Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Microplastic Processing and Isolation from Mussels
2.2.1. Contamination Prevention and Quality Control
2.2.2. Sample Processing and Microplastic Extraction
2.2.3. Microplastic Separation with Hypersaline Solution and Filtration
2.2.4. Microplastic Identification, Inventory, and Measurement
2.3. Development of a Surrogate Machine Learning Model
3. Results
3.1. Growth Patterns in Mytilus galloprovincialis
3.2. Mussel Biomass and Microplastic Load
3.3. Statistical Analysis
3.4. Lifetime Ingestion Estimate
3.5. Predictive Modelling of Microplastic Accumulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, S.; Cui, Y.; Brahney, J.; Mahowald, N.; Li, Q. Long-distance atmospheric transport of microplastic fibres influenced by their shapes. Nat. Geosci. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- Murano, C.; Palumbo, A.; Leone, S. Toxicological Impacts of Microplastics: Effects on Levels of Cellular Thiols in Mytilus galloprovincialis. Environ. Toxicol. Chem. 2023, 42, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Savuca, A.; Nicoara, M.N.; Faggio, C. Comprehensive Review regarding the Profile of the Microplastic Pollution in the Coastal Area of the Black Sea. Sustainability 2022, 14, 14376. [Google Scholar] [CrossRef]
- Pizzurro, F.; Nerone, E.; Ancora, M.; Domenico, M.D.; Mincarelli, L.F.; Cammà, C.; Salini, R.; Renzo, L.D.; Giacinto, F.D.; Corbau, C.; et al. Exposure of Mytilus Galloprovincialis to Microplastics: Accumulation, Depuration and Evaluation of the Expression Levels of a Selection of Molecular Biomarkers. Animals 2023, 14, 4. [Google Scholar] [CrossRef]
- GFCM. The State of Mediterranean and Black Sea Fisheries 2023; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Mihailov, M.E. Longterm variability of the water mass structure on the Romanian Black Sea shelf. Rom. Rep. Phys. 2016, 68, 377–392. [Google Scholar]
- Churilova, T.; Krivenko, O.; Moncheva, S.; Kremena, S.; Finenko, Z.; Oguz, T.; Akoglu, E.; Timofte, F. The Black Sea: Additional Information on Status of Threatened Ecological Characteristics Relevant to the Marine Strategy Framework Directive Options for Delivering Ecosystem-Based Marine Management. In Project Options for Delivering Ecosystem-Based Marine Management (ODEMM); ODEMM Partners, Ed.; Liverpool University: Liverpool, UK, 2011; Available online: https://edepot.wur.nl/329824 (accessed on 5 June 2025).
- Ramos-Oliveira, C.; Sampaio, L.; Rubal, M.; Veiga, P. Spatial-temporal variability of Mytilus galloprovincialis Lamarck 1819 populations and their accumulated sediment in northern Portugal. PeerJ 2021, 9, e11499. [Google Scholar] [CrossRef]
- Simeonova, A.; Chuturkova, R. Marine litter accumulation along the Bulgarian Black Sea coast: Categories and predominance. Waste Manag. 2019, 84, 182–193. [Google Scholar] [CrossRef]
- Pojar, I.; Stock, F. Microplastics in Surface Waters from the Northwestern Black Sea: An Abundance and Composition Approach. Available online: https://ui.adsabs.harvard.edu/abs/2019EGUGA..21.8357P/abstract (accessed on 5 June 2025).
- Toțoiu, A.; Harcotă, G.E.; Bișinicu, B.; Timofte, F.; Boicenco, B. Distribution of micro- and mesolitter in the southwestern part of the Black Sea. In Marine Litter in the Black Sea; Aytan, U., Pogojeva, M., Simeonova, A., Eds.; Turkish Marine Research Foundation (TUDAV): Istanbul, Turkey, 2020; pp. 208–217. [Google Scholar]
- Berov, D.; Klayn, S. Microplastics and floating litter pollution in Bulgarian Black Sea coastal waters. Mar. Pollut. Bull. 2020, 156, 111225. [Google Scholar] [CrossRef]
- Eryaşar, A.R.; Gedik, K.; Şahin, A.; Çağrı Öztürk, R.; Yılmaz, F. Characteristics and temporal trends of microplastics in the coastal area in the Southern Black Sea over the past decade. Mar. Pollut. Bull. 2021, 173, 112993. [Google Scholar] [CrossRef]
- Demirel Bayık, G.; Aydemir, E. Microplastic pollution in a small fishing port in Zonguldak/Turkey. Environ. Res. Technol. 2023, 6, 13–20. [Google Scholar] [CrossRef]
- Stoica, E.; Atabay, H.; Bat, L.; Ciuca, A.; Creanga, S.; Marin, D.; Öztekin, A.; Tanase, M.; Tolun, L. Marine litter occurrence in the river-influenced Black Sea coast. In Marine Litter in the Black Sea; Aytan, U., Pogojeva, M., Simeonova, A., Eds.; Turkish Marine Research Foundation (TUDAV): Istanbul, Turkey, 2020; pp. 49–62. [Google Scholar]
- Galațchi, M.; Anton, E. Studies regarding the seafloor litter on the Romanian Black Sea coast. In Marine Litter in the Black Sea; Aytan, U., Pogojeva, M., Simeonova, A., Eds.; Turkish Marine Research Foundation (TUDAV): Istanbul, Turkey, 2020; pp. 102–110. [Google Scholar]
- Akkan, T.; Gedik, K.; Mutlu, T. Protracted dynamicity of microplastics in the coastal sediment of the Southeast Black Sea. Mar. Pollut. Bull. 2023, 188, 114722. [Google Scholar] [CrossRef] [PubMed]
- Gedik, K.; Eryaşar, A.R. Microplastic pollution profile of Mediterranean mussels (Mytilus galloprovincialis) collected along the Turkish coasts. Chemosphere 2020, 260, 127570. [Google Scholar] [CrossRef]
- Şentürk, Y.; Esensoy, F.; Öztekin, A.; Aytan, U. Microplastics in bivalves in the southern Black Sea. In Marine Litter in the Black Sea; Aytan, U., Pogojeva, M., Simeonova, A., Eds.; Turkish Marine Research Foundation (TUDAV): Istanbul, Turkey, 2020; pp. 303–313. [Google Scholar]
- Alexandrova, A.; Ignatova–Ivanova, T.; Bachvarova, D.; Toshkova, S.; Doichinov, A.; Ibryamova, S.; Chipev, N. Pilot Screening and Assessment of Microplastic Bioaccumulation in Wedge Clams Donax trunculus Linnaeus, 1758 (Bivalvia) from the Bulgarian Black Sea Coast. Acta Zool. Bulg. 2022, 74, 568–578. [Google Scholar]
- Ibryamova, S.; Toschkova, S.; Bachvarova, D.C.; Lyatif, A.; Stanachkova, E.; Ivanov, R.; Natchev, N.; Ignatova-Ivanova, T. Assessment of the bioaccumulation of microplastics in the Black Sea mussel Mytilus galloprovincialis L., 1819. J. IMAB—Annu. Proceeding (Sci. Pap.) 2022, 28, 4676–4682. [Google Scholar] [CrossRef]
- Pojar, I.; Dobre, O.; Baboș, T.; Lazăr, C. Quantitative Microfiber evaluation in Mytilus galloprovincialis, western Black Sea, Romania. Geo-Eco-Mar. 2022, 28, 65–71. [Google Scholar] [CrossRef]
- Galyon, F.; Ünver Alçay, A. Microplastic contamination in raw mussels collected in Istanbul. Reg. Stud. Mar. Sci. 2023, 68, 103280. [Google Scholar] [CrossRef]
- Cincinelli, A.; Scopetani, C.; Chelazzi, D.; Martellini, T.; Pogojeva, M.; Slobodnik, J. Microplastics in the Black Sea sediments. Sci. Total Environ. 2021, 760, 143898. [Google Scholar] [CrossRef]
- Stamataki, N.; Hatzonikolakis, Y.; Tsiaras, K.; Tsangaris, C.; Petihakis, G.; Sofianos, S.; Triantafyllou, G. Modelling mussel (Mytilus spp.) microplastic accumulation. Ocean Sci. 2020, 16, 927–949. [Google Scholar] [CrossRef]
- Pittura, L.; Avio, C.G.; Giuliani, M.E.; d’Errico, G.; Keiter, S.H.; Cormier, B.; Gorbi, S.; Regoli, F. Microplastics as vehicles of environmental PAHs to marine organisms: Combined chemical and physical hazards to the Mediterranean mussels, Mytilus galloprovincialis. Front. Mar. Sci. 2018, 5, 103. [Google Scholar] [CrossRef]
- Lazăr, L.; Boicenco, L.; Denga, Y. ANEMONE Deliverable 2.2 “Anthropogenic Pressures and Impact on the Black Sea Costal Coastal Ecosystem”; CD Press: Bucharest, Romania, 2021; pp. 18–56. [Google Scholar]
- ArcGIS Desktop 10.7.x. Available online: https://desktop.arcgis.com/en/system-requirements/10.7/arcgis-desktop-system-requirements.htm (accessed on 5 June 2025).
- Galgani, F.; Hanke, G.; Werner, S.; De Vrees, L. Marine litter within the European Marine Strategy Framework Directive. ICES J. Mar. Sci. 2013, 70, 1055–1064. [Google Scholar] [CrossRef]
- Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. 2015, 207, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Barrows, A.; Neumann, C.; Pieper, C.; Berger, M.; Shaw, S. Guide to Microplastics Identification, a Comprehensive Methods Guide for Microplastics Identification and Quantification in the Laboratory; Marine & Environmental Research Institute, Center for Environmental Studies: Blue Hill, ME, USA, 2017; pp. 2–14. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous System v.2.18.1. 2015. Available online: https://www.tensorflow.org/ (accessed on 5 June 2025).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library v.2.6.0. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning. In Proceedings of the 29th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2962–2970. [Google Scholar]
- Adhikari, R.; Agrawal, R. Forecasting Strong Seasonal Time Series with Artificial Neural Networks. J. Sci. Ind. Res. 2012, 71, 657–666. Available online: https://nopr.niscpr.res.in/handle/123456789/14843 (accessed on 5 June 2025).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Georgieva, S.; Stancheva, M.; Makedonski, L. Investigation about the presence of organochlorine pollutants in mussels from the Black Sea, Bulgaria. Ovidius Univ. Ann. Chem. 2016, 27, 8–12. [Google Scholar] [CrossRef]
- Peycheva, K.; Panayotova, V.; Stancheva, R.; Makedonski, L.; Merdzhanova, A.; Cicero, N.; Parrino, V.; Fazio, F. Trace Elements and Omega-3 Fatty Acids of Wild and Farmed Mussels (Mytilus galloprovincialis) Consumed in Bulgaria: Human Health Risks. Int. J. Environ. Res. Public Health 2021, 18, 10023. [Google Scholar] [CrossRef]
- Lettieri, G.; Marinaro, C.; Notariale, R.; Perrone, P.; Lombardi, M.; Trotta, A.; Troisi, J.; Piscopo, M. Impact of heavy metal exposure on Mytilus galloprovincialis spermatozoa: A metabolomic investigation. Metabolites 2023, 13, 943. [Google Scholar] [CrossRef]
- Lettieri, G.; Marinaro, C.; Brogna, C.; Montano, L.; Lombardi, M.; Trotta, A.; Troisi, J.; Piscopo, M. A metabolomic analysis to assess the responses of the male gonads of Mytilus galloprovincialis after heavy metal exposure. Metabolites 2023, 13, 1168. [Google Scholar] [CrossRef]
- Touahri, H.; Boutiba, Z.; Benguedda, W.; Shaposhnikov, S. Active biomonitoring of mussels Mytilus galloprovincialis with integrated use of micronucleus assay and physiological indices to assess harbor pollution. Mar. Pollut. Bull. 2016, 110, 52–64. [Google Scholar] [CrossRef]
- FOCCUS Project. Forecasting and Observing the Open-to-Coastal Ocean for Copernicus Users. Available online: https://foccus-project.eu/ (accessed on 10 May 2025).
- Mihailov, M.E.; Chirosca, A.; Pantea, E.D. Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea. 2025. Available online: https://zenodo.org/records/15612014 (accessed on 1 June 2025).
Label | Name | Latitude | Longitude |
---|---|---|---|
2MAI | 2 Mai resort station | 43.779532 | 28.582378 |
PCT | Constanta harbour | 44.160792 | 28.582378 |
PMD | Midia harbour | 44.342436 | 28.681631 |
PMG | Mangalia harbour | 43.807017 | 28.582175 |
Station | Substrate | Microfibres mm2 | Microfragments mm2 | Micropellets mm2 | Microfilms mm2 |
---|---|---|---|---|---|
2 MAI | calcareous rock substrate | ||||
pontoon metal pillars/plastic ropes | |||||
PCT | ship’s hull | ||||
harbour concrete quay wall | |||||
PMD | harbour concrete quay wall | ||||
PMG | cement block cliff | ||||
pontoon plastic floats |
Label | Value | Label | Value |
---|---|---|---|
0 | rock substrate | 3 | harbour concrete quay wall |
1 | cement block cliff | 4 | pontoon plastic floats |
2 | ship’s hull |
Usage | Name | Description |
---|---|---|
feature | Substrate | The encoded substrate label |
feature | Latitude | The latitude for the measured values |
feature | Longitude | The longitude for the measured values |
feature | Size | Raw mussel size (including shell) in cm |
feature | Microfibres | Detected microfibres in mm2 |
feature | Microfragments | Detected microfragments in mm2 |
feature | Micropellets | Detected micropellets in mm2 |
feature | Microfilms | Detected microfilms in mm2 |
target | age | Mussel age in years |
target | upl | Microplastic concentration in water in |
Station | Microplastics in Water (g/cm3) | ||||||
---|---|---|---|---|---|---|---|
Age (Years) | 0.58 | 0.99 | 1.43 | 1.92 | 2.49 | 3.18 | 4 |
2MAI | |||||||
PCT | |||||||
PMD | |||||||
PMG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihailov, M.E.; Chiroșca, A.V.; Pantea, E.D.; Chiroșca, G. Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea. Sustainability 2025, 17, 5664. https://doi.org/10.3390/su17125664
Mihailov ME, Chiroșca AV, Pantea ED, Chiroșca G. Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea. Sustainability. 2025; 17(12):5664. https://doi.org/10.3390/su17125664
Chicago/Turabian StyleMihailov, Maria Emanuela, Alecsandru Vladimir Chiroșca, Elena Daniela Pantea, and Gianina Chiroșca. 2025. "Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea" Sustainability 17, no. 12: 5664. https://doi.org/10.3390/su17125664
APA StyleMihailov, M. E., Chiroșca, A. V., Pantea, E. D., & Chiroșca, G. (2025). Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea. Sustainability, 17(12), 5664. https://doi.org/10.3390/su17125664