Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Approach
2.2.1. Fishermen’s Perception
- Economic characteristics and evolution of the coastal area.
- Environmental conditions of the coastal area and, in particular, the coastal lagoon.
- Presence and characteristics of marine litter.
2.2.2. Eco-Geomorphology and Litter Monitoring
- Beach: Extending from the seawater line to the line of dune foot and includes the beach wrack, which is the deposition of naturally discarded seaweeds and other organic matter on beaches. Waves and tides are the main controlling factors.
- Incipient foredunes: Corresponding to the embryo dunes characterized by pioneer vegetation (like Agropyron junceum ssp. Mediterraneum—Mediterranean rush grass) and the frontal foredune. These incipient formations represent the early stages of dune development and are situated along the beachfront. They are highly delicate and vulnerable to destruction or damage from storm waves or high tides. This zone is typically dominated by wind action but can also be affected by high tides or winter storms.
- Active semi-stabilized or mobile foredune typically has more vegetation cover than the previous ones. They are located behind the incipient foredunes and correspond to the shifting foredunes colonized by Ammophila arenaria (marram grass), which plays a vital role in developing dune systems. They are generally more resilient to storm waves, while wind is the main predominant factor.
- Fixed dunes: Stabilized and vegetated dunes, generally unaffected by storm waves and wind action, are limited and are usually stable.
- Saltmarshes: Densely vegetated coastal ecosystem between the dune system and the lagoon, usually composed of grasses and other low plants.
2.2.3. Statistical and Spatial Analysis
3. Results
3.1. Perception
3.2. Distribution of the Marine Litter Along the Spit of Boccassette in November 2019
- -
- Beach: About 0.006 items m−2.
- -
- Incipient foredunes: 0.0124 items m−2, twice the beach density.
3.3. Temporal Evolution of the Items
4. Discussion
4.1. Perception of Coastal and Lagoon Degradation
4.2. Processes Related to Marine Litter Distribution
4.2.1. Cross-Shore Processes
4.2.2. Longshore Processes
4.2.3. Sedimentary Budget and Residence Times
4.2.4. Impacts of Marine Litter: Environmental and Socio-Economic Consequences
4.2.5. Implications for Policy and Community Engagement in Marine Litter Management
- Public Involvement in Litter Monitoring and Cleanup: Respondents’ participation in litter collection highlights the community-based monitoring potential for future strategies. As the author of [49] suggested, these strategies should consider local characteristics for efficiency. Fishermen have a dual role: they contribute to marine litter through the accidental loss of fishing items (like EPS fishing boxes or buoys) and are stakeholders in addressing this issue. Involving them in litter reduction strategies, such as designing biodegradable alternatives to polystyrene or participating in programs like Fishing For Litter, could help reduce the impact of fishing-related debris. According to the study of [82], Fishing For Litter is an initiative involving fishermen in removing marine litter from the sea while raising awareness about the environmental impact of marine debris, as noted by the study of [83]. In the Adriatic Sea, the DeFishGear project implemented Fishing for Litter at 15 ports, including Italian ports like Ancona, Chioggia, and Cesenatico. Although initial participation was strong, sustained efforts faced obstacles like limited infrastructure and a lack of long-term funding [82]. Despite these challenges, the program continued in Cesenatico and Slovenian ports, such as Izola and Koper, with support from local cooperation. These examples underscore the need for consistent funding, clear legal frameworks, and collaboration with the fishing industry [82]. Such initiatives could strengthen cooperation between fishermen, local authorities, and environmental organizations. Public awareness and local initiatives: Boosting public participation can address hygiene concerns and foster collective responsibility. The authors of [84] confirm that beach cleaning helps volunteers understand litter’s impact on marine environments and alters their plastic use and disposal behaviors. Their study indicates that cleanup efforts effectively remove large amounts of litter, with organizations collecting around 3000 metric tons annually.
- Beach and Dune System Cleanup: Results indicate beach cleaning efforts must also include dune systems, particularly active foredunes, as litter (mainly plastic and polystyrene) affects sand characteristics and plant species composition by increasing sediment permeability and reducing thermal diffusivity [85]. Therefore, tailored cleaning procedures for dune systems are essential, as improper methods, especially involving citizen volunteers, can harm vegetation and root systems. This requires staff training and user education. For example, the study of [86] recommends restricting access to sand dunes and vegetation for manual litter collection, prohibiting mechanized cleaning in these areas.
- Comprehensive Monitoring Strategies: Robust monitoring systems should cover diverse environments, including dunes and vegetation zones that trap litter. Combining techniques such as remote sensing, citizen science, and field surveys enables cost-effective, ongoing monitoring [87]. These strategies will also enhance the understanding of marine litter distribution [88]. A combined approach using standard beach surveys (e.g., visual in situ census like [12]) with UAV-based surveys may provide a promising solution. Traditional methods provide detailed litter information, whereas UAV surveys are up to 39 times faster [89], enabling the monitoring of remote sites and covering nearly the entire beach, including dune systems, as noted in several studies [33,37,54,82,83,84,85,86,87,88,89,90,91,92]. However, as suggested by the study of [37], standardizing drone-based litter surveys is necessary for comparison across varied coastal environments.
- Integrated Approaches for Improved Understanding: Finally, our results suggest that integrated approaches combining knowledge of beach morphodynamics, marine litter abundance, and environmental factors may enhance our understanding of the spatiotemporal distribution and seasonal variations in marine litter accumulation. Geo-observations (both in situ and remote), coupled with hydrodynamic and particle modeling, can further clarify the relationships among ecology, geomorphology, hydrodynamics, and, ultimately, human activities. For instance, studies on the role of vegetation in trapping marine litter or its impact on plant species [93] could enhance our understanding. Additionally, as suggested by the study of [92], modeling the swash-runup process can help identify locations of marine litter accumulation and estimate the residence time of items within the beach-dune system.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EPS | Expanded Polystyrene |
References
- Galgani, L.; Beiras, R.; Galgani, F.; Panti, C.; Borja, A. Impacts of Marine Litter. Front. Mar. Sci. 2019, 6, 208. [Google Scholar] [CrossRef]
- Law, K.L. Plastics in the Marine. Environ. Annu. Rev. Mar. Sci. 2017, 9, 205–229. [Google Scholar] [CrossRef]
- Fernández García, G.; Asensio-Montesinos, F.; Anfuso, G.; Arenas-Granados, P. Beach Litter Variability According to the Number of Visitors in Cádiz Beaches, SW Spain. J. Mar. Sci. Eng. 2024, 12, 201. [Google Scholar] [CrossRef]
- Slimane, E.B.; Haseler, M.; Ben Abdallah, L.; Mhiri, F.; Nassour, A.; Schernewski, G. Efficient Beach Litter Monitoring: Accelerated Surveys of Pollution Hotspots—A North African Case Study. J. Mar. Sci. Eng. 2025, 13, 71. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A. Plastics and Five Heavy Metals from Sea Beaches: A Geographical Synthesis of the Literary Information. J. Mar. Sci. Eng. 2023, 11, 626. [Google Scholar] [CrossRef]
- Munari, C.; Corbau, C.; Simeoni, U.; Mistri, M. Marine litter on Mediterranean shores: Analysis of composition, spatial distribution and sources in north-western Adriatic beaches. Waste Manag. 2016, 49, 483–490. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N. Marine Litter: Solutions for a Major Environmental Problem. J. Coast. Res. 2019, 201935, 648–663. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean; Kershaw, P.J., Turra, A., Galgani, F., Eds.; GESAMP Reports and Studies; GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection: London, UK, 2019; p. 130. [Google Scholar]
- Van Sebille, E.; Aliani, S.; Lavender Law, K.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef]
- Agamuthu, P.; Mehran, S.; Norkhairah, A.; Norkhairiyah, A. Marine debris: A review of impacts and global initiatives. Waste Manag. Res. 2019, 37, 987–1002. [Google Scholar] [CrossRef]
- Sousa-Guedes, D.; Bessa, F.; Queiruga, A.; Teixeira, L.; Reis, V.; Gonçalves, J.A.; Marco, A.; Sillero, N. Lost and found: Patterns of marine litter accumulation on the remote Island of Santa Luzia, Cabo Verde. Environ. Pol. 2024, 344, 123338. [Google Scholar] [CrossRef]
- Anfuso, G.; José Bolívar-Anillo, H.; Asensio-Montesinos, F.; Portantiolo Manzolli, R.; Portz, L.; Villate Daza, D.-A. Beach litter distribution in Admiralty Bay, King George Island, Antarctica. Mar. Pollut. Bull. 2020, 160, 111657. [Google Scholar] [CrossRef]
- Galgani, F.; Hanke, G.; Werner, S.; De Vrees, L. Marine litter within the European Marine Strategy Framework Directive. ICES J. Mar. Sci. 2013, 70, 1055–1064. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution; Synthesis; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2021. [Google Scholar]
- Sozio, A.; Scarrica, V.M.; Rizzo, A.; Aucelli, P.P.C.; Barracane, G.; Dimuccio, L.A.; Ferreira, R.; La Salandra, M.; Staiano, A.; Tarantino, M.P.; et al. Application of Direct and Indirect Methodologies for Beach Litter Detection in Coastal Environments. Remote Sens. 2024, 16, 3617. [Google Scholar] [CrossRef]
- Fernández-Enríquez, A.; Anfuso, G.; Asensio-Montesinos, F.; Bakaj, A.; Ismailaj, M.; Cobaj, G. Distribution and Composition of Beach Litter along the Ionian Coastline of Albania. Water 2024, 16, 2370. [Google Scholar] [CrossRef]
- Taddia, Y.; Corbau, C.; Zambello, E.; Pellegrinelli, A. UAVs for Structure-From-Motion Coastal Monitoring: A Case Study to Assess the Evolution of Embryo Dunes over a Two-Year Time Frame in the Po River Delta, Italy. Sensors 2019, 19, 1717. [Google Scholar] [CrossRef]
- Ciufegni, E.; Anfuso, G.; Gutiérrez Romero, J.C.; Asensio-Montesinos, F.; Rodríguez Castle, C.; González, C.J.; Álvarez, O. Spatial and Temporal Deposition Rate of Beach Litter in Cadiz Bay (Southwest Spain). Sustainability 2024, 16, 1010. [Google Scholar] [CrossRef]
- Addamo, A.M.; Laroche, P.; Hanke, G. Top Marine Beach Litter Items in Europe; EUR 29249 EN; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-87711-7. [Google Scholar] [CrossRef]
- Vlachogianni, T.; Fortibuoni, T.; Ronchi, F.; Zeri, C.; Mazziotti, C.; Tutman, P.; Varezić, D.B.; Palatinus, A.; Trdan, S.; Peterlin, M.; et al. Marine litter on the beaches of the Adriatic and Ionian Seas: An assessment of their abundance, composition and sources. Mar. Pollu. Bull. 2018, 131, 745–756. [Google Scholar] [CrossRef]
- Sandra, M.; Devriese, L.; De Raedemaecker, F.; Lonneville, B.; Lukic, I.; Altvater, S.; Compa Ferrer, M.; Deudero, S.; Torres Hansjosten, B.; Alomar Mascaró, C.; et al. Knowledge Wave on Marine Litter from Aquaculture Sources; D2.2 Aqua-Lit Project: Oostende, Belgium, 2020; p. 136. [Google Scholar]
- Rizzo, A.; Sozio, A.; Anfusio, G.; La Salandra, M.; Sasso, C. The use of UAV images to assess preliminary relationships between spatial litter distribution and beach morphodynamic trends: The case study of Torre Guaceto beach (Apulia Region, southern Italy). Geog. Fis. Din. Quat. 2022, 45, 237–250. [Google Scholar] [CrossRef]
- Forleo, M.B.; Romagnoli, L. Marine plastic litter: Public perceptions and opinions in Italy. Mar. Pollut. Bull. 2021, 165, 112160. [Google Scholar] [CrossRef]
- Hartley, B.L.; Pahl, S.; Veiga, J.; Vlachogianni, T.; Vasconcelos, L.; Maes, T.; Doyle, T.; d’Arcy Metcalfe, R.; Oztürk, A.A.; Di Berardo, M.; et al. Exploring public views on marine litter in Europe: Perceived causes, consequences and pathways to change. Mar. Pollut. Bull. 2018, 133, 945–955. [Google Scholar] [CrossRef]
- Wootton, N.; Nursey-Bray, M.; Reis-Santos, P.; Gillanders, B.M. Perceptions of plastic pollution in a prominent fishery: Building strategies to inform management. Mar. Pol. 2022, 135, 104846. [Google Scholar] [CrossRef]
- Asensio-Montesinos, F.; Anfuso, G.; Randerson, P.; Williams, A.T. Seasonal comparison of beach litter on Mediterranean coastal sites (Alicante, SE Spain). Ocean Coast. Manag. 2019, 181, 104914. [Google Scholar] [CrossRef]
- Andriolo, U.; Gonçalves, G. Baseline: The octopus pot on the North Atlantic Iberian coast: A plague of plastic on beaches and dunes. Mar. Pollut. Bull. 2023, 192, 115099. [Google Scholar] [CrossRef] [PubMed]
- Skirtun, M.; Sandra, M.; Strietman, W.J.; van den Burg, S.W.K.; De Raedemaecker, F.; Devriese, L.I. Plastic pollution pathways from marine aquaculture practices and potential solutions for the North-East Atlantic region. Mar. Pollut. Bull. 2022, 174, 113178. [Google Scholar] [CrossRef]
- Nardin, W.; Simeoni, U.; Matticchio, B.; Corbau, C. Geomorphological modeling of tidal inlets for sustainable deltaic lagoon management: A case study from the Po River delta, Italy. Ocean Coast. Manag. 2022, 220, 106081. [Google Scholar] [CrossRef]
- Spillman, C.M.; Hamilton, D.P.; Imberger, J. Management strategies to optimise sustainable clam (Tapes philippinarum) harvests in Barbamarco Lagoon, Italy. Est. Coast. Shelf Sci. 2009, 81, 267–278. [Google Scholar] [CrossRef]
- Simeoni, U.; Corbau, C. A review of the Delta Po evolution (Italy) related to climatic changes and human impacts. Geomorphology 2009, 107, 64–71. [Google Scholar] [CrossRef]
- Corbau, C.; Lazarou, A.; Buoninsegni, J.; Olivo, E.; Gazale, V.; Nardin, W.; Simeoni, U.; Carboni, U. Linking marine litter accumulation and beach user perceptions on pocket beaches of Northern Sardinia (Italy). Ocean Coast. Manag. 2022, 232, 106442. [Google Scholar] [CrossRef]
- IDROSER. Progetto di Piano per la Difesa dal Mare e la Riqualificazione Ambientale del Litorale Della Regione Emilia-Romagna Relazione Generale; Regione Emilia-Romagna: Bologna, Italy, 1996. [Google Scholar]
- Ruol, P.; Martinelli, L.; Favaretto, C.; Pinato, T.; Galiazzo, F.; Patti, S.; Anti, U.; Piazza, R.; Simonin, P.; Selvi, G.; et al. Gestione Integrata della zona Costiera Studio e Monitoraggio per la Definizione degli Interventi di Difesa dei Litorali dall’Erosione Nella Regione Veneto—Linee Guida; Regione Veneto: Fondamenta Santa Lucia, Venice, Italy, 2016; p. 335. [Google Scholar]
- Osservatorio Socio Economico della Pesca e dell’Acquacoltura. La Pesca in Veneto, Flotta, Impresa Produzione e Commercio—Anno 2018; Regione del Veneto: Venice, Italy, 2019; 34p, Available online: https://www.venetoagricoltura.org/wp-content/uploads/2019/12/La-pesca-in-Veneto-2018.pdf (accessed on 11 December 2023).
- Gonçalves, G.; Andriolo, U.; Gonçalves, M.S.; Sobral, P.; Bessa, F. Review: Beach litter survey by drones: Mini-review and discussion of a potential standardization. Environ. Poll. 2022, 315, 120370. [Google Scholar] [CrossRef]
- Corbau, C.; Buoninsegni, J.; Olivo, E.; Vaccaro, C.; Nardin, W.; Simeoni, U. Understanding through drone image analysis the interactions between geomorphology, vegetation and marine debris along a sandy spit. Mar. Pollut. Bull. 2023, 187, 114515. [Google Scholar] [CrossRef]
- Fleet, D.; Vlachogianni, T.h.; Hanke, G. A Joint List of Litter Categories for Marine Macrolitter Monitoring; EUR 30348 EN; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-21445-8. [Google Scholar] [CrossRef]
- Lotze, H.K.; Guest, H.; O’Leary, J.; Tudae, A.; Wallace, D. Public perceptions of marine threats and protection from around the world. Ocean Coast. Manag. 2018, 152, 14–22. [Google Scholar] [CrossRef]
- Buckley, P.J.; Pinnegar, J.K.; Painting, S.J.; Terry, G.; Chilvers, J.; Lorenzoni, I.; Gelcich, S.; Duarte, C.M. Ten thousand voices on marine climate change in Europe: Different perceptions among demographic groups and nationalities. Front. Mar. Sci. 2017, 4, 206. [Google Scholar] [CrossRef]
- Gelcich, S.; Buckley, P.; Pinnegar, J.K.; Chilvers, J.; Lorenzoni, I.; Terry, G.; Guerrero, M.; Castilla, J.C.; Valdebenito, A.; Duarte, C.M. Public awareness, concerns, and priorities about anthropogenic impacts on marine environments. Proc. Natl. Acad. Sci. USA 2014, 111, 15042–15047. [Google Scholar] [CrossRef] [PubMed]
- Lucrezi, S. Public perceptions of marine environmental issues: A case study of coastal recreational users in Italy. J. Coast. Conserv. 2022, 26, 52. [Google Scholar] [CrossRef]
- Andriolo, U.; Gonçalves, G. Baseline Is coastal erosion a source of marine litter pollution? Evidence of coastal dunes being a reservoir of plastics. Mar. Pollut. Bull. 2022, 174, 113307. [Google Scholar] [CrossRef]
- Distretto di Pesca Nord Adriatico. Analisi Socio-Economica della Filiera Ittica—Nelle Regioni del Distretto di Pesca Nord Adriatico; Osservatorio Socio Economico della Pesca e dell’Acquacoltura: Venice, Italy, 2016; 15p. [Google Scholar]
- Veneto Agricoltura. LA PESCA IN VENETO, Flotta, Imprese, Produzione e Commercio—2018; Osservatorio Socio Economico della Pesca e dell’Acquacoltura: Venice, Italy, 2018; 34p. [Google Scholar]
- Bettencourt, S.; Freitas, D.N.; Costa, S.; Caeiro, S. Public perceptions, knowledge, responsibilities, and behavior intentions on marine litter: Identifying profiles of small oceanic islands inhabitants. Ocean Coast. Manag. 2023, 231, 106406. [Google Scholar] [CrossRef]
- Seco Pon, J.P.; Becherucci, M.E.; Paterlini, C.-A.; Quadri Adrogué, A.; Castano, M.V.; Zumpano, F.; García, G.O. Perception, knowledge and attitudes towards environmental issues and management among coastal users of the most important beach destination in Argentina. Ocean Coast. Manag. 2022, 220, 106070. [Google Scholar] [CrossRef]
- Rayon-Viña, L.; Miralles, M.; Gómez-Agenjo, E.; Dopico, E.; Garcia-Vazquez, E. Marine litter in south Bay of Biscay: Local differences in beach littering are associated with citizen perception and awareness. Mar. Pollut. Bull. 2018, 131, 727–735. [Google Scholar] [CrossRef]
- Andrady, A.L. Plastics and the Environment; John Wiley and Sons: West Sussex, UK, 2003. [Google Scholar]
- Poeta, G.; Battisti, C.; Acosta, A.T.R. Marine litter in Mediterranean sandy littorals: Spatial distribution patterns along central Italy coastal dunes. Mar. Pollut. Bull. 2014, 89, 168–173. [Google Scholar] [CrossRef]
- Poeta, G.; Fanelli, G.; Pietrelli, L.; Acosta, A.T.R.; Battisti, C. Plastisphere in action: Evidence for an interaction between expanded polystyrene and dunal plants. Environ. Sci. Pollut. Res. 2017, 24, 11856–11859. [Google Scholar] [CrossRef]
- Cresta, E.; Battisti, C. Anthropogenic litter along a coastal-wetland gradient: Reed-bed vegetation in the backdunes may act as a sink for expanded polystyrene. Mar. Pollut. Bull. 2021, 172, 112829. [Google Scholar] [CrossRef] [PubMed]
- Andriolo, U.; Gonçalves, G.; Bessa, F.; Sobral, P. Mapping marine litter on coastal dunes with unmanned aerial systems: A showcase on the Atlantic Coast. Sci. Total Environ. 2020, 736, 139632. [Google Scholar] [CrossRef] [PubMed]
- Di Febbraro, M.; Frate, L.; de Francesco, M.C.; Stanisci, A.; Tozzi, F.P.; Varricchione, M.; Carranza, M.L. Modelling Beach Litter Accumulation on Mediterranean Coastal Landscapes: An Integrative Framework Using Species Distribution Models. Land 2021, 10, 54. [Google Scholar] [CrossRef]
- Mo, A.; D’Antraccoli, M.; Bedini, G.; Ciccarelli, D. The role of plants in the face of marine litter invasion: A case study in an Italian protected area. Mar. Pollut. Bull. 2021, 169, 112544. [Google Scholar] [CrossRef]
- Gallitelli, L.; Battisti, C.; Olivieri, Z.; Marandola, C.; Acosta, A.T.R.; Scalici, M. Carpobrotus spp. patches as trap for litter: Evidence from a Mediterranean beach. Mar. Pollut. Bull. 2021, 173, 113029. [Google Scholar] [CrossRef]
- Olivelli, A.; Hardesty, B.D.; Wilcox, C. Coastal margins and backshores represent a major sink for marine debris: Insights from a continental-scale analysis. Environ. Res. Lett. 2020, 15, 074037. [Google Scholar] [CrossRef]
- De Francesco, M.C.; Carranza, M.L.; Stanisci, A. Beach litter in Mediterranean coastal dunes: An insight on the Adriatic coast (central Italy). Rend. Fis. Acc. Lincei 2018, 29, 825–830. [Google Scholar] [CrossRef]
- De Francesco, M.C.; Carranza, M.L.; Varricchione, M.; Tozzi, F.P.; Stanisci, A. Natural protected areas as special sentinels of littering on coastal dune vegetation. Sustainability 2019, 11, 5446. [Google Scholar] [CrossRef]
- Huntington, T. Marine Litter and Aquaculture Gear—White Paper; Report produced by Poseidon Aquatic Resources Management Ltd for the Aquaculture Stewardship Council; Poseidon Aquatic Resources Management Ltd.: Surrey, UK, 2019; 20p. [Google Scholar]
- GGGI (Global Ghost Gear Initiative). Best Practice Framework for the Management of Aquaculture Gear; Huntington, T., Ed.; Poseidon Aquatic Resources Management Ltd.: Surrey, UK, 2021; 81p plus appendices, Available online: https://repository.oceanbestpractices.org/handle/11329/1728 (accessed on 4 March 2025).
- Menicagli, V.; De Battisti, D.; Balestri, E.; Federigi, I.; Maltagliati, F.; Verani, M.; Castelli, A.; Carducci, A.; Lardicci, C. Impact of storms and proximity to entry points on marine litter and wrack accumulation along Mediterranean beaches: Management implications. Sci. Total Environ. 2022, 824, 153914. [Google Scholar] [CrossRef]
- Masiá, P.; Ardura, A.; Gaitán, M.; Gerber, S.; Rayon-Viña, F.; Garcia-Vazquez, E. Maritime ports and beach management as sources of coastal macro-, meso-, and microplastic pollution. Environ. Sci. Pollut. Res. 2021, 28, 30722–30731. [Google Scholar] [CrossRef]
- Turner, A.; Amos, S.L.; Williams, T. Coastal dunes as a sink and secondary source of marine plastics: A study at Perran Beach, southwest England. Mar. Pollut. Bull. 2021, 173, 113113. [Google Scholar] [CrossRef]
- Lincoln, S.; Andrews, B.; Birchenough, S.N.R.; Chowdhury, P.; Engelhard, G.H.; Harrod, O.; Pinnegar, J.K.; Townhill, B.L. Marine litter and climate change: Inextricably connected threats to the world’s oceans. Sci. Total Environ. 2022, 837, 155709. [Google Scholar] [CrossRef]
- Beaumont, N.J.; Aanesen, M.; Austen, M.C.; Börger, T.; Clark, J.R.; Cole, M.; Hooper, T.; Lindeque, P.K.; Pascoe, C.; Wyles, K.J. Viewpoint: Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 2019, 142, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Mooser, A.; Anfuso, G.; Mestanza, C.; Williams, A.T. Management Implications for the Most Attractive Scenic Sites along the Andalusia Coast (SW Spain). Sustainability 2018, 10, 1328. [Google Scholar] [CrossRef]
- Heo, N.W.; Hong, S.H.; Han, G.M.; Hong, S.; Lee, J.; Song, Y.K.; Jang, M.; Shim, W.J. Distribution of small plastic debris in cross-section and high strandline on Heungnam beach, South Korea. Ocean Sci. J. 2013, 48, 225–233. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Eo, S.; Han, G.M.; Shim, W.J. Rapid Production of Micro- and Nanoplastics by Fragmentation of Expanded Polystyrene Exposed to Sunlight. Environ. Sci. Technol. 2020, 54, 11191–11200. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Gonçalves, J.; Bebianno, M.J. Nanoplastics impact on marine biota: A review. Environ. Poll. 2021, 273, 116426. [Google Scholar] [CrossRef]
- Kokilathasan, N.; Dittrich, M. Review: Nanoplastics: Detection and impacts in aquatic environments—A review. Sci. Total Environ. 2022, 849, 157852. [Google Scholar] [CrossRef]
- Li, Z.; Yan, L.; Junaid, M.; Chen, X.; Liao, H.; Gao, D.; Wang, Q.; Zhang, Y.; Wang, J. Impacts of polystyrene nanoplastics at the environmentally relevant and sub-lethal concentrations on the oxidative stress, immune responses, and gut microbiota to grass carp (Ctenopharyngodon idella). J. Hazard. Mat. 2023, 441, 129995. [Google Scholar] [CrossRef]
- Mofijur, M.; Ahmed, S.F.; Ashrafur Rahman, S.M.; Yasir Arafat Siddiki, S.K.; Saiful Islam, A.B.M.; Shahabuddin, M.; Ong, H.C.; Mahlia, T.M.I.; Djavanroodi, F.; Show, P.L. Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: Socio-economic impact and management strategies. Environ. Res. 2021, 195, 110857. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Liu, Z.; Yu, B.; Zhang, Y.; Yang, H.; Han, Y.; Wang, B.; Liu, Z.; Zhang, H. Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms. Sci. Total Environ. 2024, 906, 167404. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, M.; Lin, C.; Tu, C.; Zhang, C.; Xu, S.; Yang, H. Association of heavy metals with plastics used in aquaculture. Mar. Pollut. Bull. 2022, 174, 163573. [Google Scholar] [CrossRef] [PubMed]
- Gallitelli, L.; Battisti, C.; Scalic, M. Dunal plants intercepting macrolitter: Implications for beach clean-ups. Mar. Pollut. Bull. 2023, 187, 114585. [Google Scholar] [CrossRef]
- Ronchi, F.; Galgani, F.; Binda, F.; Mandić, M.; Peterlin, M.; Tutman, P.; Anastasopoulou, A.; Fortibuoni, T. Fishing for Litter in the Adriatic-Ionian macroregion (Mediterranean Sea): Strengths, weaknesses, opportunities and threats. Mar. Pol. 2019, 100, 226–237. [Google Scholar] [CrossRef]
- Wyles, K.J.; Pahl, S.; Carroll, L.; Thompson, R.C. An evaluation of the Fishing For Litter (FFL) scheme in the UK in terms of attitudes, behavior, barriers and opportunities. Mar. Pollut. Bull. 2019, 144, 48–60. [Google Scholar] [CrossRef]
- Nelms, S.E.; Easman, E.; Anderson, N.; Berg, M.; Coates, S.; Crosby, A.; Eisfeld-Pierantonio, S.; Eyles, L.; Flux, T.; Gilford, E.; et al. The role of citizen science in addressing plastic pollution: Challenges and opportunities. Environ. Sci. Pol. 2022, 128, 14–23. [Google Scholar] [CrossRef]
- Šilc, U.; Küzmič, F.; Caković, D.; Stešević, D. Beach litter along various sand dune habitats in the southern Adriatic (E Mediterranean). Mar. Pollut. Bull. 2018, 128, 353–360. [Google Scholar] [CrossRef] [PubMed]
- ERA (Environment & Resouces Authority). Operating Procedures on Beach Cleaning; Environment and Resources Authority: Marsa, Malta, 2017; 12p, Available online: https://era.org.mt/operating-procedures-on-beach-cleaning/ (accessed on 17 October 2024).
- Veettil, B.K.; Quan, N.H.; Hauser, L.T.; Van, D.D.; Quang, N.Z. Coastal and marine plastic litter monitoring using re54mote sensing: A review. Estuar. Coast. Shelf Sci. 2022, 279, 108160. [Google Scholar] [CrossRef]
- Maximenko, N.; Corradi, P.; Law, K.L.; Sebille, E.V.; Garaba, S.P.; Lampitt, R.S.; Galgani, F.; Martinez-Vicente, V.; Goddijn-Murphy, L.; Veiga, J.M.; et al. Towards the integrated marine debris observing system. Front. Mar. Sci. 2019, 6, 447. [Google Scholar] [CrossRef]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef]
- Andriolo, U.; Topouzelis, K.; van Emmerik, T.H.M.; Papakonstantinou, A.; Monteiro, J.G.; Isobe, A.; Hidaka, M.; Kako, S.; Kataoka, T.; Gonçalves, G. Baseline: Drones for litter monitoring on coasts and rivers: Suitable flight altitude and image resolution. Mar. Pollut. Bull. 2023, 195, 115521. [Google Scholar] [CrossRef]
- Merlino, S.; Paterni, M.; Berton, A.; Massetti, L. Unmanned Aerial Vehicles for Debris Survey in Coastal Areas: Long-Term Monitoring Programme to Study Spatial and Temporal Accumulation of the Dynamics of Beached Marine Litter. Rem. Sens. 2020, 12, 1260. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Mapping marine litter using UAS on a beach-dune system: A multidisciplinary approach. Sci. Total Environ. 2020, 706, 135742. [Google Scholar] [CrossRef]
- Calderisi, G.; Cogoni, D.; Loni, A.; Fenu, G. Difference between invasive alien and native vegetation in trapping beach litter: A focus on a typical sandy beach of W-Mediterranean Basin. Mar. Pollut. Bull. 2023, 192, 115065. [Google Scholar] [CrossRef]
Theme | Description |
---|---|
Fishing and Aquaculture | Trends in fishing activity and perception of aquaculture practices. |
Environmental Conditions | Observed changes in coastal and lagoon ecosystems over the past five years. |
Ecosystem Functions | Importance of dunes and lagoons for biodiversity and natural protection. |
Marine Litter | Presence, sources, and types of litter encountered in the area. |
Cleanup Participation | Individual involvement in cleanup or restoration activities. |
Perceived Changes | Awareness of natural vs. anthropogenic transformations in the coastal area. |
Item/Landform | Controlling Factors or Notes | |
---|---|---|
Foamed polystyrene fragment (EPS fragment), with a dimension ranging from 20 to 60 cm, in 2019 | correspond to the items ID code G83 and G82 [39] | |
EPS fishing boxes used for packaging fish or other seafood. They are sometimes “clear” or partially filled with sand. | ID code G58 [39] | |
Buoys, floating devices that serve as navigation marks, marking reefs or other hazards, and mooring locations. They can be anchored (stationary) or allowed to drift with ocean currents. | ID code G63 [39] | |
Beach: This includes the beach extending from the wet/dry shoreline to the embryonic dunes. | Controlling factors: Waves, tides, and wind | |
Incipient foredunes include embryonic dunes and the first frontal active foredune. | Controlling factors: Wind and, secondarily, high tides or winter storms. | |
Semi-stabilized or mobile foredunes, located behind the incipient foredunes. | Controlling factors: Wind | |
Fixed dunes, more stable than the previous ones. This class also includes areas characterized by the presence of scrub and woodland. | Controlling factors: Limited wind action. | |
Saltmarshes are classified as lagoon edge saltmarshes. | Controlling factors: Tidal currents, which govern their evolution |
Do You Believe That in the Last 5 Years | Increasing | Stable | Reducing | No Idea |
---|---|---|---|---|
Fishermen are | 22 (13%) | 47 (27%) | 66 (38%) | 37 (22%) |
The quantity of fish is | 30 (17%) | 23 (13%) | 96 (56%) | 23 (13%) |
Fish farming is | 78 (45%) | 46 (27%) | 15 (9%) | 33 (19%) |
Mollusk farming is | 77 (45%) | 50 (29%) | 15 (9%) | 30 (17%) |
Hunting activities are | 19 | 46 | 76 | 31 |
Tourism activities are | 122 (71%) | 35 20(%) | 10 (6%) | 5 (3%) |
From an Environmental Point of View, Do You Believe That in the Last 5 Years | Better | Stable | More Degraded | No Idea |
---|---|---|---|---|
The lagoons are | 10 (6%) | 17 (10%) | 131 (76%) | 14 (8%) |
The beaches are | 14 (8%) | 45 (26%) | 108 (63%) | 5 (3%) |
The coastal dunes | 6 (3%) | 23 (13%) | 114 (66%) | 29 (17%) |
Fishing Box | Fragment | Buoy | Area | Fishing Box | Fragment | Buoy | Total | |
---|---|---|---|---|---|---|---|---|
Number | % | Num items/m2 | ||||||
Beach | 149 | 287 | 47 | 12.2 | 0.0019 | 0.0036 | 0.0006 | 0.0061 |
Incipient foredune | 289 | 254 | 37 | 7.2 | 0.0062 | 0.0054 | 0.0008 | 0.0124 |
Mobile foredune | 496 | 210 | 23 | 6.4 | 0.0119 | 0.0050 | 0.0006 | 0.0175 |
Fixed dune | 198 | 106 | 10 | 27.9 | 0.0011 | 0.0006 | 0.0001 | 0.0017 |
Saltmarsh | 223 | 111 | 22 | 38.7 | 0.0009 | 0.004 | 0.0001 | 0.0014 |
Wash over | 64 | 57 | 3 | 7.6 | 0.0013 | 0.0012 | 0.0001 | 0.0025 |
Total | 1419 | 1025 | 144 | 0.0022 | 0.0016 | 0.0002 | 0.0040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbau, C.; Lazarou, A.; Simeoni, U. Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives. J. Mar. Sci. Eng. 2025, 13, 1351. https://doi.org/10.3390/jmse13071351
Corbau C, Lazarou A, Simeoni U. Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives. Journal of Marine Science and Engineering. 2025; 13(7):1351. https://doi.org/10.3390/jmse13071351
Chicago/Turabian StyleCorbau, Corinne, Alexandre Lazarou, and Umberto Simeoni. 2025. "Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives" Journal of Marine Science and Engineering 13, no. 7: 1351. https://doi.org/10.3390/jmse13071351
APA StyleCorbau, C., Lazarou, A., & Simeoni, U. (2025). Fishing-Related Plastic Pollution on Bocassette Spit (Northern Adriatic): Distribution Patterns and Stakeholder Perspectives. Journal of Marine Science and Engineering, 13(7), 1351. https://doi.org/10.3390/jmse13071351