Modeling Unveils How Kleptoplastidy Affects Mixotrophy Boosting Algal Blooms
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Model
3.1.1. Background of the Model
3.1.2. Monod’s Equation and the Maximum Cell Division Rate
3.1.3. Biological Time
3.1.4. Thought Experiments
First Experiment: Autotrophy
Second Experiment: Heterotrophy
Third Experiment: Mixotrophy
3.2. Kleptoplastidy Index
3.3. A Case Study
3.3.1. Background
3.3.2. The Maximum Division Rate and Kleptoplastidy Index
- (1)
- The environment is inorganic-resource-rich, but it contains no organic resources. In this case, the division rate is divisions per day.
- (2)
- The environment is organic-resource-rich, but it contains no inorganic resources. In this case, the division rate is divisions per day.
- (3)
- The environment is rich in both resources, but kleptoplastidy is suppressed. In this case, the division rate is divisions per day.
- (4)
- The environment is rich in both resources, and kleptoplastidy is operational. In this case, the division rate is division per day.
4. Discussion
4.1. Interpretation of the Main Findings
4.2. Advantages and Limitations of the Study
4.3. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
HABs | Harmful algae blooms |
References
- Stoecker, D.K.; Hansen, P.J.; Caron, D.A.; Mitra, A. Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 2017, 9, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Glibert, P.M. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 2020, 91, 101583. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.J.; Kang, H.C.; Lim, A.S.; Jang, S.H.; Lee, K.; Lee, S.Y.; Ok, J.H.; You, J.H.; Kim, J.H.; Lee, K.H.; et al. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 2021, 7, 4214. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Caron, D.A.; Faure, E.; Flynn, K.J.; Leles, S.G.; Hansen, P.J.; McManus, G.B.; Not, F.; Gomes, H.D.R.; Santoferrara, L.F.; et al. The Mixoplankton Database–diversity of photo-phago-trophic plankton in form, function and distribution across the global ocean. J. Eukar. Microbiol. 2023, 70, e12972. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Caron, D.A.; Faure, E.; Flynn, K.J.; Leles, S.G.; Hansen, P.J.; McManus, G.B.; Not, F.; Gomes, H.D.R.; Santoferrara, L.F.; et al. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition; incorporation of diverse mixotrophic strategies. Protist 2016, 167, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Flynn, K.J.; Mitra, A.; Anestis, K.; Anschütz, A.A.; Calbet, A.; Ferreira, G.D.; Gypens, N.; Hansen, P.J.; John, U.; Martin, J.L.; et al. Mixotrophic protists and a new paradigm for marine ecology: Where does plankton research go now? J. Plankton Res. 2019, 41, 375–391. [Google Scholar] [CrossRef]
- Glibert, P.M. More than propagule pressure: Successful invading algae have physiological adaptations suitable to anthropogenically changing nutrient environments. Aquat. Ecosyst. Health Manag. 2015, 18, 334–341. [Google Scholar] [CrossRef]
- Telesh, I.V.; Schubert, H.; Skarlato, S.O. Ecological niche partitioning of the invasive dinoflagellate Prorocentrum minimum and its native congeners in the Baltic Sea. Harmful Algae 2016, 59, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Telesh, I.; Schubert, H.; Skarlato, S. Ecological niches of bloom-forming cyanobacteria in brackish Baltic Sea coastal waters. Estuar. Coast. Shelf Sci. 2023, 295, 108571. [Google Scholar] [CrossRef]
- Telesh, I.; Schubert, H.; Skarlato, S. Wide ecological niches ensure frequent harmful dinoflagellate blooms. Heliyon 2024, 10, e26495. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.R.; Berdalet, E.; Kudela, R.M.; Cusack, C.K.; Silke, J.; O’Rourke, E.; Dugan, D.; McCammon, M.; Newton, J.A.; Moore, S.K.; et al. Scaling up from regional case studies to a global Harmful Algal Bloom observing system. Front. Mar. Sci. 2019, 6, 250. [Google Scholar] [CrossRef]
- Carstensen, J.; Conley, D.J.; Almroth-Rosell, E.; Asmala, E.; Bonsdorff, E.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Gustafsson, C.; Heiskanen, A.-S.; Janas, U.; et al. Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio 2020, 49, 1194–1210. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.-Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef] [PubMed]
- Karlson, B.; Andersen, P.; Arneborg, L.; Cembella, A.; Eikrem, W.; John, U.; West, J.J.; Klemm, K.; Kobos, J.; Lehtinen, S.; et al. Harmful algal blooms and their effects in coastal seas of Northern Europe. Harmful Algae 2021, 102, 101989. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.R.; Lilley, M.; Shutler, J.; Lowe, C.; Artioli, Y.; Torres, R.; Berdalet, E.; Tyler, C.R. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev. Aquacult. 2020, 12, 1663–1688. [Google Scholar] [CrossRef]
- Brown, A.R.; Lilley, M.; Shutler, J.; Lowe, C.; Artioli, Y.; Torres, R.; Berdalet, E.; Tyler, C.R. Marine harmful algal blooms (HABs) in the United States: History, current status and future trends. Harmful Algae 2021, 102, 101975. [Google Scholar] [CrossRef] [PubMed]
- Rattner, B.A.; Wazniak, C.E.; Lankton, J.S.; McGowan, P.C.; Drovetski, S.V.; Egerton, T.A. Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay region. Harmful Algae 2020, 120, 102319. [Google Scholar] [CrossRef] [PubMed]
- Rumpho, M.E.; Dastoor, F.P.; Manhart, J.R.; Lee, J. The Kleptoplast. In The Structure and Function of Plastids; Wise, R.R., Hoober, J.K., Eds.; Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2007; Volume 23. [Google Scholar] [CrossRef]
- Millette, N.C.; Gast, R.J.; Luo, J.Y.; Moeller, H.V.; Stamieszkin, K.; Andersen, K.H.; Brownlee, E.F.; Cohen, N.R.; Duhamel, S.; Dutkiewicz, S.; et al. Mixoplankton and mixotrophy: Future research priorities. J. Plankton Res. 2023, 45, 576–596. [Google Scholar] [CrossRef] [PubMed]
- Skarlato, S.; Filatova, N.; Knyazev, N.; Berdieva, M.; Telesh, I. Salinity stress response of the invasive dinoflagellate Prorocentrum minimum. Estuar. Coast. Shelf Sci. 2018, 211, 199–207. [Google Scholar] [CrossRef]
- Skarlato, S.O.; Telesh, I.V.; Matantseva, O.V.; Pozdnyakov, I.A.; Berdieva, M.A.; Schubert, H.; Filatova, N.A.; Knyazev, N.A.; Pechkovskaya, S.A. Studies of bloom-forming dinoflagellates Prorocentrum minimum in fluctuating environment: Contribution to aquatic ecology, cell biology and invasion theory. Protistology 2018, 12, 113–157. [Google Scholar] [CrossRef]
- Telesh, I.V.; Schubert, H.; Joehnk, K.D.; Heerkloss, R.; Schumann, R.; Feike, M.; Schoor, A.; Skarlato, S.O. Chaos theory discloses triggers and drivers of plankton dynamics in stable environment. Sci. Rep. 2019, 9, 20351. [Google Scholar] [CrossRef] [PubMed]
- Telesh, I.; Schubert, H.; Skarlato, S. Abiotic stability promotes dinoflagellate blooms in marine coastal ecosystems. Estuar. Coast. Shelf Sci. 2021, 251, 107239. [Google Scholar] [CrossRef]
- Glibert, P.M.; Allen, J.I.; Bouwman, A.F.; Brown, C.W.; Flynn, K.J.; Lewitus, A.J.; Madden, C.J. Modeling of HABs and eutrophication: Status, advances, challenges. J. Mar. Syst. 2010, 83, 262–275. [Google Scholar] [CrossRef]
- Mitra, A.; Flynn, K.J.; Burkholder, J.M.; Berge, T.; Calbet, A.; Raven, J.A.; Granéli, E.; Glibert, P.M.; Hansen, P.J.; Stoecker, D.K.; et al. The role of mixotrophic protists in the biological carbon pump. Biogeosciences 2014, 11, 995–1005. [Google Scholar] [CrossRef]
- Berge, T.; Chakraborty, S.; Hansen, P.; Andersen, K. Modeling succession of key resource-harvesting traits of mixotrophic plankton. ISME J. 2017, 11, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Salvador, J.A.; Davidson, K.; Sourisseau, M.; Revilla, M.; Schmidt, W.; Clarke, D.; Miller, P.I.; Arce, P.; Fernández, R.; Maman, L.; et al. Current status of forecasting toxic harmful algae for the North-East Atlantic shellfish aquaculture industry. Front. Mar. Sci. 2021, 8, 666583. [Google Scholar] [CrossRef]
- Horemans, D.M.L.; Friedrichs, M.A.M.; St-Laurent, P.; Hood, R.R.; Brown, C.W. Forecasting Prorocentrum minimum blooms in the Chesapeake Bay using empirical habitat models. Front. Mar. Sci. 2023, 10, 1127649. [Google Scholar] [CrossRef]
- Medvinsky, A.B.; Nurieva, N.I.; Adamovich, B.V.; Radchikova, N.P.; Rusakov, A.V. Direct input of monitoring data into a mechanistic ecological model as a way to identify the phytoplankton growth-rate response to temperature variations. Sci. Rep. 2023, 13, 10124. [Google Scholar] [CrossRef] [PubMed]
- Cagle, S.E.; Roelke, D.L. Chaotic mixotroph dynamics arise with nutrient loading: Implications for mixotrophy as a harmful bloom forming mechanism. Ecol. Model. 2024, 492, 110714. [Google Scholar] [CrossRef]
- Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef]
- Heil, C.A. Influence of humic, fulvic and hydrophilic acids on the growth, photosynthesis and respiration of the dinoflagellate Prorocentrum minimum (Pavillard) Schiller. Harmful Algae 2005, 4, 603–618. [Google Scholar] [CrossRef]
- Jeong, H.J.; Yoo, Y.D.; Kim, J.S.; Seong, K.A.; Kang, N.S.; Kim, T.H. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 2010, 45, 65–91. [Google Scholar] [CrossRef]
- Matantseva, O.; Skarlato, S.; Vogts, A.; Pozdnyakov, I.; Liskow, I.; Schubert, H.; Voss, M. Superposition of individual activities: Urea-mediated suppression of nitrate uptake in the dinoflagellate Prorocentrum minimum revealed at the population and single-cell levels. Front. Microbiol. 2016, 7, 1310. [Google Scholar] [CrossRef] [PubMed]
- Matantseva, O.; Pozdnyakov, I.; Voss, M.; Liskow, I.; Skarlato, S. The uncoupled assimilation of carbon and nitrogen from urea and glycine by the bloom-forming dinoflagellate Prorocentrum minimum. Protist 2018, 169, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Khanaychenko, A.N.; Telesh, I.V.; Skarlato, S.O. Bloom-forming potentially toxic dinoflagellates Prorocentrum cordatum in marine plankton food webs. Protistology 2019, 13, 95–125. [Google Scholar] [CrossRef]
- León, J.A.; Tumpson, D.B. Competition between two species for two complementary or substitutable resources. J. Theor. Biol. 1975, 50, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Kachanov, L.M. Introduction to Continuum Damage Mechanics, 1st ed.; Springer: Dordrecht, The Netherlands, 1986. [Google Scholar] [CrossRef]
- Nishitani, G.; Nagai, S.; Hayakawa, S.; Kosaka, Y.; Sakurada, K.; Kamiyama, T.; Gojobori, T. Multiple plastids collected by the dinoflagellate Dinophysis mitra through kleptoplastidy. Appl. Environ. Microbiol. 2011, 78, 813. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, K.; Vayenos, D.; Kotakis, C.; Gast, R.J.; Papageorgiou, G.C. The extraordinary longevity of kleptoplasts derived from the Ross Sea haptophyte Phaeocystis antarctica within dinoflagellate host cells relates to the diminished role of the oxygen-evolving Photosystem II and to supplementary light harvesting by mycosporine-like amino acid/s. Biochim. Biophys. Acta 2017, 1858, 189–195. [Google Scholar] [CrossRef]
- Cruz, S.; Cartaxana, P. Kleptoplasty: Getting away with stolen chloroplasts. PLoS Biol. 2022, 20, e3001857. [Google Scholar] [CrossRef] [PubMed]
- Jesus, B.; Jauffrais, T.; Trampe, E.C.; Goessling, J.W.; Lekieffre, C.; Meibom, A.; Kuhl, M.; Geslin, E. Kleptoplast distribution, photosynthetic efficiency and sequestration mechanisms in intertidal benthic foraminifera. ISME J. 2022, 16, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.E.; Zlatogursky, V.V.; Onuţ-Brännström, I.; Walraven, A.; Foster, R.A.; Burki, F. A novel kleptoplastidic symbiosis revealed in the marine centrohelid Meringosphaera with evidence of genetic integration. Curr. Biol. 2023, 33, 3571–3584. [Google Scholar] [CrossRef] [PubMed]
- Skarlato, S.O.; Telesh, I.V. Kleptoplastidy as a principal driver of mixotrophy in bloom-forming dinoflagellates. Protistology 2024, 18, 286–292. [Google Scholar] [CrossRef]
- Cacuci, D.G. Sensitivity and Uncertainty Analysis: Theory; Chapman & Hall: New York, NY, USA, 2003; Volume 1. [Google Scholar] [CrossRef]
- García-Oliva, O.; Wirtz, K. The complex structure of aquatic food webs emerges from a few assembly rules. Nat. Ecol. Evol. 2025, 9, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.S.; Pinke, A.; Read, E.; Röblitz, S.; Sadhu, S.; Subbey, S. Exploring multistability in marine ecosystems: Insights from food web model dynamics. Ecol. Model. 2025, 508, 111245. [Google Scholar] [CrossRef]
Symbol | Description | Units |
---|---|---|
A generic division rate of the protist | day−1 | |
The protist division rate measured in the first thought experiment | day−1 | |
The protist division rate measured in the second thought experiment | day−1 | |
The protist division rate measured in the third thought experiment | day−1 | |
A generic maximum division rate of the protist | day−1 | |
The maximum protist division rate due to inorganic resources | day−1 | |
The maximum protist division rate due to organic resources | day−1 | |
The maximum protist division rate due to inorganic and organic resources in the presence of kleptoplastidy | day−1 | |
The concentration of a generic resource | µg L–1 | |
The concentration of an inorganic resource | µg L–1 | |
The concentration of an organic resource | µg L–1 | |
A generic half-saturation constant | µg L–1 | |
The half-saturation constant for inorganic resources | µg L–1 | |
The half-saturation constant for organic resources | µg L–1 | |
The normalized concentration of a generic resource | none | |
The normalized concentration of an inorganic resource | none | |
The normalized concentration of an organic resource | none | |
Biological time | none | |
t | Time | days |
T | The time interval between two divisions of the protist | days |
τ | The time interval for digesting one prey cell by the protist | days |
The mass of chloroplasts in one prey cell | µg | |
The mass of native chloroplasts in the protist | µg | |
The maximum division rate of the protist due to a unit native chloroplast mass | µg–1 day–1 | |
The maximum division rate of the protist due to a unit kleptoplast mass | µg–1 day–1 | |
The maximum division rate of the protist due to a unit kleptoplast mass normalized by that of the native chloroplasts | none | |
The phenomenological parameter representing the acceleration of the maximum division rate due to kleptoplastidy | µg–1 day–2 | |
k | Kleptoplastidy index | none |
α | The photosynthetic contribution of kleptoplasts normalized by that of native chloroplasts | none |
σ | The balance parameter between the autotrophic and heterotrophic feeding modes of the reference protist | none |
The volume of the chloroplasts of one prey cell | µm3 | |
The volume of the chloroplasts of the protist | µm3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telesh, I.V.; Rodin, G.J.; Schubert, H.; Skarlato, S.O. Modeling Unveils How Kleptoplastidy Affects Mixotrophy Boosting Algal Blooms. Biology 2025, 14, 900. https://doi.org/10.3390/biology14070900
Telesh IV, Rodin GJ, Schubert H, Skarlato SO. Modeling Unveils How Kleptoplastidy Affects Mixotrophy Boosting Algal Blooms. Biology. 2025; 14(7):900. https://doi.org/10.3390/biology14070900
Chicago/Turabian StyleTelesh, Irena V., Gregory J. Rodin, Hendrik Schubert, and Sergei O. Skarlato. 2025. "Modeling Unveils How Kleptoplastidy Affects Mixotrophy Boosting Algal Blooms" Biology 14, no. 7: 900. https://doi.org/10.3390/biology14070900
APA StyleTelesh, I. V., Rodin, G. J., Schubert, H., & Skarlato, S. O. (2025). Modeling Unveils How Kleptoplastidy Affects Mixotrophy Boosting Algal Blooms. Biology, 14(7), 900. https://doi.org/10.3390/biology14070900