable information that remains unknown and untapped by other researchers. This research demonstrates how satellite, aerial, terrestrial and marine remote sensing techniques can be integrated and inter-validated to produce accurate information, bridging methodologies with different scope. High-resolution data from Unmanned Aerial Vehicle (UAV) data and multispectral satellite imagery, capturing the onshore environment, were utilized to extract underwater information in Coral Bay (Cyprus). These data were systematically integrated with hydroacoustic including bathymetric and side scan sonar measurements as well as ground-truthing methods such as drop camera surveys and sample collection. Onshore, digital elevation models derived from UAV observations revealed significant elevation and shoreline changes over a one-year period, demonstrating clear evidence of beach modifications and highlighting coastal zone dynamics. Temporal comparisons and cross-section analyses displayed elevation variations reaching up to 0.60 m. Terrestrial laser scanning along a restricted sea cliff at the edge of the beach captured fine-scale geomorphological changes that arise considerations for the stability of residential properties at the top of the cliff. Bathymetric estimations derived from PlanetScope and Sentinel 2 imagery returned accuracies ranging from 0.92 to 1.52 m, whilst UAV reached 1.02 m. Habitat classification revealed diverse substrates, providing detailed geoinformation on the existing sediment type distribution. UAV data achieved 89% accuracy in habitat mapping, outperforming the 83% accuracy of satellite imagery and underscoring the value of high-resolution remote sensing for fine-scale assessments. This study emphasizes the necessity of extracting and integrating information from all available sensors for a complete geomorphological and marine habitat mapping that would support sustainable coastal management strategies. Full article
(This article belongs to the Special Issue Remote Sensing in Geomatics (Second Edition))
Show Figures

Graphical abstract

16 pages, 1590 KiB  
Article
Environmental Effects on the Ecological Carrying Capacity of Marine Ranching in the Northern South China Sea
by Ziwen Wang, Lijun Yao, Jing Yu, Yuxiang Chen, Xue Feng and Pimao Chen
Biology 2025, 14(4), 419; https://doi.org/10.3390/biology14040419 - 14 Apr 2025
Cited by 1 | Viewed by 481
Abstract
The marine ecological carrying capacity (MECC) of marine ranching serves as a crucial indicator for assessing the conservation effect of fishery resources and forms a significant basis for scientific management of coastal fisheries. The environmental impacts on the MECC of marine ranching in [...] Read more.
The marine ecological carrying capacity (MECC) of marine ranching serves as a crucial indicator for assessing the conservation effect of fishery resources and forms a significant basis for scientific management of coastal fisheries. The environmental impacts on the MECC of marine ranching in the northern South China Sea were analyzed quantitatively by employing Generalized Additive Models (GAMs), which have been successfully applied to the study of the relationship between fishery resources and environmental factors, and factor analysis, using satellite and survey observations. Results showed that 95.40% of the total variation in MECC was explained by these factors. Based on the GAMs, the most important factor was Year (calendar years), with a contribution of 66.20%, followed by Chlorophyll a concentration (Chl-a), Sea Surface Temperature (SST), Dissolved Inorganic Nitrogen (DIN) and Water Current, with contributions of 20.60%, 4.40%, 3.60%, and 0.60%, respectively. The findings of this study inspire us to establish a long-term marine ranching resource and environment monitoring platform, and an early warning and forecasting expert decision-making system, providing scientific references for planning and management of coastal marine ranching. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

Back to TopTop