Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = marine anthropogenic litter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 21422 KiB  
Article
Machine Learning Approaches for Microplastic Pollution Analysis in Mytilus galloprovincialis in the Western Black Sea
by Maria Emanuela Mihailov, Alecsandru Vladimir Chiroșca, Elena Daniela Pantea and Gianina Chiroșca
Sustainability 2025, 17(12), 5664; https://doi.org/10.3390/su17125664 - 19 Jun 2025
Viewed by 563
Abstract
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this [...] Read more.
Microplastic pollution presents a significant and rising risk to both ecological integrity and the long-term viability of economic activities reliant on marine ecosystems. The Black Sea, a region sustaining economic sectors such as fisheries, tourism, and maritime transport, is increasingly vulnerable to this form of contamination. Mytilus galloprovincialis, a well-established bioindicator, accumulates microplastics, providing a direct measure of environmental pollution and indicating potential economic consequences deriving from degraded ecosystem services. While previous studies have documented microplastic pollution in the Black Sea, our paper specifically quantified microplastic contamination in M. galloprovincialis collected from four sites along the western Black Sea coast, each characterised by distinct levels of anthropogenic influence: Midia Port, Constanta Port, Mangalia Port, and 2 Mai. We used statistical analysis to quantify site-specific microplastic contamination in M. galloprovincialis and employed machine learning to develop models predicting accumulation patterns based on environmental variables. Our findings demonstrate the efficacy of mussels as bioindicators of marine plastic pollution and highlight the utility of machine learning in developing effective predictive tools for monitoring and managing marine litter contamination in marine environments, thereby contributing to sustainable economic practices. Full article
(This article belongs to the Special Issue Environment and Sustainable Economic Growth, 2nd Edition)
Show Figures

Figure 1

22 pages, 6458 KiB  
Article
A Citizen Science Approach to Supporting Environmental Sustainability and Marine Litter Monitoring: A Case Study of USV Mapping of the Distribution of Anthropogenic Debris on Italian Sandy Beaches
by Silvia Merlino, Marco Paterni, Luciano Massetti, Luca Cocchi and Marina Locritani
Sustainability 2025, 17(11), 5048; https://doi.org/10.3390/su17115048 - 30 May 2025
Cited by 1 | Viewed by 538
Abstract
Research on the dynamic mechanisms driving the accumulation of anthropogenic marine debris (AMD) in highly dynamic environments, such as extensive sandy beaches, remains limited. Unmanned aerial vehicles (UAVs) can be used to map macro-marine litter in these environments over large temporal and spatial [...] Read more.
Research on the dynamic mechanisms driving the accumulation of anthropogenic marine debris (AMD) in highly dynamic environments, such as extensive sandy beaches, remains limited. Unmanned aerial vehicles (UAVs) can be used to map macro-marine litter in these environments over large temporal and spatial scales, but several challenges remain in their interpretation. In this study, secondary school students participated in a citizen science initiative, during which they identified, marked, and classified waste items using a series of UAV orthophotos collected along an 800 m extended Italian beach in different seasons. A specific training program and a collection of working tools were developed to support these activities, which were carried out under the constraints imposed by the COVID-19 pandemic. The accuracy of the citizen science approach was evaluated by comparing its results with standard in situ visual census surveys conducted in the same area. This methodology not only enabled an analysis of the temporal dynamics of AMD accumulation but also served an important educational function. The effectiveness of the learning experience was estimated using pre- and post-activity questionnaires. The results indicate a clear improvement in the students’ knowledge, interest, and awareness regarding marine litter, highlighting the potential of citizen science to both support environmental monitoring and promote sustainability education among younger generations. Full article
Show Figures

Figure 1

25 pages, 428 KiB  
Review
Can Phthalates Be Considered as Microplastic Tracers in the Mediterranean Marine Environment?
by Giuseppa Di Bella, Ambrogina Albergamo, Federica Litrenta, Vincenzo Lo Turco and Angela Giorgia Potortì
Environments 2024, 11(12), 267; https://doi.org/10.3390/environments11120267 - 22 Nov 2024
Cited by 4 | Viewed by 1822
Abstract
Plastics are a major environmental concern, not only because of their uncontrolled dispersion in the environment, but also because of their release of chemical additives, such as phthalates (PAEs), particularly in water bodies. Key land–water interfaces, such as coastal zones, has always represented [...] Read more.
Plastics are a major environmental concern, not only because of their uncontrolled dispersion in the environment, but also because of their release of chemical additives, such as phthalates (PAEs), particularly in water bodies. Key land–water interfaces, such as coastal zones, has always represented a complex and dynamic nexus for plastic pollution, as they are sites often densely populated, with major pollution sources. The Mediterranean basin, for example, is known to be a global hotspot of plastic waste, with a microplastic concentration approximately four times greater than the North Pacific Ocean. However, differently from the overviewed issue of plastic litter and microplastics, the occurrence, distribution, and impact of PAEs on the abiotic and biotic compartment of marine ecosystems of the Mediterranean area have still not been reviewed. Hence, this review provides an introductory section on the plastic pollution issue and its close relationship, not only with microplastics, but also with the leaching of toxic PAEs. To follow, the most relevant analytical approaches for reliably assessing PAEs in abiotic and biotic marine matrices are discussed. The analysis of the main anthropogenic sources of PAEs, their occurrence and spatiotemporal trends in the Mediterranean Sea is conducted. Finally, the potential correlation between PAE pollution and the abundance of microplastics are critically examined to evaluate their effectiveness as tracers of microplastic pollution. Full article
(This article belongs to the Special Issue Plastics Pollution in Aquatic Environments, 2nd Edition)
24 pages, 2677 KiB  
Review
Unravelling the Nexus of Beach Litter and Plant Species and Communities Along the Mediterranean Coasts: A Critical Literature Review
by Giulia Calderisi, Donatella Cogoni and Giuseppe Fenu
Plants 2024, 13(22), 3125; https://doi.org/10.3390/plants13223125 - 6 Nov 2024
Viewed by 1687
Abstract
Beach litter, an anthropogenic and hazardous component, can interact with psammophilous plant species and communities. These are particularly prominent in the Mediterranean Basin, renowned for its highly specialized and unique flora but recognized as one of the areas that is globally most severely [...] Read more.
Beach litter, an anthropogenic and hazardous component, can interact with psammophilous plant species and communities. These are particularly prominent in the Mediterranean Basin, renowned for its highly specialized and unique flora but recognized as one of the areas that is globally most severely affected by marine litter. To provide a comprehensive picture and outline possible future directions, data on beach litter in the Mediterranean coastal ecosystems were collected through a bibliographic research. Overall, 103 studies investigated the presence of beach litter on the Mediterranean coasts, of which only 18 considered its relationship with psammophilous plant species and communities. Our research highlights that this topic is rather underexplored in the Mediterranean Basin and the need to develop a standardized protocol for the assessment of beach litter that can be applied consistently across different beaches and countries. Information collected through a standardized protocol might improve the management and conservation strategies for these fragile ecosystems. Full article
Show Figures

Figure 1

26 pages, 5360 KiB  
Article
YOLOv8-C2f-Faster-EMA: An Improved Underwater Trash Detection Model Based on YOLOv8
by Jin Zhu, Tao Hu, Linhan Zheng, Nan Zhou, Huilin Ge and Zhichao Hong
Sensors 2024, 24(8), 2483; https://doi.org/10.3390/s24082483 - 12 Apr 2024
Cited by 35 | Viewed by 9238
Abstract
Anthropogenic waste deposition in aquatic environments precipitates a decline in water quality, engendering pollution that adversely impacts human health, ecological integrity, and economic endeavors. The evolution of underwater robotic technologies heralds a new era in the timely identification and extraction of submerged litter, [...] Read more.
Anthropogenic waste deposition in aquatic environments precipitates a decline in water quality, engendering pollution that adversely impacts human health, ecological integrity, and economic endeavors. The evolution of underwater robotic technologies heralds a new era in the timely identification and extraction of submerged litter, offering a proactive measure against the scourge of water pollution. This study introduces a refined YOLOv8-based algorithm tailored for the enhanced detection of small-scale underwater debris, aiming to mitigate the prevalent challenges of high miss and false detection rates in aquatic settings. The research presents the YOLOv8-C2f-Faster-EMA algorithm, which optimizes the backbone, neck layer, and C2f module for underwater characteristics and incorporates an effective attention mechanism. This algorithm improves the accuracy of underwater litter detection while simplifying the computational model. Empirical evidence underscores the superiority of this method over the conventional YOLOv8n framework, manifesting in a significant uplift in detection performance. Notably, the proposed method realized a 6.7% increase in precision (P), a 4.1% surge in recall (R), and a 5% enhancement in mean average precision (mAP). Transcending its foundational utility in marine conservation, this methodology harbors potential for subsequent integration into remote sensing ventures. Such an adaptation could substantially enhance the precision of detection models, particularly in the realm of localized surveillance, thereby broadening the scope of its applicability and impact. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

15 pages, 2860 KiB  
Article
Posidonia Spheroids Intercepting Plastic Litter: Implications for Beach Clean-Ups
by Nunziatina Porcino, Teresa Bottari, Francesca Falco, Sabrina Natale and Monique Mancuso
Sustainability 2023, 15(22), 15740; https://doi.org/10.3390/su152215740 - 8 Nov 2023
Cited by 7 | Viewed by 2288
Abstract
This study represents the first assessment of plastic waste within Posidonia spheroids on four sandy, Mediterranean beaches, each characterized by varying levels of anthropogenic influence. Fifty-five (68.7%) spheroids, out of eighty examined, included plastic litter. A total of 202 plastic items were isolated. [...] Read more.
This study represents the first assessment of plastic waste within Posidonia spheroids on four sandy, Mediterranean beaches, each characterized by varying levels of anthropogenic influence. Fifty-five (68.7%) spheroids, out of eighty examined, included plastic litter. A total of 202 plastic items were isolated. Plastic abundance was 2.5 items/spheroid corresponding to 132 items per kilogram. The length of plastic items ranged from 0.1 to 50 mm. Fibers, tangled fibers and fragments were the most common shapes. The spheroids exhibited a substantial capacity for trapping plastic waste, with notable differences among the beaches. Our results underscore the significance of implementing a beach clean-up plan aimed at removing all spheroids to prevent them from disintegrating and releasing trapped plastic waste into the environment. Manual removal is recommended to safeguard the beaches, and this process should target all spheroids, regardless of their size. This study provides valuable insights that can inform marine litter monitoring programs, contribute to the development of tailored management measures, and support the implementation of specific action plans to mitigate Mediterranean microplastic pollution. Full article
Show Figures

Figure 1

22 pages, 3502 KiB  
Article
Response of Foraminifera to Anthropogenic Nicotine Pollution of Cigarette Butts: An Experimental Approach
by Anna Sabbatini, Francesca Caridi, Giovanni Birarda, Elisa Costanzi, Adolfo Amici, Giovanna Mobbili, Carla Buosi, Giovanni De Giudici, Daniela Medas and Alessandra Negri
J. Mar. Sci. Eng. 2023, 11(10), 1951; https://doi.org/10.3390/jmse11101951 - 10 Oct 2023
Cited by 4 | Viewed by 2258
Abstract
The most often dispersed environmental pollutants that are released both directly and indirectly into the environment that may eventually reach aquatic ecosystems and contaminate aquatic biomes are cigarette butts (CBs). Toxicants such as nicotine, dangerous metals, total particulate matter, and recognized carcinogens can [...] Read more.
The most often dispersed environmental pollutants that are released both directly and indirectly into the environment that may eventually reach aquatic ecosystems and contaminate aquatic biomes are cigarette butts (CBs). Toxicants such as nicotine, dangerous metals, total particulate matter, and recognized carcinogens can be introduced and transported via CBs into aquatic ecosystems. The examination of the effects of synthetic nicotine on three different species of cultured benthic foraminifera was the focus of this study. Three foraminiferal species from three distinct biomineralization pathways were specifically examined for viability and cellular ultrastructure, including the calcareous perforate Rosalina globularis, the calcareous imperforate Quinqueloculina spp., and the agglutinated Textularia agglutinans. The survival rate, cellular stress, and decalcification were used to assess the toxicological effects of synthetic nicotine. We were able to analyze the reaction of major macromolecules and calcium carbonate to this pollutant using FTIR (Fourier Transform Infrared) spectroscopy. High Performance Liquid Chromatography (HPLC) study was performed to increase our understanding of nicotine bioavailability in the medium culture. Different acute experiments were performed at different dates, and all indicated that synthetic nicotine is acutely hazardous to all three cultured foraminiferal taxa at lethal and sublethal concentrations. Each species responded differently depending on the type of shell biomineralization. Synthetic nicotine enhances shell decalcification and affects the composition of cytoplasmic macromolecules such as lipids and proteins, according to the FTIR spectroscopy investigations. The lipid content rose at lethal concentrations, possibly due to the creation of vesicles. The proteins signal evidences general cellular dyshomeostasis. The integration among the acute toxicity assay, synchrotron, and chemical HPLC analyses provided a valuable approach for the assessment of nicotine as a biomarker of exposure to the toxicants associated with smoking and the impact of this emerging and hazardous material on calcifying marine species. Full article
Show Figures

Figure 1

12 pages, 2913 KiB  
Article
Floating Riverine Litter Flux to the White Sea: Seasonal Changes in Abundance and Composition
by Maria Mikusheva, Maria Pogojeva, Ekaterina Kotova, Alexsander Kozhevnikov, Eleonora Danilova, Anfisa Berezina and Evgeniy Yakushev
J. Mar. Sci. Eng. 2023, 11(2), 293; https://doi.org/10.3390/jmse11020293 - 31 Jan 2023
Cited by 5 | Viewed by 2964
Abstract
Arctic rivers bring litter from their basins to the sea, but accurate data for the Arctic do not exist yet. This study presents the first assessment of floating macro litter input (>2.5 cm) from the Northern Dvina and Onega rivers to the White [...] Read more.
Arctic rivers bring litter from their basins to the sea, but accurate data for the Arctic do not exist yet. This study presents the first assessment of floating macro litter input (>2.5 cm) from the Northern Dvina and Onega rivers to the White Sea. The observations were performed based on the European Marine Strategy Framework Directive (MSFD) methodology and using the mobile application of the Joint Research Centre (Ispra, Italy). The results of observations from May 2021 to November 2021 show that 77% of floating objects were of natural origin (mainly leaves, wood and bird feathers). Of the particles of anthropogenic origin, 59.6% were represented by various types of plastics, 27.7% were processed wood, 8.5% paper/cardboard, 2.7% metal, 1.1% were rubber and <1% textiles. The average monthly input of anthropogenic macro litter by the Northern Dvina varies from 250 to 1700 items/hour, and by Onega from 520 to 2350 items/hour. The level of pollution of the studied rivers was found to be higher than in some Europeans rivers but lower than in China. The mass discharge of macroplastics in the Northern Dvina River was compared with the estimates of the discharge of meso- and microplastics; that allowed us to show that the discharge of macroplastics in mass units is much higher than of micro- and mesoplastics. Full article
(This article belongs to the Special Issue Marine Litter and Sustainability of Ocean Ecosystems)
Show Figures

Figure 1

32 pages, 9402 KiB  
Article
Marine Litter Tracking System: A Case Study with Open-Source Technology and a Citizen Science-Based Approach
by Silvia Merlino, Marina Locritani, Antonio Guarnieri, Damiano Delrosso, Marco Bianucci and Marco Paterni
Sensors 2023, 23(2), 935; https://doi.org/10.3390/s23020935 - 13 Jan 2023
Cited by 17 | Viewed by 6422
Abstract
It is well established that most of the plastic pollution found in the oceans is transported via rivers. Unfortunately, the main processes contributing to plastic and debris displacement through riparian systems is still poorly understood. The Marine Litter Drifter project from the Arno [...] Read more.
It is well established that most of the plastic pollution found in the oceans is transported via rivers. Unfortunately, the main processes contributing to plastic and debris displacement through riparian systems is still poorly understood. The Marine Litter Drifter project from the Arno River aims at using modern consumer software and hardware technologies to track the movements of real anthropogenic marine debris (AMD) from rivers. The innovative “Marine Litter Trackers” (MLT) were utilized as they are reliable, robust, self-powered and they present almost no maintenance costs. Furthermore, they can be built not only by those trained in the field but also by those with no specific expertise, including high school students, simply by following the instructions. Five dispersion experiments were successfully conducted from April 2021 to December 2021, using different types of trackers in different seasons and weather conditions. The maximum distance tracked was 2845 km for a period of 94 days. The activity at sea was integrated by use of Lagrangian numerical models that also assisted in planning the deployments and the recovery of drifters. The observed tracking data in turn were used for calibration and validation, recursively improving their quality. The dynamics of marine litter (ML) dispersion in the Tyrrhenian Sea is also discussed, along with the potential for open-source approaches including the “citizen science” perspective for both improving big data collection and educating/awareness-raising on AMD issues. Full article
Show Figures

Figure 1

12 pages, 4155 KiB  
Article
Riverine Litter Flux to the Northeastern Part of the Black Sea
by Maria Pogojeva, Evgeniya Korshenko and Alexander Osadchiev
J. Mar. Sci. Eng. 2023, 11(1), 105; https://doi.org/10.3390/jmse11010105 - 4 Jan 2023
Cited by 6 | Viewed by 2405
Abstract
Rivers are among the main sources of marine litter, especially for semi-isolated sea areas with high populations and intense economic activity. The semi-isolated Black Sea located in the Eastern Europe is an example of such an area, whose watershed basin is under high [...] Read more.
Rivers are among the main sources of marine litter, especially for semi-isolated sea areas with high populations and intense economic activity. The semi-isolated Black Sea located in the Eastern Europe is an example of such an area, whose watershed basin is under high anthropogenic pressure. In this study, we report the results of the first long-term monitoring program of floating litter at several rivers inflowing to the northeastern part of the Black Sea. We describe the main characteristics of registered marine litter, including the distribution of its type and size. Based on the obtained results, we reveal the relation between river discharge rate and the litter flux for the considered rivers. Using this relation extended to all rivers of the study area, we assess the total annual flux of riverine litter to the northeastern part of the Black Sea. Full article
(This article belongs to the Special Issue Marine Litter and Sustainability of Ocean Ecosystems)
Show Figures

Figure 1

20 pages, 2658 KiB  
Article
Multispecies Assessment of Anthropogenic Particle Ingestion in a Marine Protected Area
by Montserrat Compa, Carme Alomar, María Francesca López Cortès, Beatriz Rios-Fuster, Mercè Morató, Xavier Capó, Valentina Fagiano and Salud Deudero
Biology 2022, 11(10), 1375; https://doi.org/10.3390/biology11101375 - 20 Sep 2022
Cited by 13 | Viewed by 2746
Abstract
We have applied a multispecies ecosystem approach to analyse the ingestion of anthropogenic particles (AP) in the gastrointestinal tract of 313 individuals (17 fish species and 8 invertebrate species) from pelagic, demersal and benthic habitats in a marine protected area off the Western [...] Read more.
We have applied a multispecies ecosystem approach to analyse the ingestion of anthropogenic particles (AP) in the gastrointestinal tract of 313 individuals (17 fish species and 8 invertebrate species) from pelagic, demersal and benthic habitats in a marine protected area off the Western Mediterranean (Cabrera National Park). We have quantified and characterized the ingestion at several taxonomic levels of fish, sea urchins, sea cucumbers, bivalves, and jellyfish in relation to biotic/abiotic factors based on taxonomic groups, trophic guilds (functional groups) and habitats. AP ingestion occurrence ranged from 26 to 100% with no significant differences among taxonomic groups. The fish within the MPA showed an overall ingestion occurrence ranging from 0 to 100%, the echinoderms from 29 to 100%, the bivalves from 72 to 96% and the jellyfish 36% ingestion. The ecosystem approach applied to evaluate overall AP ingestion within the species reported that for trophic guilds, the omnivorous species ingested the highest amounts of anthropogenic items, while herbivores ingested significantly fewer items than all other trophic guilds. Moreover, no significant differences were found amongst habitats, indicating a homogeneous spatial distribution of APs at all studied habitats. The multispecies approach provided insight into the high APs exposure to species within Cabrera MPA, highlighting the potential harm linked with marine litter that threatens marine biodiversity. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

20 pages, 1516 KiB  
Review
Microbial Interactions with Particulate and Floating Pollutants in the Oceans: A Review
by Estefan Monteiro da Fonseca, Christine Gaylarde, José Antônio Baptista Neto, Juan Carlos Camacho Chab and Otto Ortega-Morales
Micro 2022, 2(2), 257-276; https://doi.org/10.3390/micro2020017 - 27 Apr 2022
Cited by 9 | Viewed by 4496
Abstract
The Earth’s oceans are the final resting place of anthropogenic wastes, mainly plastics, metals, rubber, and fabrics, in order of decreasing abundance. On reaching the sea and the benthos, most of these have assumed fragmented or particulate forms. They become colonized by marine [...] Read more.
The Earth’s oceans are the final resting place of anthropogenic wastes, mainly plastics, metals, rubber, and fabrics, in order of decreasing abundance. On reaching the sea and the benthos, most of these have assumed fragmented or particulate forms. They become colonized by marine microorganisms and later interact with macroorganisms, leading to potential problems with marine life and the ecosystem. Rapid biodegradation of the polluting materials is a possible, and desirable, result if harmful by-products are not produced or toxic constituents are released. Negative effects are the transport of organisms to other ecosystems, with possible disturbance of the natural biological balance, or transfer of pathogenic organisms. A microbial biofilm can mask unattractive anthropogenic materials, increasing ingestion by marine life, with potentially dangerous results. This article seeks to provide a synthesis of the interactions occurring between oceanic anthropogenic polluting matter in solid and particulate form, and the microbiota present in our seas. It discusses the most important solid and particulate pollutants in the oceans, their sources, adverse effects, interactions with living organisms, mainly microorganisms, and future research for their control. Pollutants included are marine litter (macrodebris), microplastics, engineered nanoparticles, metallic particles, and, finally, sinking particles (“marine snow”) as a potential biodegradation “hot spot”. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

18 pages, 21150 KiB  
Article
UAV Approach for Detecting Plastic Marine Debris on the Beach: A Case Study in the Po River Delta (Italy)
by Yuri Taddia, Corinne Corbau, Joana Buoninsegni, Umberto Simeoni and Alberto Pellegrinelli
Drones 2021, 5(4), 140; https://doi.org/10.3390/drones5040140 - 24 Nov 2021
Cited by 43 | Viewed by 8159
Abstract
Anthropogenic marine debris (AMD) represent a global threat for aquatic environments. It is important to locate and monitor the distribution and presence of macroplastics along beaches to prevent degradation into microplastics (MP), which are potentially more harmful and more difficult to remove. UAV [...] Read more.
Anthropogenic marine debris (AMD) represent a global threat for aquatic environments. It is important to locate and monitor the distribution and presence of macroplastics along beaches to prevent degradation into microplastics (MP), which are potentially more harmful and more difficult to remove. UAV imaging represents a quick method for acquiring pictures with a ground spatial resolution of a few centimeters. In this work, we investigate strategies for AMD mapping on beaches with different ground resolutions and with elevation and multispectral data in support of RGB orthomosaics. Operators with varying levels of expertise and knowledge of the coastal environment map the AMD on four to five transects manually, using a range of photogrammetric tools. The initial survey was repeated after one year; in both surveys, beach litter was collected and further analyzed in the laboratory. Operators assign three levels of confidence when recognizing and describing AMD. Preliminary validation of results shows that items identified with high confidence were almost always classified properly. Approaching the detected items in terms of surface instead of a simple count increased the percentage of mapped litter significantly when compared to those collected. Multispectral data in near-infrared (NIR) wavelengths and digital surface models (DSMs) did not significantly improve the efficiency of manual mapping, even if vegetation features were removed using NDVI maps. In conclusion, this research shows that a good solution for performing beach AMD mapping can be represented by using RGB imagery with a spatial resolution of about 200 pix/m for detecting macroplastics and, in particular, focusing on the largest items. From the point of view of assessing and monitoring potential sources of MP, this approach is not only feasible but also quick, practical, and sustainable. Full article
(This article belongs to the Special Issue UAVs for Coastal Surveying)
Show Figures

Figure 1

13 pages, 4193 KiB  
Article
Marine Litter Stormy Wash-Outs: Developing the Neural Network to Predict Them
by Sergei Fetisov and Irina Chubarenko
Pollutants 2021, 1(3), 156-168; https://doi.org/10.3390/pollutants1030013 - 10 Aug 2021
Cited by 9 | Viewed by 3572
Abstract
Observations show that after stormy events, anthropogenic litter is washed ashore for short periods of time, providing the opportunity to collect and remove it from the environment. However, water dynamics in sea coastal zones during and after storms are very complicated, and the [...] Read more.
Observations show that after stormy events, anthropogenic litter is washed ashore for short periods of time, providing the opportunity to collect and remove it from the environment. However, water dynamics in sea coastal zones during and after storms are very complicated, and the transport properties of litter items are very diverse; thus, predicting litter wash-outs using classical numerical models is challenging. We analyze meteorological and hydrophysical conditions in the Baltic Sea coastal zone to further use the obtained data as a training sequence for an artificial neural network (ANN). Analysis of the physical processes behind large litter wash-outs links open-source meteorological (wind speed and direction) and hydrodynamic reanalysis (surface wave parameters) data to the time and location of these wash-outs. A detailed analysis of 25 cases of wash-outs observed at the shore of the Sambian Peninsula was performed. The importance of the duration of the storm and its subsiding phase was revealed. An ANN structure is proposed for forecasting marine debris wash-outs as the first step in the creation of a neural network-based tool for managers and beach cleaners, helping to plan effective measures to remove plastics and other anthropogenic contaminants from the marine environment. Full article
(This article belongs to the Special Issue Marine Pollutants)
Show Figures

Figure 1

23 pages, 11579 KiB  
Article
Towards Sustainable Management of Mussel Farming through High-Resolution Images and Open Source Software—The Taranto Case Study
by Carmine Massarelli, Ciro Galeone, Ilaria Savino, Claudia Campanale and Vito Felice Uricchio
Remote Sens. 2021, 13(15), 2985; https://doi.org/10.3390/rs13152985 - 29 Jul 2021
Cited by 12 | Viewed by 3709
Abstract
This research activity, conducted in collaboration with the Aero-Naval Operations Department of the Guardia di Finanza of Bari as part of the Special Commissioner for urgent measures of reclamation, environmental improvements and redevelopment of Taranto’s measurement, is based on the use of a [...] Read more.
This research activity, conducted in collaboration with the Aero-Naval Operations Department of the Guardia di Finanza of Bari as part of the Special Commissioner for urgent measures of reclamation, environmental improvements and redevelopment of Taranto’s measurement, is based on the use of a high-resolution airborne sensor, mounted on board a helicopter to identify and map all in operation and abandoned mussel farming in the first and second inlet of Mar Piccolo. In addition, factors able to compromise the environmental status of the Mar Piccolo ecosystem were also evaluated. The methodological workflow developed lets extract significant individual frames from the captured video tracks, improves images by applying five image processing algorithms, georeferences the individual frames based on flight data, and implements the processed data in a thematic Geographical Information System. All mussel farms, in operation and derelict, all partially submerged and/or water-coated invisible to navigation poles and other elements such as illegal fishing nets and marine litter on the seabed up to about 2 m deep, have been identified and mapped. The creation of an instant, high-precision cartographic representation made it possible to identify the anthropogenic pressures on the Mar Piccolo of Taranto and the necessary actions for better management of the area. Full article
Show Figures

Graphical abstract

Back to TopTop