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Abstract: The Earth’s oceans are the final resting place of anthropogenic wastes, mainly plastics,
metals, rubber, and fabrics, in order of decreasing abundance. On reaching the sea and the benthos,
most of these have assumed fragmented or particulate forms. They become colonized by marine
microorganisms and later interact with macroorganisms, leading to potential problems with marine
life and the ecosystem. Rapid biodegradation of the polluting materials is a possible, and desirable,
result if harmful by-products are not produced or toxic constituents are released. Negative effects are
the transport of organisms to other ecosystems, with possible disturbance of the natural biological bal-
ance, or transfer of pathogenic organisms. A microbial biofilm can mask unattractive anthropogenic
materials, increasing ingestion by marine life, with potentially dangerous results. This article seeks to
provide a synthesis of the interactions occurring between oceanic anthropogenic polluting matter in
solid and particulate form, and the microbiota present in our seas. It discusses the most important
solid and particulate pollutants in the oceans, their sources, adverse effects, interactions with living
organisms, mainly microorganisms, and future research for their control. Pollutants included are
marine litter (macrodebris), microplastics, engineered nanoparticles, metallic particles, and, finally,
sinking particles (“marine snow”) as a potential biodegradation “hot spot”.

Keywords: marine pollution; plastics; marine litter; nanoparticles; metallic particles; sinking particles;
biodegradation; anthropogenic pollutants

1. Introduction

Oceans face global natural and anthropogenic challenges. The United Nations has
declared 2021 to 2030 the decade of restoration, promoting, among others, resilience to
anthropogenic changes, especially in the oceans [1], which are considered the main sink of
anthropogenic contaminants [2].

Detectable only with specific equipment, there is an abundant world of microorgan-
isms inhabiting the oceanic ecosystem with a complexity and diversity that competes with
all other forms of life on Earth. This group includes bacteria, viruses, fungi, and other
microscopic organisms. Of all the living organisms in the ocean, about 50 percent of the
biomass weight consists of microbes [3].

Microorganisms are responsible for the food and nutrient cycling that, in their absence,
would not be bioaccessible in the ecosystems [4]. Many are also the guardians of ocean water
balance and resulting in healthy ecosystems, cleaning the ocean environments of waste,
and preventing the proliferation of opportunistic disease-causing beings. Microorganisms

Micro 2022, 2, 257–276. https://doi.org/10.3390/micro2020017 https://www.mdpi.com/journal/micro

https://doi.org/10.3390/micro2020017
https://doi.org/10.3390/micro2020017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micro
https://www.mdpi.com
https://orcid.org/0000-0002-9990-9681
https://orcid.org/0000-0002-7252-0211
https://orcid.org/0000-0001-9306-2793
https://doi.org/10.3390/micro2020017
https://www.mdpi.com/journal/micro
https://www.mdpi.com/article/10.3390/micro2020017?type=check_update&version=1


Micro 2022, 2 258

inhabit some of the environments considered extreme, such as scalding hydrothermal vents
and even underground glacial lakes in Antarctica [5,6]. These were the first organisms to
inhabit planet Earth, living in an anoxic environment in a pristine ocean [7].

Several types of surfaces with particular physicochemical and biological characteristics
are offered by marine ecosystems; they include living organisms, among them animal and
vegetal species. These substrata include many kinds of particles and aggregates, both inert
and reactive mineral substrata.

A huge group of aquatic microorganisms shows the capacity to colonize surfaces,
resulting in the formation of biofilms and the development of specialized processes within
these structures [8,9]. As a survival mechanism, the surface colonization process in aquatic
environments has a fundamental role for the microscopic species, since it represents greater
access to nutritional resources, higher colony stability, and stronger specimen interactions,
in a dynamic environment of low nutrient concentration. Sessile microorganisms (those
attached to surfaces in biofilms) have advantages over the planktonic cells in their resistance
to adverse conditions and antimicrobial substances, as well as possessing an increased
metabolic rate.

Aquatic solid substrates are ideal environments for important biogeochemical activ-
ities [10]. Surface colonization and biofilm production protect from predators, viruses,
antibiotics, chemical toxins, and other deleterious environmental elements [11–13]. Pol-
luting anthropogenic particles can serve as niches for the survival and replication of
marine microorganisms.

Nowadays, however, marine litter is considered a worldwide issue alongside other
key environmental threats, such as climate change, ocean acidification, and the loss of
biodiversity [14,15]. It is regarded as one of the most significant problems for the marine
environment and a major threat to biodiversity [16]. Over the last decades, it has become
clear that litter particle pollution presents a global environmental challenge of increasing
presence in the oceans. The scientific community has studied the microbial life colonizing
particle surfaces of these pollutants, but the general concepts of microbial ecotoxicology
have only rarely been involved in the studies [17].

Marine litter results in aesthetically detrimental effects represent a threat to commercial
shipping and fishing vessels, can intensify the diffusion of organic and inorganic contami-
nants, and is harmful to marine higher species and potentially also humans [18]. 30–75%
of all marine debris consists of plastic, which pollutes environments from the poles to the
equator and from shorelines to the deep-sea [19,20]. Apart from the problems caused when
microplastics are ingested by marine animals, the plastics themselves can be degraded
under the influence of UV to become toxic and release toxic components such as bisphenols.
Marine debris is negatively affecting the global economy, wildlife, and the environment;
there is global agreement that it needs to be addressed urgently [21].

Petroleum hydrocarbons resulting from oil spills, shipping disasters, etc. are widely
recognized and important marine pollutants. There has been much written about the effects
of such contamination on marine ecosystems [22,23] and the potential for its bioremediation
using microorganisms [24–26]. The current article will not add to the available information
in this area, focussing on less well-studied marine solid particulate pollution of growing
importance. The aim is to review the more recent literature that documents the interactions
of marine microorganisms with particulate pollutants.

2. Macrodebris

Marine litter, or macrodebris, is one of the sources of microcontaminants. Macrodebris
not removed by other means will be broken down by mechanical, chemical, and biological
activities in the oceans to add to the already present levels of polluting microparticles. Its
vast distribution around the globe and long-life durability make marine litter a critical
environmental issue [21,27]. This type of pollutant is present worldwide, from shallow
water to the deep sea and from the poles to the equator. The most direct impact of marine
litter on marine biota is the mechanical effect resulting from the entanglement of animals,
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which potentially harms their mobility, feeding, breathing, and reproduction capacities [28],
affecting, most of the time, wandering species like fish, marine mammals, sea turtles
and seabirds [29]. Sessile species are also potential targets; they are subject to mechanical
impacts resulting from the movement of waste, which can affect their body structure [30,31].

In the deeper layers of the sea, larger-sized anthropogenic litter, which may be com-
posed of plastic, metal, glass, rubber, and fabrics such as rope and clothing, is becoming
increasingly common as human beings expand their oceanic activities.

These materials can become colonized by microorganisms within a few days [32],
producing biofilms that differ not only according to the physical and chemical environment
but also to the man-made substratum. It has been suggested that the main anthropogenic
plastic litter in the oceans is associated with fishing activity [30,33–36]. 12.2 million tonnes
of plastic are discarded into marine ecosystems per year, 80% being from coastal, 9.4% from
fishing, and 4.9% from shipping origin [37,38].

The major type of marine debris affecting the worlds’ reefs is derived from fishing
activities [39], while in the deep seas most litter is from ships offshore [38]. Plastics are the
most frequent materials, followed by metals [40] (Figure 1). Plastics, in both macro and
micro form, become colonized by cyanobacteria and diatoms within hours of immersion in
the sea, these microorganisms later becoming superseded by proteobacteria and, later, by
rare fungi (mainly dothideomycetes [41]). The initial adhesion of diatoms and cyanobac-
teria on polyethylene has been confirmed using the new technique of CLASI-FISH [42].
Diatoms were shown to be associated with surface bacteria of the Bacteroidetes, Rhodobac-
teriaceae, and Gammaproteobacteria groups. Main colonizers subsequently were found
to be members of the Rhodobacteriaceae, which remained predominant over the whole
5 weeks of immersion in the North Atlantic. In the Tropical Atlantic Ocean, the picture
was a little different and the microflora more diverse, but Rhodobacteriaceae remained the
major colonizers after one week.
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Figure 1. Types of waste (macrodebris) found in the oceans (%). Adapted from UNEP [43] and
compiled from [44].

The majority (80%) of litter in coastal areas of the oceans is considered to be land-
based in origin [45]. Metal litter has been thought to be relatively unimportant in coastal
areas of the Mediterranean Sea, since aquatic circulation and meteorological dynamics
ensure no permanent impairment of planktonic populations, leading to rapid correction of
anthropogenic perturbations in these areas [46]. However, some marine invertebrates have
been found rafting on metals, thereby invading other geographical areas [47,48], indicating
the importance of this type of litter in ecosystem disturbances. Woodall et al. [49] found that,
of all the types of litter collected from the deep waters of the equatorial Atlantic Ocean, metal
showed the lowest biofilm diversity compared with the plastic, rubber, glass, and fabric
litter investigated and was the only material on which zetaproteobacteria were detected.
This is particularly interesting since zetaproteobacteria are iron-oxidizing bacteria that are
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associated with corroding steel structures [50–52]. Corrosion-associated bacteria had not
previously been reported on metallic ocean litter, but in 2019 Muthukrishnan et al. [53]
detected higher levels of the anaerobic, heterotrophic sulfate-reducing bacterial genus,
Desulfovibrio, along with Pseudomonas, in steel biofilms from the Sea of Oman, while the main
colonizer in wood biofilms was Corynebacterium. The application of antifouling coatings to
metallic surfaces may be another reason for the smaller contribution of waste composed of
metals to the colonization and transport of microorganisms. These antifouling coatings can
stop or at least reduce the propagation of microorganisms on various surfaces [54]. The use
of antimicrobial coatings on metal surfaces is based on the presence of compounds toxic to
microorganisms, for example, pigments, solvents, metals, and organic and organometallic
biocides [55,56]. Antifouling paints may also, themselves, become pollutants; the release of
paint particles during use and cleaning of the vessels thus protected is a threat to aquatic
life [57,58], Researchers have pointed to the increasing biocide (antifoulant) concentrations
in water and sediment samples collected near boat maintenance areas, posing a threat to
aquatic life [59–61]. Hence there is considerable effort being expended to discover and
develop antifouling surfaces that are ecologically acceptable [62,63].

Rubber is not commonly considered one of the most important marine pollutants, but
it can be significant because of its refractory character. In 2007, a shipload of rubber ducks
completed a 15-year-long journey, which began in January 1992 when a cargo ship named
Ever Laurel, traveling from Hong Kong to the United States, lost some of its cargo during
an ocean storm [64]. The load consisted of approximately 29,000 toys, some of which had
reached the Australian and the east coast of the United States by 2007. Others went through
the Bering Strait and the Arctic Ocean until arriving in Greenland, the United Kingdom, and
Nova Scotia. This represents the considerable potential for the transfer of rafting organisms.
Car tire rubber is a major contributor to terrestrial wastes, and its leachates can be found in
the oceans. These include cobalt and zinc, both of which inhibit algal growth and mussel
reproduction [65]. Most tires are made of polyisoprene rubber and several bacteria and
fungi have been shown to degrade isoprene [66], actinomycetes being considered to be the
most important [67–69]. Carrión et al. [70] used an isoprene-degrading gene probe (IsoA)
to detect degrading microorganisms from various habitats. They found that, in coastal
sediments, the gene was associated with the genera Rhodococcus and Variovorax, while in
freshwater sediments Rhodococcus and Sphingopyxis were prevalent. Isoprene degraders
had previously been identified in estuarine waters [71].

Textiles also constitute part of marine litter. Microparticles of synthetic and natural
fibers are one of the most abundant marine pollutants [72,73]. The increased empha-
sis on the environmental effects of textiles is linked to an escalation in public focus on
plastic pollution [74], of which a significant part is thought to be composed of textile mi-
crofibers. Textiles can be produced from various types of plastic polymers, mainly PET,
and microfibers can be released during manufacture and normal laundry activities [75,76].
Natural textile polymers, such as silk, cotton, and wool, are less problematic since they
are biodegradable and less persistent in the ocean. The pollution associated with textile
laundering has recently been reviewed by Gaylarde et al. [75].

The international textile industry is a major booster of global environmental contam-
ination. Global fiber manufacturing exceeded 105 million metric tons in 2018 [77] and it
has been estimated that 0.19 million tonnes of microfibers from the production, disposal,
and laundering of textiles enter the marine environment annually [76]; indeed, it has been
calculated that, for a city of 100,000 inhabitants, approximately 1.02 kg of microfibers will
be released into the wastewater treatment system per day from the washing of polyester
fleece jackets alone [78].

Fibers can release bioavailable contaminants, like toxic metals and other substances, that
have been used during textile production [79]. The Industrievereinigung Chemiefaser [77]
has emphasized that the negative environmental influence of the textile industry is centered
around the amounts of industrial compounds used during the manufacturing process, as
well as the liberation of a variety of pollutants into ecosystems [80–84], including textile
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fibers [74,78,85–88]. Many are not degraded by any biochemical and/or natural photochemical
process and this may result in bioaccumulation and/or biomagnification.

Even though natural fibers are relatively biodegradable in the marine environment,
degradation may release other pollutants, such as dyes, which can carry risks to marine
life. Stanton et al. [89] question whether natural fibers are better for the environment than
microplastic fibers; in their study, microplastic textile fibers such as polyester and nylon
were absent from 82.8% of samples, whereas ‘natural’ textile fibers were absent from just
9.7% of samples. Nevertheless, it cannot be denied that the resistance of plastic fibers to
biodegradation makes them potentially more important pollutants.

Harmful chemical compounds and pollutants can be released from various plastics
through UV-linked or biodegradation [31,79,90]. Endocrine disruptors, for example, have
negative effects on marine biota even at the extremely low levels produced during the
transportation and degradation of the polymer matrix. These pollutants have been identi-
fied as major contaminating compounds in wastewater effluents [91] that will be released
into the Earth’s waters. Endocrine disruptors consist of chemical compounds able to mimic
endogenous hormones, as they have a very similar chemical constitution. So a hormone
receptor can mistakenly recognize these compounds, activating or blocking the normal
functioning of the endocrine system [92,93]. Sex change of organisms exposed to contami-
nants that mimic estrogen compounds has been recorded in marine ecosystems, with all
the specimens becoming female. Imposex (sexual impotence) has also been detected in
several marine gastropod groups exposed to TBT (tributyltin).

Girard et al. [94] performed in vitro colonization experiments with mixed textile fibers
extracted from intertidal sediments in Indonesia and with HDPE microbeads. They used
seawater from a coral reef aquarium as the suspending medium, with its natural microbial
populations. The colonizing bacteria (identified by DNA sequencing) differed substantially
between the two substrata. HDPE beads became colonized by a community enriched in
Alcanivoracaceae, while the bacterial populations on textile fibers (40% cotton, mainly dyed
black or blue) became enriched in Kordiimonadaceae and Cellvibrionaceae. According to
the authors, oxygen consumption and specific colonization patterns suggested that the fiber
and plastic substrata were being biodegraded. They did not consider any possible negative
effects of the degradation products on the biota, simply considering that degradation was a
positive process removing the fibers from the environment.

3. Microplastics

The increased use of plastic materials over the last years has led to millions of tonnes
per year of these recalcitrants being released into our seas. It is acknowledged that they are
one of the most important anthropogenic influences on our waters and are even found in
the Arctic Sea, arriving there from as far away as the Asian coast [95]. They cause problems
through their ingestion by aquatic life [96,97] and references therein. Microplastics also
provide a surface on which pollutant molecules and potentially dangerous microorganisms
can become concentrated and carried to other locations 18, 19. Once the plastic becomes
modified by oceanic organics, a completely new surface, much more attractive as a food
source, is presented to living creatures.

There are five plastic accumulation zones in our oceans (Figure 2) [98], perhaps
the best known of which is the Great Pacific Garbage Patch, in the north-central Pacific
Ocean [41]. However, not all ocean gyres have been equally studied and, indeed, difficulties
in standardizing sampling procedures make this a very problematic area [99].

Initially, plastics are broken down in the seas into small fragments by abiotic forces
such as u-v and wave action; when these fragments are less than 5 mm in size they
are known as microplastics. They rapidly become covered by a thin film of organics
present in the water and then by marine microorganisms (Figure 3), forming a surface
population known as the plastisphere [100]. This contains a wide variety of prokaryotes
and eukaryotes and the exact makeup may depend on the type of plastic, as well as the
local environment [101,102], although it has been suggested that the plastisphere is only
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specific to plastic-type in conditions of low nutrients and low salinity [103]. A survey of
plastisphere biofilms from around the world, and of various degrees of maturity, indicated
that the most abundant phyla are Proteobacteria, Cyanobacteria, and Bacteroidetes [42].
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Colonized microplastics are carried on ocean currents and in spray and so transported
to other regions, where the result may be prejudicial to the environment and its biota.
It has been suggested that this may be one of the routes whereby metal- and antibiotic-
resistant genes are spread around the world [104,105], but pathogenic microorganisms
themselves may be transported in this way. For example, opportunistic invasive bacterial
populations can enhance coral bleaching [106] and the biofilm in most plastic pools in the
Bay of Brest has been shown to contain species related to the potential oyster pathogen,
Vibrio splendidus [107].

Even if not directly harmful, the introduction of a new microbial population may alter
the oceanic ecosystem in unknown ways [108]. Such transfers of local biota are known to
occur; plastic debris carrying invasive corals and other living forms can be responsible for
the persistence of new species in the ecosystem [109,110]. If such introduced species survive,
they may alter the local ecosystems in undesirable ways [111]. In the Antarctic Peninsula
Region, 13 species, mainly marine invertebrates, have been identified as presenting a major
risk to the native biota [112]. Although these are considered to be transported mainly on
ships, the authors point out that the role of floating plastics should not be discounted.
Yet another potential problem associated with the biofilm on microplastics is its ability to
adsorb contaminants, and potentially toxic, molecules. Biofilms on LDPE have been shown
to adsorb Ba, Cs, Fe, Ga, Ni, and Rb and to facilitate the uptake of Cu, Pb, Al, K, U, Co, Mg,
and Mn [113].

On the other hand, microorganisms transported on anthropogenic particles may have
desirable effects. The surface-associated genus Phaeobacter, for example, produces antibi-
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otics, including tropodithietic acid, which inhibit a variety of bacteria, including pathogenic
Vibrio species, and may have protective effects in pisciculture [114] and references therein.

Another positive result of the microbial colonization of plastics is the potential for
biodegradation of the material by the adherent organisms. Debroas et al. [115] found that
there was an overrepresentation of microorganisms capable of xenobiotics degradation in
the plastisphere. Some of the microorganisms that have been detected in the plastisphere
are known hydrocarbon-degraders and may be involved in the breakdown of the plastic
substrate [115,116]. Enzymes involved in such degradation include lipases, proteinases,
cutinases, and dehydrogenases [117]. Table 1 lists some of the plastic-degrading microor-
ganisms that have been identified in the plastisphere and elsewhere, using culture or
molecular techniques. Although several fungal species are listed, and, indeed, were among
the earliest microorganisms to be demonstrated to have a plastic-degrading ability, few of
these plastilytic eukaryotes have been detected in the plastisphere and even less have been
assessed for activity under marine conditions. Indeed, fungi are rarely detected in biofilms
on benthic marine plastic debris [118,119].

Table 1. Plastic-degrading microorganisms.

Plastic Microorganism Reference

PE/PET

Achromobacter xylosoxidans
Rhodococcus ruber

Brevibacillus borstelensis
Bacillus spp.

Thermobifida fusca
Thermobifida halotolerans

Alcanivorax
Marinobacter
Arenibacter

Ideonella sakaiensis
Kocuria palustris

Clostridium thermocellum
Saccharomonospora viridis
Thermomonospora curvata

Streptomyces sp.
Streptomyces albogriseolus

Aspergillus sp.
Penicillium simplicissimum

Zalerion maritimu
Anabaena spiroides

[120]
[42,121]

[122]
[123–125]

[126]
[127]

[119,128]
[119]
[119]
[100]
[78]

[129]
[130]
[131]

[132,133]
[134]
[135]

[105,136]
[137]
[138]

PHA
Pseudomonas stutzeri

Alkaligenes faecalis
Streptomyces sp.

[139]
[140]
[141]

PCL

Alkaligenes faecalis
Alcanivorax

Tenacibaculum
Pseudomonas spp.

Clostridium botulinum
Streptomyces thermoviolaceus

Fusarium sp.
Brevundimonas sp.

[142]
[143]
[143]

[143,144]
[139]
[145]

[53,102]
[146]

PLA
Bacillus brevis

Fusarium moniliforme
Penicillium roqueforti

[147]
[148]
[139]
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Table 1. Cont.

Plastic Microorganism Reference

Polyurethane/PE-PU

Comamonas acidovorans
Pseudomonas chlororaphis

Pseudomonas putida
Acinetobacter gerneri

Aureobasidium pullulans
Fusarium solani
Alternaria sp.

[149]
[150]
[151]
[152]
[153]
[140]
[154]

PVC Pseudomonas putida [155–157]

Polystyrene Rhodococcus ruber
Azotobacter beijerinckii

[158]
[159]

Abbreviations: PCL—polycaprolactone, PE—polyethylene, PET—polyethylene terephthalate, PHA—
polyhydroxyalkanoate, PU—polyurethane, PVC—polyvinylchloride.

Some plastics may become accessible to microbial metabolism only after partial break-
down or modification by non-biotic factors, such as u-v or heat. Such non-hydrolyzable
polymers include polyethylene, polypropylene, and polystyrene. Many modern plastics,
such as PET, however, are directly susceptible to hydrolysis. Two enzymes jointly capable
of degrading PET into environmentally benign monomers have been isolated from the
bacterium Ideonella sakaiensis in a PET bottle recycling site [160]. [161] has produced a more
efficient engineered PET-hydrolase that could form the basis of a bioremediation treatment
for environments contaminated with plastics.

Delacuvellerie et al. [116] found that plastic-enriched populations of bacteria from
plastispheres contained hydrocarbon-degrading bacteria. These included Alcanivorax,
Marinobacter, and Arenibacter on LD (low density) PE and PET. Alcanivorax borkumensis
from thick biofilms on LDPE was shown, by weight loss, scanning electron microscopy,
and ATR-FTIR analysis, to degrade the plastic substratum. Although there was only 3.4%
degradation after 80 days, this is worthy of further investigation, since LDPE is a very
hydrophobic plastic and thus rather resistant to biodegradation. PET has also been shown,
by SEM and FTIR, to degrade and develop surface cracks on exposure to marine biofilms in
the Arabian Gulf, while polypropylene and PVC showed cracking under biofilms formed
in Chinese coastal waters. Despite the considerable amount of research effort that has been
applied to the microbial degradation of plastics, Oberbeckmann and Labrenz [146], in a
recent review, conclude that microplastics are recalcitrant substrates for microorganisms
and will probably not be biodegraded within a reasonable timescale.

The colonization of microplastics in the oceans leads to an increase in their weight
and, because of the production of extracellular polymeric substances (EPS) within the
plastisphere, to their agglomeration, resulting in their eventual deposition in the ben-
thos [118], and references therein, where the vast majority of oceanic plastic wastes are
deposited [162,163]. Floating microplastic particles have a 50% chance of sinking between
17 and 66 days after they arrive in the water [164] and it is considered that very large
amounts of microplastics are removed from surface waters by attachment to organic sink-
ing particles (q.v.) [138]. Once incorporated into the sea-bottom sediments, the final fate
and distribution of the plastics are strongly controlled by sea-bed currents [165]. Even here,
problems can result from ingestion by benthic organisms [166,167]. Plastic waste has been
registered at a depth of almost 11,000 m and plastics have been detected in the hind guts of
amphipods from deep ocean trenches of depths 7000 to 10,890 m from the Pacific rim [166].
In order to more accurately assess the degree of plastic contamination in our oceans, more
measurements need to be made on this specific ecosystem. Here, any degradation processes
must be primarily anaerobic or microaerophilic, given that only low amounts of oxygen
will reach the benthos via thermohaline (bottom) currents [165]; the lack of sunlight and low
temperature at these depths also drastically reduces non-biological degradation [43]. Very
little is known about these biodegradation processes, although several plastic degraders
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have been detected in cold marine habitats [168], and the sulfate-reducer Desulfatitalea te-
pidiphilia has been found attached to plastic surfaces in marine sediments in Germany [169].
Since sulfate reduction is the dominant type of bacterial respiration in sediments, this could
be important in any biodegradation process. There are no accepted standard tests to assess
anaerobic biodegradability in the marine environment. The elucidation of mechanisms for
the biodegradation of plastics in the benthos is an important objective for future research.

Upon further breakdown, microplastic particles become nanoplastics, with a size of
below 1000 nm according to Gigault et al. [139]. This group of marine pollutants overlaps
with the so-called “primary nanoparticles”, which are manufactured by industry, and are
discussed in the next section (Engineered Nanoparticles). They are subject to the same
degradation forces as microplastics but are more readily taken up by marine organisms and
have been shown to have adverse effects on a variety of marine species [139,170]. Although
it is assumed that nanoplastics will be subject to the same degradation mechanisms as
microplastics, there is little direct evidence for this, mainly because of the challenges of
isolating and analyzing them [57] and references therein. Gigault et al. [170] discuss these
methods in some detail and point out the inherent problems. They consider that innovative
tools, such as chemometrics, and newly developed instrumentation will be required for
future studies on nanoplastics.

4. Engineered Nanoparticles

Particles of up to 100 nm in diameter are known as nanoparticles. The European Union
defines a suspension of nanoparticles as that in which 50% or more particles have one or
more external dimensions of 1–100 nm. These suspensions exist in nature (e.g., nanoclays),
but in the recent past, they have been manufactured for specific human purposes. Such
engineered nanoparticles (ENPs) may be used, for example, in coatings, insulating and
magnetic materials, and as antimicrobial additives, principally nanometal oxides, such
as TiO2, which become increasingly antimicrobial under the action of UV In fact, metal
and metal oxide nanoparticles are those most produced worldwide, with TiO2 having
the highest produced mass [171], and many, along with silica nanoparticles, are used as
antifouling materials for protection of marine and seawater-associated structures [172–174].
The antifouling materials can, of course, also affect the non-target biota in the sea, especially
when liberated from the protected structures by sloughing or friction. Toxic effects of the
principal metal oxide ENPs in the marine environment decrease in the order Au > Zn > Ag
> Cu > Ti > Carbon60 [175].

At some stage in their lifetime, even if not utilized directly in the marine environment,
ENPs will be released into their surroundings and end up entering the oceans, where they
can exert negative effects on the biota [176,177], including inhibition of movement and
metabolic processes, oxidative stress and dysfunctional DNA replication [178]. NanoZnO
particles ranging from 30 nm to 2 µm have been shown to be highly toxic to flounder cells
in culture and zebrafish embryos [179]. ENPs can readily pass from terrestrial waters into
the ocean and thence into the marine food web [180]. It has been suggested that the main
effects of ENPs on coastal marine life forms will be in sediments [181], where they have
been shown to have toxic effects on foraminifera [182].

There has been little empirical study of the fate of ENPs in the aquatic environ-
ment [183], although it has been suggested that they can cause significant harm to the
marine ecosystem [184] and references therein and that they have significant toxic effects on
marine phytoplankton [185]. The release of silver NPs has been shown to alter the function-
ing of the marine food web by hampering important viral and bacterial processes [186]. In
a mesocosm experiment, the addition of silver NPs, even at a low dose, affected planktonic
communities, especially reducing the growth of the cyanobacterium Synechococcus. Viral
auxiliary metabolic genes involved in cyanobacterial photosynthesis were also decreased.

It has, however, been suggested recently that ENPs may not be found at sufficiently
high concentrations in the natural environment to pose a current problem [187]. More
data on the effects and fate of nanoparticles released into the environment are necessary.
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Life cycle and ecological risk assessments of ENPs in our oceans are essential to stimulate
remediation processes and protect the marine environment.

5. Metallic Particles

Mining of polymetallic nodules, found on the surface of abyssal plains at around
4000 m depth, results in the release into the benthos of sediment plumes and nodule
debris. These can be rich in Mn, Ni, Cu, and Co [188]. Fazey and Ryan [164] examined
the aerobically grown bacteria present on the surface of nodules and in the overlying
sediment, identifying Halomonas aquamarina, H. meridiana, and Erythrobacter citreus in
both, but the genera Arthrobacter, Kocuria, Loktanella, Marinobacter and Pseudoalteromonas
only in sediment within 4 cm of the nodule surface. Cho et al. [189] confirmed that the
microbiome of nodules differs from the microbial population in the surrounding sediment,
but their use of NGS technology led to the detection of a different set of bacteria and
Archaea. Thaumarchaeota were found in both sediment and nodule, Mn-oxidizing bacteria
(Hyphomycrobium, Aurantimonas, and Marinobacter) were predominant in nodules, and
Idiomarina, Erythrobacter, and Sulfitobacter in sediments. Gillard et al. [188], based on
their analyses, suggest the use of standard cultivation techniques for monitoring plume
propagation; indicator organisms for sediment would be Diezia maris and Pseudoalteromonas
shioyasakiensis, for nodules Rhodococcus erythropolis and water Marinobacter flavimaris.

Much of the iron found in aerosols over the oceans is anthropogenic in origin, resulting
from the burning of fossil and biofuels and fires on land (biomass burning), a situation
that is probably mirrored by zinc [190]. Conway et al. [191], using iron-isotope ratios,
showed that deposition of anthropogenic Fe could reach almost 100% of the total Fe
near highly populated areas. Their model suggested that this effect would be greatest in
the Southern and Pacific Oceans, and this was echoed by Hamilton et al. in 2020 [192].
Much of the iron, and, indeed, many metals found in marine particles may be linked
to the presence of microorganisms that produce metal-chelating siderophores. Chuang
et al. [193] found that hydroxamate siderophores comprised a large part of the sinking
particles (“marine snow” q.v.) collected in the Sargasso Sea. One of the important ecological
functions of the siderophores produced by microorganisms is the release of iron from
sinking particles to supply dissolved iron to the water column [194]. The export of iron
from hydrothermal vents in the Southern East Pacific has likewise been linked to particles
containing microorganisms [195].

Pollution by mercuric ions is a potential risk to human health, principally through
the consumption of fish [196]. The main anthropogenic source of this metal is artisanal
and small-scale gold mining, followed by the burning of fossil fuels [197]. The metal
is converted to toxic methylmercury and dimethylmercury by microbial activity in the
seas [198] and is largely associated with marine particulate matter [199]. The latter authors
identified the sulfate-reducing bacterium, Desulfovibrio desulfuricans, as important for the
uptake or exchange of Hg2+ in anaerobic environments. Marine Group II (MGII) archaeal
genes associated with assimilatory sulfate reduction have been detected, along with MGII
genes involved in surface adhesion, in samples collected from around the world during the
Tara Oceans’ circumnavigation trip [156]. The authors suggested that archaea MGII could
be implicated in the degradation of marine particles, a more positive role for microbial
biofilms in our oceans.

Marine microorganisms are also important in the production of metallic compounds.
The mineral barite (or baryte), used principally in drilling muds, is produced in the oceans
by barium binding initially to phosphate groups in bacterial cells or EPS; the thus concen-
trated barium is then converted in the marine environment to barite [200].

6. Sinking Particles (“Marine Snow”) and Pollution

Marine snow is considered to be composed of heterogeneous agglomerates of living
and dead organic matter of >500 um in size, formed by the attachment of organisms to the
so-called “transparent exopolymer particles” (TEPs) that consist mainly of acidic polysac-
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charides previously produced by phytoplankton and heterotrophic prokaryotes [201] and
references therein. The particles contain diverse groups of eukaryotes, which may some-
what resemble, but certainly do not equal, the plankton in the local environment [202].
They have a highly variable composition and there are fundamental differences in particle
composition between oligotrophic and eutrophic environments [202]. The microbial taxa
associated with the particles are very different from those in the surrounding seawater and
may contain increased oil degraders in oil-polluted environments [203,204] or methylmer-
cury genes in saline waters in the North Sea [205]. Hence the particles may be “hot spots”
for the degradative activity of surrounding pollutants [206].

Such sinking particles differ from floating particles in the oceans in carrying a changing
population of prokaryotic species. Duret et al. [207] identified the prokaryotic populations
on both types of particles in the Scotia Sea (Southern Ocean) and suggested that r-strategists,
with generalized metabolic activities and rapid substrate consumption, were better adapted
to sinking particles, with their changing environment, while K-strategists, specialized for
complex organic material degradation, were better adapted to the more stable environment
of semi-labile floating particles. So, for instance, pseudomonads and Rhodobacteriales were
enriched on sinking particles, Flavobacteriales on floating. Datta et al. [208] had previously
shown, using model polysaccharide particles, that the attached bacterial communities
underwent rapid metabolic successions, driven by the environment. They suggested that
there are 3 phases of colonization: attachment of a highly diverse community, selection of
specific metabolic activities by the environment (reducing diversity) and replacement by
secondary consumers, metabolizing the products of the second phase cells, and increasing
diversity somewhat once more. Liu et al. [209], investigating differences between the
two types of particles at low and high pressures in the New Britain Trench, Solomon Sea
(Pacific), found that, although there were differences in prokaryotic populations on floating
and sinking particles, similar groups participated in the degradation of diatom debris.

Even if similar organisms are involved in degradation, the physical act of sinking,
whereby water flows past the particle surface, increases the rate of biodegradation simply
by aiding the removal of the degradation products, driving the reaction to the right. This
increase in microbiodegradation in sinking, as opposed to static, particles was elegantly
demonstrated in a mathematical model developed by Alcolombri et al. [210].

The presence of eukaryotes in marine snow has been less frequently investigated.
Bochdansky et al. [211] showed the presence of a fungal biomass equal to that of prokary-
otes in bathypelagic particles from the North Atlantic and Arctic seas. Fungi and labyrinthu-
lomycetes (the latter mainly labyrinthulids and thraustochytrids) dominated the biomass.
These eukaryotes are tolerant of low temperatures and high pressures and were consid-
ered to be potentially important biodegraders in the particles. Schultz et al. [212], using
metaproteomics and functional analyses of marine particles, showed that eukaryotes were
more abundant in the particles than in the surrounding seawater. Those detected in par-
ticles were phytoplankton, Oomycetes, and Fungi. Greater amounts of viral proteins
were also found in the particles. They reported rather small differences between bacterial
proteins on particles and in the planktonic phase. The relative abundance of eukaryotes
and viruses confirmed the results of López-Pérez et al. [213], who investigated the coastal
waters off Alicante, Spain. They also found that there was an overrepresentation in the
particle-associated microbiome of alpha, delta, and gamma proteobacteria, bacteroidetes
(Flavobacteria), Planktomycetes, and Actinobacteria.

Gregson et al. [214] discuss the problems involved in studying oil degradation asso-
ciated with marine snow. Most experiments have been performed using relatively high
concentrations of oil in static or rotating vessels in the laboratory, although decreasing
hydrocarbon concentrations as the particles sink from the contaminated site have been
well demonstrated in loco. Their excellent review discusses not only the need to employ
more relevant conditions in degradation studies but also the influence of dispersants. More
research is necessary to determine the structure and function of the sinking, as well as the
floating, particle microbiome and its relation to biodegradation activities.
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7. Perspectives

A greater understanding of microbial responses to anthropogenic changes in our
oceans is required to protect the marine environment. Recently, the number of studies
on the biodegradation of synthetic plastics by microorganisms or enzymes has grown
exponentially, representing a possibility to develop biological treatment technology for
these wastes, of which most are in the public eye at this time.

There is a great need for the development of standard methods for the analysis of the
chemistry and environmental effects of particles in the oceans. Much of the research carried
out at present use unproven or non-standard methods, and many of the accepted effects of
pollutant particles on the environment are based on laboratory experiments, often using
simulated particles and conditions, or even using pure cultures of microorganisms. The
changes that the particles undergo when exposed to the real environment are insufficiently
understood. Life cycle and ecological risk assessments of ENPs and other particulate pollu-
tants in our oceans are essential to stimulate and develop remediation processes. Research
into the structure and function of the sinking, as well as floating, particle microbiome and
its relation to biodegradation activities, could indicate potential ways of manipulating such
activities for a natural “clean-up” of the environment.

Changes in traditional materials and practices to protect materials exposed to the
marine environment, such as ships and marine constructions, are necessary to reduce an-
thropogenic pollution and these are under investigation, in the development of ecologically
acceptable antifoulants and non-adhesive surfaces, for example.

Governments can accelerate these activities by introducing relevant legislation aimed
at reducing polluting materials and activities, as has been done, for example, in Europe,
Thailand, and some of the U.S. states, to combat plastics pollution. As part of the attri-
butions of world managers, there are a series of measures that governments can use to
protect the oceans from the harm caused by pollution. Among them can be cited fisheries
management, conservation, and restoration of marine ecosystems, investments in research
aimed at the environment sector, and effective inspection of the respective coastal areas.
But the responsibility should not lie with the government sector alone. The awareness
of the population must be used as a tool to maintain the quality of ecosystems. For this,
effective educational policies must be applied in the most diverse strata of society and the
information collected by the scientific community must be translated to other sectors as a
way to mobilize independent and joint initiatives.
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