Marine Litter Stormy Wash-Outs: Developing the Neural Network to Predict Them
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological and Hydrophysical Data
3. Results
3.1. General Environmental Scenario
3.2. Duration of the Modeling Period
- (i)
- Inaccuracy of binding observations to time: the wash-out ended before it was recorded. Observers can only state the fact of the presence of marine debris on the shore, while the wash-out could have happened earlier.
- (ii)
- Too long a time span was selected for correlation analysis. Indeed, with a decrease in the sampling period, a slight increase in the correlation coefficient was found.
3.3. Training Set
- (i)
- Wash-out is observed during the phase of the storm that is subsiding (decrease in significant wave height and wind speed). The duration of the subsiding phase is, on average, about 2 days (48 h).
- (ii)
- The mean direction of the significant wave during the entire subsiding phase is predominantly perpendicular to the shore (from N-NW for the considered beach).
- (iii)
- The minimum significant wave height value in the subsided phase at which the wash-out took place was, on average, about 0.58 ± 0.28 m.
3.4. ANN Basic Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNEP. Marine Plastic Debris and Microplastics-Global Lessons and Research to In-Spire Action and Guide Policy Change; United Nations Environment Program: Nairobi, Kenya, 2016; Available online: www.unep.org (accessed on 5 October 2020).
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017; p. 43. [Google Scholar]
- Lebreton, L.C.; Van Der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Wibowo, Y.G.; Maryani, A.T.; Dewi Rosanti, D.; Rosarina, D. Microplastic in Marine Environment and Its Impact. Sainmatika 2019, 16, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Chubarenko, I.; Esiukova, E.; Khatmullina, L.; Lobchuk, O.; Grave, A.; Kileso, A.; Haseler, M. From macro to micro, from patchy to uniform: Analyzing plastic contamination along and across a sandy tideless coast. Mar. Pollut. Bull. 2020, 156, 111198. [Google Scholar] [CrossRef] [PubMed]
- Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef] [Green Version]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef] [PubMed]
- Critchell, K.; Lambrechts, J. Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes? Estuar. Coast. Shelf Sci. 2016, 171, 111–122. [Google Scholar] [CrossRef]
- Rosas, E.; Martins, F.; Janeiro, J. Marine Litter on the Coast of the Algarve: Main Sources and Distribution Using a Modeling Approach. J. Mar. Sci. Eng. 2021, 9, 412. [Google Scholar] [CrossRef]
- Ypma, S.; Kaandorp, M.; Jones, J.; Donnelly, A.; van Sebille, E. Using machine learning techniques to predict beaching of marine debris on the Galapagos Islands. In Proceedings of the EGU General Assembly Conference Abstracts, online, 19–30 April 2021; p. EGU21-274. [Google Scholar] [CrossRef]
- Chubarenko, I.; Stepanova, N. Microplastics in sea coastal zone: Lessons learned from the Baltic amber. Environ. Pollut. 2017, 224, 243–254. [Google Scholar] [CrossRef]
- Gómez-Pujol, L.; Orfila, A.; Álvarez-Ellacuría, A.; Terrados, J.; Tintoré, J. Posidonia oceanica beach-cast litter in Mediterranean beaches: A coastal videomonitoring study. J. Coast. Res. 2013, 65, 1768–1773. [Google Scholar] [CrossRef] [Green Version]
- Van Sebille, E.; Griffies, S.M.; Abernathey, R.; Adams, T.P.; Berloff, P.; Biastoch, A.; Blanke, B.; Chassignet, E.P.; Cheng, Y.; Cotter, C.J.; et al. Lagrangian ocean analysis: Fundamentals and practices. Ocean Model 2018, 121, 49–75. [Google Scholar] [CrossRef]
- Martyanov, S.D.; Ryabchenko, V.A.; Ershova, A.A.; Eremina, T.R.; Martin, G. On the assessment of microplastic distribution in the eastern part of the Gulf of Finland. Fundam. I Prikl. Gidrofiz. 2019, 12, 32–41. [Google Scholar] [CrossRef]
- Schulz, M.; Matthies, M. Artificial neural networks for modeling time series of beach litter in the southern North Sea. Mar. Environ. Res. 2014, 98, 14–20. [Google Scholar] [CrossRef]
- Agarwala, N. Managing marine environmental pollution using Artificial Intelligence. Marit. Technol. Res. 2021, 3, 120–136. [Google Scholar] [CrossRef]
- Franceschinia, S. Rummaging through the bin: Modeling marine litter distribution using Artificial Neural Networks. Mar. Pollut. Bull. 2019, 149, 110580. [Google Scholar] [CrossRef]
- Esiukova, E. Plastic pollution on the Baltic beaches of the Kaliningrad region, Russia. Mar. Pollut. Bull. 2017, 114, 1072–1080. [Google Scholar] [CrossRef]
- Haseler, M.; Balciunas, A.; Hauk, R.; Sabaliauskaite, V.; Chubarenko, I.; Ershova, A.; Schernewski, G. Marine Litter Pollution in Baltic Sea Beaches—Application of the Sand Rake Method. Front. Environ. Sci. 2020, 8, 238. [Google Scholar] [CrossRef]
- Esiukova, E.; Khatmullina, L.; Lobchuk, O.; Grave, A.; Kileso, A.; Haseler, M.; Zyubin, A.; Chubarenko, I. From macro to micro: Dataset on plastic contamination along and across a sandy tideless coast (the Curonian Spit, the Baltic Sea). Data Brief 2020, 30, 105635. [Google Scholar] [CrossRef]
- Esiukova, E.; Chubarenko, I.; Volodina, A.; Bykanova, T. Littering of marine coasts after severe storms. In Proceedings of the 12th Baltic Sea Science Congress 2019 (BSSC 2019), Stockholm, Sweden, 19–23 August 2019; p. 243. [Google Scholar]
- Chubarenko, B.; Woelfel, J.; Hofmann, J.; Aldag, S.; Beldowski, J.; Burlakovs, J.; Garrels, T.; Gorbunova, J.; Guizani, S.; Kupczyk, A.; et al. Converting beach wrack into a resource as a challenge for the Baltic Sea (an overview). Ocean Coast. Manag. 2021, 200, 20–26. [Google Scholar] [CrossRef]
- Chubarenko, I.; Esiukova, E.; Bagaev, A.; Isachenko, I.; Demchenko, N.; Zobkov, M.; Efimova, I.; Bagaeva, M.; Khatmullina, L. Behavior of Microplastics in Coastal Zones. In Microplastic Contamination in Aquatic Environments; Eddy, Y.Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 175–223. ISBN 9780128137475. [Google Scholar] [CrossRef]
- Nesterova, E.S. Mode, Diagnosis and Forecast of Wind Waves in the Seas and Oceans: Scientific and Methodological Manual; Respiratory, Ed.; MCC of Roshydromet, Research Group “Social Sciences”: Moscow, Russia, 2013; p. 337. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). ECMWF 2018, 147, 5–6. [Google Scholar] [CrossRef]
- Walmsley, J.L.; Bagg, D.L. A method of correlating wind data between two stations with application to the Alberta oil sands. Atmos. Ocean 1978, 16, 333–347. [Google Scholar] [CrossRef]
- Litta, A.J.; Idicula, S.M.; Mohanty, U.C. Artificial Neural Network Model in Prediction of Meteorological Parameters during Premonsoon Thunderstorms. Int. J. Atmos. Sci. 2013, 2013. [Google Scholar] [CrossRef]
- Bouzegag, C.; Bouzid-Lagha, S. Forecasting the upwelling phenomenon using an artificial neural network. Pol. J. Soil Sci. 2020, 53, 245–259. [Google Scholar] [CrossRef]
- Khan, M.R.; Ondrusek, C. Short-term electric demand prognosis using artificial neural networks. Electr. Eng. 2000, 51, 296–300. [Google Scholar]
- Savkevich, S.S. Amber; Nedra: Leningrad, Russia, 1970; p. 192. [Google Scholar]
- Schönhofer, J.; Dudkowska, A. Rip currents in the southern Baltic Sea multi-bar near-shore zone. Cont. Shelf Res. 2021, 212, 104324. [Google Scholar] [CrossRef]
No. | Date of the Observed Cast | Wind Speed at Height of 10 m, m/s | Wind Direction, Degrees | Significant Waves Height, m | Mean Wave Direction, Degrees |
---|---|---|---|---|---|
1 | 13 April 2013 | 3.5 | 230 | 0.52 | 270 |
2 | 12 June 2013 | 4.3 | 230 | 0.28 | 296 |
3 | 14 September 2013 | 6.9 | 90 | 0.65 | 50 |
4 | 24 November 2013 | 6.9 | 260 | 0.93 | 293 |
5 | 15 January 2014 | 7.8 | 80 | 0.70 | 54 |
6 | 30 March 2014 | 2.6 | 50 | 0.11 | 7 |
7 | 27 September 2014 | 6.1 | 290 | 0.75 | 292 |
8 | 6 January 2015 | 2.6 | 110 | 0.50 | 5 |
9 | 24 January 2015 | 6.1 | 180 | 0.47 | 320 |
10 | 31 October 2015 | 5.2 | 160 | 0.27 | 166 |
11 | 21 November 2015 | 2.6 | 100 | 0.50 | 354 |
12 | 5 December 2015 | 14.7 | 240 | 2.13 | 262 |
13 | 10 January 2016 | 4.3 | 130 | 0.76 | 132 |
14 | 12 January 2016 | 5.2 | 20 | 0.58 | 2 |
15 | 16 January 2016 | 3.5 | 360 | 0.61 | 350 |
16 | 18 June 2016 | 11.2 | 250 | 1.66 | 276 |
17 | 9 October 2016 | 7.8 | 100 | 1.00 | 64 |
18 | 4 June 2017 | 0 | 0 | 0.23 | 96 |
19 | 9 January 2018 | 5.2 | 230 | 0.57 | 298 |
20 | 16 June 2018 | 1.7 | 280 | 0.24 | 293 |
21 | 27 October 2018 | 12.1 | 260 | 2.32 | 263 |
22 | 4 November 2018 | 6.1 | 160 | 0.45 | 120 |
23 | 4 January 2019 | 5.2 | 280 | 1.50 | 297 |
24 | 13 April 2019 | 3.5 | 50 | 0.67 | 45 |
25 | 4 August 2019 | 5.2 | 340 | 0.59 | 357 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fetisov, S.; Chubarenko, I. Marine Litter Stormy Wash-Outs: Developing the Neural Network to Predict Them. Pollutants 2021, 1, 156-168. https://doi.org/10.3390/pollutants1030013
Fetisov S, Chubarenko I. Marine Litter Stormy Wash-Outs: Developing the Neural Network to Predict Them. Pollutants. 2021; 1(3):156-168. https://doi.org/10.3390/pollutants1030013
Chicago/Turabian StyleFetisov, Sergei, and Irina Chubarenko. 2021. "Marine Litter Stormy Wash-Outs: Developing the Neural Network to Predict Them" Pollutants 1, no. 3: 156-168. https://doi.org/10.3390/pollutants1030013
APA StyleFetisov, S., & Chubarenko, I. (2021). Marine Litter Stormy Wash-Outs: Developing the Neural Network to Predict Them. Pollutants, 1(3), 156-168. https://doi.org/10.3390/pollutants1030013