Assessment of Ecological Quality Status in Shellfish Farms in South Korea Using Multiple Benthic Indices
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Analysis
2.3.1. Seawater Sample Analysis
2.3.2. Sediment Sample Analysis
2.3.3. Macrobenthic Sample Analysis
2.4. Data Analysis
2.4.1. Benthic Indices
2.4.2. Composite Indices
2.4.3. Statistical Analysis
3. Results
3.1. Environmental Characteristics
3.2. Macrobenthic Compositions
3.3. Results of Benthic and Composite Indices
3.4. Results of Statistical Analysis
4. Discussion
4.1. Macrobenthic Community Compositions in Gangjin Bay
4.2. Performances of Benthic and Composite Indices
4.3. Use Benthic Indices in Shellfish Farms
4.4. Recommendations for Shellfish Farm Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Fan, Y.; Yan, C.; Gao, C.; Xu, Z.; Liu, X. Assessing Benthic Ecological Impacts of Bottom Aquaculture Using Macrofaunal Assemblages. Mar. Pollut. Bull. 2017, 114, 258–268. [Google Scholar] [CrossRef]
- Zhang, J.; Hansen, P.K.; Wu, W.; Liu, Y.; Sun, K.; Zhao, Y.; Li, Y. Sediment-Focused Environmental Impact of Long-Term Large- Scale Marine Bivalve and Seaweed Farming in Sungo Bay, China. Aquaculture 2020, 528, 735561. [Google Scholar] [CrossRef]
- Cressey, D. Aquaculture: Future Fish. Nature 2009, 458, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Hou, X.; Li, Y.; Mu, Y. The Difference in Development Level of Marine Shellfish Industry in 10 Major Producing Countries. Mar. Policy 2019, 106, 103516. [Google Scholar] [CrossRef]
- Park, J.; Shin, S.K.; Wu, H.; Yarish, C.; Yoo, H.I.; Kim, J.K. Evaluation of Nutrient Bioextraction by Seaweed and Shellfish Aquaculture in Korea. J. World Aquac. Soc. 2021, 52, 1118–1134. [Google Scholar] [CrossRef]
- Lercari, D.; Bergamino, L. Impacts of Two Invasive Mollusks, Rapana Venosa (Gastropoda) and Corbicula Fluminea (Bivalvia), on the Food Web Structure of the Río de La Plata Estuary and Nearshore Oceanic Ecosystem. Biol. Invasions 2011, 13, 2053–2061. [Google Scholar] [CrossRef]
- Walls, A.M.; Kennedy, R.; Edwards, M.D.; Johnson, M.P. Impact of Kelp Cultivation on the Ecological Status of Benthic Habitats and Zostera Marina Seagrass Biomass. Mar. Pollut. Bull. 2017, 123, 19–27. [Google Scholar] [CrossRef]
- Sun, X.; Filgueira, R.; Wang, N.; Guyondet, T.; Dong, J.; Zhang, X. Assessing Shellfish Farming-Mediated Benthic Impacts Based on Organic Carbon Flux Simulation and Composition of Macrofaunal Community. Sci. Total Environ. 2023, 861, 160598. [Google Scholar] [CrossRef]
- Callier, M.D.; McKindsey, C.W.; Desrosiers, G. Evaluation of Indicators Used to Detect Mussel Farm Influence on the Benthos: Two Case Studies in the Magdalen Islands, Eastern Canada. Aquaculture 2008, 278, 77–88. [Google Scholar] [CrossRef]
- Miron, G.; Landry, T.; Archambault, P.; Frenette, B. Effects of Mussel Culture Husbandry Practices on Various Benthic Characteristics. Aquaculture 2005, 250, 138–154. [Google Scholar] [CrossRef]
- Sanchez-Jerez, P.; Krüger, L.; Casado-Coy, N.; Valle, C.; Sanz-Lazaro, C. Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming. J. Mar. Sci. Eng. 2019, 7, 335. [Google Scholar] [CrossRef]
- Rehitha, T.V.; Vineetha, G.; Madhu, N.V. Ecological Habitat Quality Assessment of a Tropical Estuary Using Macrobenthic Functional Characteristics and Biotic Indices. Environ. Sci. Pollut. Res. 2022, 29, 47629–47646. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.S.; Samanta, S.; Mahato, S.; Bhattacharya, S.; Midya, S. Diversity of Meiobenthic Fauna in Costal Environment. In Spatial Modeling of Environmental Pollution and Ecological Risk; Elsevier: Amsterdam, The Netherlands, 2024; pp. 275–299. ISBN 978-0-323-95282-8. [Google Scholar]
- Liao, Y.; Liu, Q.; Shou, L.; Tang, Y.; Liu, Q.; Zeng, J.; Chen, Q.; Yan, X. The Impact of Suspended Oyster Farming on Macrobenthic Community in a Eutrophic, Semi-Enclosed Bay: Implications for Recovery Potential. Aquaculture 2022, 548, 737585. [Google Scholar] [CrossRef]
- Borja, Á.; Rodríguez, J.G.; Black, K.; Bodoy, A.; Emblow, C.; Fernandes, T.F.; Forte, J.; Karakassis, I.; Muxika, I.; Nickell, T.D.; et al. Assessing the Suitability of a Range of Benthic Indices in the Evaluation of Environmental Impact of Fin and Shellfish Aquaculture Located in Sites across Europe. Aquaculture 2009, 293, 231–240. [Google Scholar] [CrossRef]
- Jung, R.-H.; Seo, I.-S.; Choi, M.; Park, S.R.; Choi, B.-M.; Kim, M.H.; Kim, Y.J.; Yun, J.S. Community Structure and Health Assessment of Macrobenthic Assemblages during Spring and Summer in the Shellfish Farming Ground of Wonmun Bay, on the Southern Coast of Korea. Kor. J. Fish. Aquat. Sci. 2014, 47, 908–926. [Google Scholar]
- Jung, R.H.; Yoon, S.-P.; Park, S.; Hong, S.-J.; Kim, Y.J.; Kim, S. Introduction to the Benthic Health Index Used in Fisheries Environment Assessment. J. Korean Soc. Mar. Environ. Saf. 2023, 29, 779–793. [Google Scholar] [CrossRef]
- Dong, J.-Y.; Sun, X.; Zhang, Y.; Zhan, Q.; Zhang, X. Assessing Benthic Habitat Ecological Quality Using Four Benthic Indices in the Coastal Waters of Sanshandao, Laizhou Bay, China. Ecol. Indic. 2021, 129, 107980. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, S.-P.; Park, S.; Jung, R.H. Patterns in Benthic Polychaete Community and Benthic Health Assessment at Longline and Bottom Culture Shellfish Farms in Gangjin Bay, Namhae, Korea. J. Korean Soc. Mar. Environ. Saf. 2024, 30, 20–31. [Google Scholar] [CrossRef]
- Borja, A.; Franco, J.; Pérez, V. A Marine Biotic Index to Establish the Ecological Quality of Soft-Bottom Benthos Within European Estuarine and Coastal Environments. Mar. Pollut. Bull. 2000, 40, 1100–1114. [Google Scholar] [CrossRef]
- Simboura, N.; Zenetos, A. Benthic Indicators to Use in Ecological Quality Classification of Mediterranean Soft Bottom Marine Ecosystems, Including a New Biotic Index. Medit. Mar. Sci. 2002, 3, 77. [Google Scholar] [CrossRef]
- Dauvin, J.C.; Andrade, H.; de-la-Ossa-Carretero, J.A.; Del-Pilar-Ruso, Y.; Riera, R. Polychaete/Amphipod Ratios: An Approach to Validating Simple Benthic Indicators. Ecol. Indic. 2016, 63, 89–99. [Google Scholar] [CrossRef]
- Liang, J.; Ma, C.-W.; Kim, K.-B.; Son, D.-S. Can the Ecological Quality of Several Bays in South Korea Be Accurately Assessed Using Multiple Benthic Biotic Indices? J. Mar. Sci. Eng. 2024, 12, 1179. [Google Scholar] [CrossRef]
- Muxika, I.; Borja, Á.; Bald, J. Using Historical Data, Expert Judgement and Multivariate Analysis in Assessing Reference Conditions and Benthic Ecological Status, According to the European Water Framework Directive. Mar. Pollut. Bull. 2007, 55, 16–29. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Fisheries Science. National Institute of Fisheries Science Notification of Marine Environmental Process Test Standards 2010; National Institute of Fisheries Science: Busan, Republic of Korea, 2010; Available online: https://www.nifs.go.kr/board/actionBoard0052List.do?BBS_CL_CD=ALL (accessed on 19 November 2023).
- Liang, J.; Ma, C.-W.; Kim, K.-B. Comparing the Environmental Impacts of Pollution from Two Types of Industrial Zones on the Coast. Front. Mar. Sci. 2024, 11, 1433536. [Google Scholar] [CrossRef]
- Liang, J.; Huang, H.-R.; Ma, C.-W.; Son, D.-S.; Kim, S.-K. Using the Heavy Metal Indices and Benthic Indices to Assess the Ecological Quality in the Tidal Flats of Garolim Bay, South Korea. Water 2024, 16, 736. [Google Scholar] [CrossRef]
- Blanchet, H.; Lavesque, N.; Ruellet, T.; Dauvin, J.C.; Sauriau, P.G.; Desroy, N.; Desclaux, C.; Leconte, M.; Bachelet, G.; Janson, A.-L.; et al. Use of Biotic Indices in Semi-Enclosed Coastal Ecosystems and Transitional Waters Habitats—Implications for the Implementation of the European Water Framework Directive. Ecol. Indic. 2008, 8, 360–372. [Google Scholar] [CrossRef]
- Maghsoudlou, A.; Momtazi, F.; Hashtroudi, M.S. Ecological Quality Status (EcoQs) of Chabahar Sub-Tropical Bay Based on Multimetric Macrobenthos-Indexes Approach: Response of Bio-Indexes to Sediment Structural/Pollutant Variables. Reg. Stud. Mar. Sci. 2020, 40, 101524. [Google Scholar] [CrossRef]
- McLaverty, C.; Eigaard, O.R.; Gislason, H.; Bastardie, F.; Brooks, M.E.; Jonsson, P.; Lehmann, A.; Dinesen, G.E. Using Large Benthic Macrofauna to Refine and Improve Ecological Indicators of Bottom Trawling Disturbance. Ecol. Indic. 2020, 110, 105811. [Google Scholar] [CrossRef]
- Lee, J.; Park, K.-T.; Lim, J.-H.; Yoon, J.-E.; Kim, I.-N. Hypoxia in Korean Coastal Waters: A Case Study of the Natural Jinhae Bay and Artificial Shihwa Bay. Front. Mar. Sci. 2018, 5, 70. [Google Scholar] [CrossRef]
- Onyena, A.P.; Nkwoji, J.A.; Chukwu, L.O. Sediment Characteristics and Ecological Quality Evaluation of a Brackish Creek Using AZTI’s Marine Biotic and Bentix Indices. Aquat. Sci. 2023, 85, 108. [Google Scholar] [CrossRef]
- Leshno, Y.; Benjamini, C.; Edelman-Furstenberg, Y. Ecological Quality Assessment in the Eastern Mediterranean Combining Live and Dead Molluscan Assemblages. Mar. Pollut. Bull. 2016, 104, 246–256. [Google Scholar] [CrossRef]
- Dias, H.Q.; Sukumaran, S.; Srinivas, T.; Mulik, J. Ecological Quality Status Evaluation of a Monsoonal Tropical Estuary Using Benthic Indices: Comparison via a Seasonal Approach. Environ. Sci. Pollut. Res. 2018, 25, 22672–22688. [Google Scholar] [CrossRef]
- Liang, J.; Huang, H.-R.; Shu, M.-Y.; Ma, C.-W. Assessing the Impact of Land-Based Anthropogenic Activities on the Macrobenthic Community in the Intertidal Zones of Anmyeon Island, South Korea. Land 2025, 14, 62. [Google Scholar] [CrossRef]
- Souza, F.M.D.; Gilbert, E.R.; Camargo, M.G.D.; Pieper, W.W. The Spatial Distribution of the Subtidal Benthic Macrofauna and Its Relationship with Environmental Factors Using Geostatistical Tools: A Case Study in Trapandé Bay, Southern Brazil. Zoologia 2013, 30, 55–65. [Google Scholar] [CrossRef]
- Bon, M.; Grall, J.; Gusmao, J.B.; Fajardo, M.; Harrod, C.; Pacheco, A.S. Functional Changes in Benthic Macrofaunal Communities along a Natural Gradient of Hypoxia in an Upwelling System. Mar. Pollut. Bull. 2021, 164, 112056. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.M.; Gilbert, E.R.; Brauko, K.M.; Lorenzi, L.; Machado, E.; Camargo, M.G. Macrobenthic Community Responses to Multiple Environmental Stressors in a Subtropical Estuary. PeerJ 2021, 9, e12427. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.M.; Josende, M.E.; Ruas, C.P.; Gelesky, M.A.; Júnior, F.M.R.D.S.; Fattorini, D.; Regoli, F.; Monserrat, J.M.; Ventura-Lima, J. Biochemical Responses Induced by Co-Exposition to Arsenic and Titanium Dioxide Nanoparticles in the Estuarine Polychaete Laeonereis Acuta. Toxicology 2017, 376, 51–58. [Google Scholar] [CrossRef]
- Liang, J.; Ma, C.-W.; Kim, K.-B. Ecological Risk Assessment of Heavy Metals in Surface Sediments and Their Impact on Macrobenthos in Asan Bay, South Korea. Front. Mar. Sci. 2024, 11, 1450396. [Google Scholar] [CrossRef]
- Dong, J.-Y.; Wang, X.; Zhang, X.; Bidegain, G.; Zhao, L. Integrating Multiple Indices Based on Heavy Metals and Macrobenthos to Evaluate the Benthic Ecological Quality Status of Laoshan Bay, Shandong Peninsula, China. Ecol. Indic. 2023, 153, 110367. [Google Scholar] [CrossRef]
- Pinto, R.; Patrício, J.; Baeta, A.; Fath, B.D.; Neto, J.M.; Marques, J.C. Review and Evaluation of Estuarine Biotic Indices to Assess Benthic Condition. Ecol. Indic. 2009, 9, 1–25. [Google Scholar] [CrossRef]
- Tian, S.; Liao, Y.; Tang, Y.; Liu, Q.; Zhang, R.; Shou, L.; Zeng, J. Assessment of Macrobenthic Communities of Rocky Intertidal Zone from Zhejiang Offshore Islands with AZTI Marine Biotic Index. Ecol. Indic. 2023, 154, 110923. [Google Scholar] [CrossRef]
- Liang, J.; Ma, C.-W.; Kim, K.-B. Assessment of Benthic Ecological Quality Status in the Subtidal Zone of Northern Jeju Island, South Korea, During Summer Based on Macrobenthos. Animals 2025, 15, 539. [Google Scholar] [CrossRef]
- Sukumaran, S.; Mulik, J.; Rokade, M.A.; Kamble, A. Impact of ‘Chitra’ Oil Spill on Tidal Pool Macrobenthic Communities of a Tropical Rocky Shore (Mumbai, India). Estuaries Coasts 2014, 37, 1415–1431. [Google Scholar] [CrossRef]
- Mulik, J.; Sukumaran, S.; Jisna, M.J.; Rao, M.N. Tracing the Impact and Recovery Trajectory of Oil Spill Affected Tropical Rocky Intertidal Macrobenthic Communities Using the BOPA Index. Mar. Pollut. Bull. 2023, 186, 114435. [Google Scholar] [CrossRef]
- Salas, F.; Marcos, C.; Neto, J.M.; Patrício, J.; Pérez-Ruzafa, A.; Marques, J.C. User-Friendly Guide for Using Benthic Ecological Indicators in Coastal and Marine Quality Assessment. Ocean Coast. Manag. 2006, 49, 308–331. [Google Scholar] [CrossRef]
- Gillett, D.J.; Weisberg, S.B.; Grayson, T.; Hamilton, A.; Hansen, V.; Leppo, E.W.; Pelletier, M.C.; Borja, A.; Cadien, D.; Dauer, D.; et al. Effect of Ecological Group Classification Schemes on Performance of the AMBI Benthic Index in US Coastal Waters. Ecol. Indic. 2015, 50, 99–107. [Google Scholar] [CrossRef]
- Ministry of Oceans and Fisheries. Korea Marine Seawater Quality Standard. 2018. Available online: https://www.mof.go.kr/en/index.do (accessed on 19 November 2023).
- Jeong, H.; Byeon, E.; Kim, D.-H.; Maszczyk, P.; Lee, J.-S. Heavy Metals and Metalloid in Aquatic Invertebrates: A Review of Single/Mixed Forms, Combination with Other Pollutants, and Environmental Factors. Mar. Pollut. Bull. 2023, 191, 114959. [Google Scholar] [CrossRef] [PubMed]
- Pavón, A.; Riquelme, D.; Jaña, V.; Iribarren, C.; Manzano, C.; Lopez-Joven, C.; Reyes-Cerpa, S.; Navarrete, P.; Pavez, L.; García, K. The High Risk of Bivalve Farming in Coastal Areas with Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front. Cell. Infect. Microbiol. 2022, 12, 867446. [Google Scholar] [CrossRef] [PubMed]
- Saidon, N.B.; Szabó, R.; Budai, P.; Lehel, J. Trophic Transfer and Biomagnification Potential of Environmental Contaminants (Heavy Metals) in Aquatic Ecosystems. Environ. Pollut. 2024, 340, 122815. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E. Trophic Transfer, Bioaccumulation, and Biomagnification of Non-Essential Hazardous Heavy Metals and Metalloids in Food Chains/Webs—Concepts and Implications for Wildlife and Human Health. Human Ecol. Risk Assess. An Int. J. 2019, 25, 1353–1376. [Google Scholar] [CrossRef]
- Qiu, Y.-W. Bioaccumulation of Heavy Metals Both in Wild and Mariculture Food Chains in Daya Bay, South China. Estuar. Coast. Shelf Sci. 2015, 163, 7–14. [Google Scholar] [CrossRef]
- Silva, E.; Garbossa, L.H.P.; Nuñer, A.P.O.; Lapa, K.R. Hydrodynamic Modelling of the Dispersion and Deposition of Biodeposits from Marine Bivalve Mollusc Farming under Neap and Spring Tides in Santa Catarina Island Bays. Aquaculture 2019, 501, 507–514. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, S.; Liu, Y.; Yang, H. Biologically Induced Deposition of Fine Suspended Particles by Filter-Feeding Bivalves in Land-Based Industrial Marine Aquaculture Wastewater. PLoS ONE 2014, 9, e107798. [Google Scholar] [CrossRef]
- Strand, Ø.; Jansen, H.M.; Jiang, Z.; Robinson, S.M.C. Perspectives on Bivalves Providing Regulating Services in Integrated Multi-Trophic Aquaculture. In Goods and Services of Marine Bivalves; Springer International Publishing: Cham, Switzerland, 2019; pp. 209–230. ISBN 978-3-319-96775-2. [Google Scholar]
- Holmer, M. Environmental Issues of Fish Farming in Offshore Waters: Perspectives, Concerns and Research Needs. Aquacult. Environ. Interact. 2010, 1, 57–70. [Google Scholar] [CrossRef]
- Liang, J.; Ma, C.-W.; Son, D.-S. Using the Heavy Metal and Biotic Indices to Assess Ecological Quality in the Central Area of the East Sea, South Korea. Water 2024, 16, 1230. [Google Scholar] [CrossRef]
Indices | Algorithm | Index Values | EcoQs | Reference |
---|---|---|---|---|
AMBI | 0.0–1.2 1.2–3.3 3.3–5.0 5.0–6.0 >6.0 | High Good Moderate Poor Bad | [20] | |
BENTIX | 6–4.5 4.5–3.5 3.5–2.5 2.5–2.0 0.0 | High Good Moderate Poor Bad | [21] | |
BOPA | 0–0.02452 0.02455–0.13002 0.13002–0.19884 0.19884–0.25512 >0.25512 | High Good Moderate Poor Bad | [22] | |
BPI | 60–100 40–60 30–40 20–30 0–20 | High Good Moderate Poor Bad | [23] | |
M-AMBI | >0.77 0.53–0.77 0.38–0.53 0.20–0.38 ≤0.2 | High Good Moderate Poor Bad | [24] |
Composite Index | Assessment | Final Ecological Quality |
---|---|---|
0 | All indices have assessed the ecological quality of the station as unacceptable. | Unacceptable |
1 | Four indices have assessed the ecological quality of the station as unacceptable. | Unacceptable |
2 | Three indices have assessed the ecological quality of the station as unacceptable. | Unacceptable |
3 | Two indices have assessed the ecological quality of the station as unacceptable. | Unacceptable |
4 | One index has assessed the ecological quality of the station as unacceptable. | Acceptable |
5 | Five indices have assessed the ecological quality of the station as acceptable. | Acceptable. |
Environment Data | Range (min–max) (November) | Range (min–max) (December) | Mean ± CV (November) | Mean ± CV (December) | Mean ± CV (Total) |
---|---|---|---|---|---|
AVS, mg/g | 0.003–0.25 | 0.03–0.22 | 0.13 ± 0.71 | 0.09 ± 0.66 | 0.11 ± 0.71 |
COD, mg/g | 16.79–32.55 | 16.28–31.93 | 21.99 ± 0.19 | 25.84 ± 0.17 | 23.92 ± 0.19 |
DO, mg/L | 6.13–9.16 | 7.90–8.67 | 7.22 ± 0.13 | 8.23 ± 0.03 | 7.72 ± 0.11 |
TOC, mg/g | 8.42–14.46 | 6.18–14.41 | 12.14 ± 0.14 | 12.11 ± 0.20 | 12.12 ± 0.17 |
IL, % | 8.00–9.60 | 7.60–8.90 | 8.88 ± 0.06 | 8.26 ± 0.06 | 8.57 ± 0.07 |
Mean grain size, ∮ | 7.70–8.70 | 7.50–8.60 | 8.20 ± 0.05 | 7.94 ± 0.05 | 8.07 ± 0.05 |
pH | 7.94–8.15 | 8.10–8.32 | 8.05 ± 0.01 | 8.14 ± 0.01 | 8.10 ± 0.01 |
Salinity, PSU | 29.90–30.30 | 30.90–30.90 | 30.03 ± 0.004 | 30.90 ± 0 | 30.47 ± 0.01 |
Suspended solids, mg/L | 3.08–25.44 | 5.40–29.48 | 9.48 ± 0.66 | 10.70 ± 0.64 | 10.09 ± 0.63 |
Water temperature, °C | 16.80–18.40 | 6.30–9.10 | 17.42 ± 0.03 | 7.92 ± 0.11 | 12.67 ± 0.39 |
Chl-a, μg/L | 1.24–3.40 | 0.95–2.86 | 2.25 ± 0.35 | 1.85 ± 0.29 | 2.05 ± 0.34 |
As, mg/kg | 7.40–12.60 | 5.30–9.20 | 9.55 ± 0.19 | 7.60 ± 0.16 | 8.58 ± 0.21 |
Cd, mg/kg | 0.09–0.71 | 0.02–0.39 | 0.39 ± 0.58 | 0.20 ± 0.71 | 0.29 ± 0.71 |
Cr, mg/kg | 40.90–65.20 | 40.90–84.20 | 60.07 ± 0.12 | 69.48 ± 0.19 | 64.78 ± 0.17 |
Cu, mg/kg | 5.45–10.10 | 5.19–6.77 | 8.22 ± 0.15 | 6.18 ± 0.08 | 7.20 ± 0.19 |
Ni, mg/kg | 14.10–25.20 | 14.80–31.60 | 23.03 ± 0.14 | 25.60 ± 0.19 | 24.32 ± 0.18 |
Pb, mg/kg | 22.00–99.60 | 25.60–90.80 | 79.54 ± 0.27 | 75.18 ± 0.25 | 77.36 ± 0.26 |
Zn, mg/kg | 35.30–43.30 | 37.20–45.10 | 40.08 ± 0.06 | 41.45 ± 0.07 | 41.13 ± 0.07 |
Environmental Data | Pseudo-F | p | Proportion of Variation Explained |
---|---|---|---|
AVS, mg/g | 1.074 | 0.095 | 0.080 |
COD, mg/g | 1.121 | 0.320 | 0.059 |
DO, mg/L | 2.409 | 0.002 | 0.118 |
TOC, mg/g | 0.900 | 0.498 | 0.048 |
IL, % | 1.277 | 0.222 | 0.066 |
Mean grain size, ∮ | 0.798 | 0.692 | 0.042 |
pH | 1.270 | 0.245 | 0.066 |
Salinity, PSU | 1.682 | 0.060 | 0.085 |
Suspended solids, mg/L | 1.816 | 0.037 | 0.092 |
Water temperature, °C | 1.633 | 0.067 | 0.083 |
Chl-a, μg/L | 0.605 | 0.869 | 0.033 |
As, mg/kg | 1.561 | 0.095 | 0.080 |
Cd, mg/kg | 1.593 | 0.061 | 0.081 |
Cr, mg/kg | 0.864 | 0.623 | 0.046 |
Cu, mg/kg | 1.598 | 0.069 | 0.082 |
Ni, mg/kg | 0.942 | 0.506 | 0.050 |
Pb, mg/kg | 1.332 | 0.171 | 0.069 |
Zn, mg/kg | 0.770 | 0.744 | 0.041 |
Indices | Kappa Value | Level of Agreement |
---|---|---|
AMBI/BENTIX | −0.078 | Null |
AMBI/BOPA | 0.429 | Moderate |
AMBI/BPI | 0.327 | Low |
AMBI/M-AMBI | 0.596 | Good |
AMBI/Composite index | 0.798 | Very Good |
BENTIX/BOPA | 0.222 | Low |
BENTIX/BPI | 0.348 | Low |
BENTIX/M-AMBI | 0.118 | Very low |
BENTIX/Composite index | 0.118 | Very low |
BOPA/BPI | 0.375 | Low |
BOPA/M-AMBI | 0.238 | Low |
BOPA/Composite index | 0.429 | Moderate |
BPI/M-AMBI | 0.327 | Low |
BPI/Composite index | 0.327 | Low |
M-AMBI/Composite index | 0.798 | Very Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.-H.; Liang, J.; Ma, C.-W. Assessment of Ecological Quality Status in Shellfish Farms in South Korea Using Multiple Benthic Indices. Animals 2025, 15, 2086. https://doi.org/10.3390/ani15142086
Choi S-H, Liang J, Ma C-W. Assessment of Ecological Quality Status in Shellfish Farms in South Korea Using Multiple Benthic Indices. Animals. 2025; 15(14):2086. https://doi.org/10.3390/ani15142086
Chicago/Turabian StyleChoi, Se-Hyun, Jian Liang, and Chae-Woo Ma. 2025. "Assessment of Ecological Quality Status in Shellfish Farms in South Korea Using Multiple Benthic Indices" Animals 15, no. 14: 2086. https://doi.org/10.3390/ani15142086
APA StyleChoi, S.-H., Liang, J., & Ma, C.-W. (2025). Assessment of Ecological Quality Status in Shellfish Farms in South Korea Using Multiple Benthic Indices. Animals, 15(14), 2086. https://doi.org/10.3390/ani15142086