A Citizen Science Approach to Supporting Environmental Sustainability and Marine Litter Monitoring: A Case Study of USV Mapping of the Distribution of Anthropogenic Debris on Italian Sandy Beaches
Abstract
:1. Introduction
2. Materials and Methods
- -
- -
- The second study regarded the assessment of the reliability of UAV-derived orthophotos analyzed through a visual-based approach by citizen scientists (high school students [42]). In this case, BML accumulation estimations over a 900 m2 coastal test area in SRPRK were compared with results of an interoperating assessment test performed by professional researchers [44]. The results showed that properly trained students could achieve data reliability comparable to that of researchers, despite their lack of specialized expertise. These findings encouraged the expansion of this approach to a much larger coastal area (1 km long, 10–30-m-wide beach), investigating the spatial and temporal dynamics of AMD accumulation more broadly. Finally, the third study concerned the evaluation of the citizen science approach as a useful tool for raising awareness of marine litter problems among high school students [71].
2.1. The Study Area
2.2. UAV Photogrammetric Survey
2.3. Citizen Science Contribution: Data Acquisition and Training Phases
2.4. Citizen Science Data Analysis and Validation
2.5. Students’ Involvement in Other Activities
2.6. Questionnaire Preparation, Administration, and Data Analysis
3. Results
3.1. Quantity, Typology, and Spatial and Temporal Distribution of BML
3.2. Questionnaire Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMD | Anthropogenic marine debris |
BML | Beached marine litter |
CSO | Citizen science operators |
DSM | Digital surface model |
DTM | Digital terrain model |
GSD | Ground sampling distance |
MPA | Marine protected area |
ML | Marine litter |
PCTO | Pathways for Transversal Skills and Orientation |
SRPRK | San Rossore Park |
UAV | Unmanned aerial vehicle |
References
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A.; et al. Plastic Debris in the Open Ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [PubMed]
- Cózar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.Á.; Irigoien, X.; Duarte, C.M. Plastic Accumulation in the Mediterranean Sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef] [PubMed]
- Suaria, G.; Avio, C.G.; Mineo, A.; Lattin, G.L.; Magaldi, M.G.; Belmonte, G.; Moore, C.J.; Regoli, F.; Aliani, S. The Mediterranean Plastic Soup: Synthetic Polymers in Mediterranean Surface Waters. Sci. Rep. 2016, 6, 37551. [Google Scholar] [CrossRef] [PubMed]
- Giovacchini, A.; Merlino, S.; Locritani, M.; Stroobant, M. Spatial Distribution of Marine Litter along Italian Coastal Areas in the Pelagos Sanctuary (Ligurian Sea–NW Mediterranean Sea): A Focus on Natural and Urban Beaches. Mar. Pollut. Bull. 2018, 130, 140–152. [Google Scholar] [CrossRef]
- Andrady, A.L. The Plastic in Microplastics: A Review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef]
- Saliu, F.; Montano, S.; Garavaglia, M.G.; Lasagni, M.; Seveso, D.; Galli, P. Microplastic and Charred Microplastic in the Faafu Atoll, Maldives. Mar. Pollut. Bull. 2018, 136, 464–471. [Google Scholar] [CrossRef]
- Olivelli, A.; Hardesty, B.D.; Wilcox, C. Coastal Margins and Backshores Represent a Major Sink for Marine Debris: Insights from a Continental-Scale Analysis. Environ. Res. Lett. 2020, 15, 074037. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; Van Der Zwet, J.; Damsteeg, J.-W.; Slat, B.; Andrady, A.; Reisser, J. River Plastic Emissions to the World’s Oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef]
- Pierdomenico, M.; Casalbore, D.; Chiocci, F.L. Massive Benthic Litter Funnelled to Deep Sea by Flash-Flood Generated Hyperpycnal Flows. Sci. Rep. 2019, 9, 5330. [Google Scholar] [CrossRef]
- González-Fernández, D.; Cózar, A.; Hanke, G.; Viejo, J.; Morales-Caselles, C.; Bakiu, R.; Barceló, D.; Bessa, F.; Bruge, A.; Cabrera, M.; et al. Floating Macrolitter Leaked from Europe into the Ocean. Nat. Sustain. 2021, 4, 474–483. [Google Scholar] [CrossRef]
- Van Emmerik, T.; Schwarz, A. Plastic Debris in Rivers. WIREs Water 2020, 7, e1398. [Google Scholar] [CrossRef]
- Merlino, S.; Locritani, M.; Guarnieri, A.; Delrosso, D.; Bianucci, M.; Paterni, M. Marine Litter Tracking System: A Case Study with Open-Source Technology and a Citizen Science-Based Approach. Sensors 2023, 23, 935. [Google Scholar] [CrossRef] [PubMed]
- Galgani, F.; Hanke, G.; Werner, S.; De Vrees, L. Marine Litter within the European Marine Strategy Framework Directive. ICES J. Mar. Sci. 2013, 70, 1055–1064. [Google Scholar] [CrossRef]
- Gesamp. Guidelines for the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean; Gesamp Report and Studies. 2019, p. 123. Available online: http://www.gesamp.org/publications/guidelines-for-the-monitoring-and-assessment-of-plastic-litter-in-the-ocean (accessed on 1 May 2025).
- Castro-Rosero, L.M.; Hernandez, I.; Mestres, M.; Liste, M.; Alsina, J.M.; Espino, M. Numerical Modeling of the Dispersion and Accumulation of Marine Litter from the Dniester River in Coastal Areas of the Northwestern Black Sea. Mar. Pollut. Bull. 2025, 213, 117602. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of Floating Plastics from Satellite and Unmanned Aerial Systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 175–183. [Google Scholar] [CrossRef]
- Cózar, A.; Arias, M.; Suaria, G.; Viejo, J.; Aliani, S.; Koutroulis, A.; Delaney, J.; Bonnery, G.; Macías, D.; De Vries, R.; et al. Proof of Concept for a New Sensor to Monitor Marine Litter from Space. Nat. Commun. 2024, 15, 4637. [Google Scholar] [CrossRef]
- Navarro, A.; Young, M.; Allan, B.; Carnell, P.; Macreadie, P.; Ierodiaconou, D. The Application of Unmanned Aerial Vehicles (UAVs) to Estimate above-Ground Biomass of Mangrove Ecosystems. Remote Sens. Environ. 2020, 242, 111747. [Google Scholar] [CrossRef]
- Carrera-Hernández, J.J.; Levresse, G.; Lacan, P. Is UAV-SfM Surveying Ready to Replace Traditional Surveying Techniques? Int. J. Remote Sens. 2020, 41, 4820–4837. [Google Scholar] [CrossRef]
- Luppichini, M.; Bini, M.; Paterni, M.; Berton, A.; Merlino, S. A New Beach Topography-Based Method for Shoreline Identification. Water 2020, 12, 3110. [Google Scholar] [CrossRef]
- Ciccarelli, D.; Cini, E.; Mo, A.; Paterni, M.; Massetti, L.; Rangel-Buitrago, N.; Merlino, S. The Assessment and Management of Plant Invasions with Unmanned Aerial Vehicles. The Yucca Gloriosa Case, Italy. Reg. Stud. Mar. Sci. 2023, 57, 102759. [Google Scholar] [CrossRef]
- Massetti, L.; Mo, A.; Cini, E.; Paterni, M.; Merlino, S.; Ciccarelli, D. Detection of Yucca Gloriosa in Mediterranean Coastal Dunes: A Comparative Analysis of Field-Based Sampling, Human Interpretation of UAV Imagery and Deep Learning to Develop an Effective Tool for Controlling Invasive Plants. Reg. Stud. Mar. Sci. 2023, 68, 103265. [Google Scholar] [CrossRef]
- Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry Applications of UAVs in Europe: A Review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- Bonali, F.L.; Tibaldi, A.; Marchese, F.; Fallati, L.; Russo, E.; Corselli, C.; Savini, A. UAV-Based Surveying in Volcano-Tectonics: An Example from the Iceland Rift. J. Struct. Geol. 2019, 121, 46–64. [Google Scholar] [CrossRef]
- Pérez, J.A.; Gonçalves, G.R.; Rangel, J.M.G.; Ortega, P.F. Accuracy and Effectiveness of Orthophotos Obtained from Low Cost UASs Video Imagery for Traffic Accident Scenes Documentation. Adv. Eng. Softw. 2019, 132, 47–54. [Google Scholar] [CrossRef]
- Pérez-Alvárez, J.A.; Gonçalves, G.R.; Cerrillo-Cuenca, E. A Protocol for Mapping Archaeological Sites through Aerial 4k Videos. Digit. Appl. Archaeol. Cult. Herit. 2019, 13, e00101. [Google Scholar] [CrossRef]
- Kiszka, J.; Mourier, J.; Gastrich, K.; Heithaus, M. Using Unmanned Aerial Vehicles (UAVs) to Investigate Shark and Ray Densities in a Shallow Coral Lagoon. Mar. Ecol. Prog. Ser. 2016, 560, 237–242. [Google Scholar] [CrossRef]
- Levy, J.; Hunter, C.; Lukacazyk, T.; Franklin, E.C. Assessing the Spatial Distribution of Coral Bleaching Using Small Unmanned Aerial Systems. Coral Reefs 2018, 37, 373–387. [Google Scholar] [CrossRef]
- Gonçalves, G.R.; Pérez, J.A.; Duarte, J. Accuracy and Effectiveness of Low Cost UASs and Open Source Photogrammetric Software for Foredunes Mapping. Int. J. Remote Sens. 2018, 39, 5059–5077. [Google Scholar] [CrossRef]
- Holman, R.A.; Holland, K.T.; Lalejini, D.M.; Spansel, S.D. Surf Zone Characterization from Unmanned Aerial Vehicle Imagery. Ocean Dyn. 2011, 61, 1927–1935. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for Coastal Surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, Sensors, and Data Processing in Agroforestry: A Review towards Practical Applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV Photogrammetry for Topographic Monitoring of Coastal Areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Brunier, G.; Fleury, J.; Anthony, E.J.; Gardel, A.; Dussouillez, P. Close-Range Airborne Structure-from-Motion Photogrammetry for High-Resolution Beach Morphometric Surveys: Examples from an Embayed Rotating Beach. Geomorphology 2016, 261, 76–88. [Google Scholar] [CrossRef]
- Merlino, S.; Paterni, M.; Berton, A.; Massetti, L. Unmanned Aerial Vehicles for Debris Survey in Coastal Areas: Long-Term Monitoring Programme to Study Spatial and Temporal Accumulation of the Dynamics of Beached Marine Litter. Remote Sens. 2020, 12, 1260. [Google Scholar] [CrossRef]
- Alomar, C.; Estarellas, F.; Deudero, S. Microplastics in the Mediterranean Sea: Deposition in Coastal Shallow Sediments, Spatial Variation and Preferential Grain Size. Mar. Environ. Res. 2016, 115, 1–10. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Galgani, F.; Jaunet, S.; Campillo, A.; Guenegen, X.; His, E. Distribution and Abundance of Debris on the Continental Shelf of the North-Western Mediterranean Sea. Mar. Pollut. Bull. 1995, 30, 713–717. [Google Scholar] [CrossRef]
- Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic Marine Debris Assessment with Unmanned Aerial Vehicle Imagery and Deep Learning: A Case Study along the Beaches of the Republic of Maldives. Sci. Total Environ. 2019, 693, 133581. [Google Scholar] [CrossRef]
- Deidun, A.; Gauci, A.; Lagorio, S.; Galgani, F. Optimising Beached Litter Monitoring Protocols through Aerial Imagery. Mar. Pollut. Bull. 2018, 131, 212–217. [Google Scholar] [CrossRef]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of Unmanned Aerial Vehicles for Efficient Beach Litter Monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef]
- Merlino, S.; Paterni, M.; Locritani, M.; Andriolo, U.; Gonçalves, G.; Massetti, L. Citizen Science for Marine Litter Detection and Classification on Unmanned Aerial Vehicle Images. Water 2021, 13, 3349. [Google Scholar] [CrossRef]
- Andriolo, U.; Gonçalves, G.; Rangel-Buitrago, N.; Paterni, M.; Bessa, F.; Gonçalves, L.M.S.; Sobral, P.; Bini, M.; Duarte, D.; Fontán-Bouzas, Á.; et al. Drones for Litter Mapping: An Inter-Operator Concordance Test in Marking Beached Items on Aerial Images. Mar. Pollut. Bull. 2021, 169, 112542. [Google Scholar] [CrossRef] [PubMed]
- Andriolo, U.; Gonçalves, G.; Sobral, P.; Bessa, F. Spatial and Size Distribution of Macro-Litter on Coastal Dunes from Drone Images: A Case Study on the Atlantic Coast. Mar. Pollut. Bull. 2021, 169, 112490. [Google Scholar] [CrossRef] [PubMed]
- Hengstmann, E.; Fischer, E.K. Anthropogenic Litter in Freshwater Environments—Study on Lake Beaches Evaluating Marine Guidelines and Aerial Imaging. Environ. Res. 2020, 189, 109945. [Google Scholar] [CrossRef]
- Garcia-Garin, O.; Borrell, A.; Aguilar, A.; Cardona, L.; Vighi, M. Floating Marine Macro-Litter in the North Western Mediterranean Sea: Results from a Combined Monitoring Approach. Mar. Pollut. Bull. 2020, 159, 111467. [Google Scholar] [CrossRef]
- Geraeds, M.; Van Emmerik, T.; De Vries, R.; Bin Ab Razak, M.S. Riverine Plastic Litter Monitoring Using Unmanned Aerial Vehicles (UAVs). Remote Sens. 2019, 11, 2045. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U. Operational Use of Multispectral Images for Macro-Litter Mapping and Categorization by Unmanned Aerial Vehicle. Mar. Pollut. Bull. 2022, 176, 113431. [Google Scholar] [CrossRef]
- Andriolo, U.; Topouzelis, K.; Van Emmerik, T.H.M.; Papakonstantinou, A.; Monteiro, J.G.; Isobe, A.; Hidaka, M.; Kako, S.; Kataoka, T.; Gonçalves, G. Drones for Litter Monitoring on Coasts and Rivers: Suitable Flight Altitude and Image Resolution. Mar. Pollut. Bull. 2023, 195, 115521. [Google Scholar] [CrossRef]
- Bao, Z.; Sha, J.; Li, X.; Hanchiso, T.; Shifaw, E. Monitoring of Beach Litter by Automatic Interpretation of Unmanned Aerial Vehicle Images Using the Segmentation Threshold Method. Mar. Pollut. Bull. 2018, 137, 388–398. [Google Scholar] [CrossRef]
- Martin, C.; Zhang, Q.; Zhai, D.; Zhang, X.; Duarte, C.M. Enabling a Large-Scale Assessment of Litter along Saudi Arabian Red Sea Shores by Combining Drones and Machine Learning. Environ. Pollut. 2021, 277, 116730. [Google Scholar] [CrossRef]
- Wolf, M.; Van Den Berg, K.; Garaba, S.P.; Gnann, N.; Sattler, K.; Stahl, F.; Zielinski, O. Machine Learning for Aquatic Plastic Litter Detection, Classification and Quantification (APLASTIC-Q). Environ. Res. Lett. 2020, 15, 114042. [Google Scholar] [CrossRef]
- McKinley, D.C.; Miller-Rushing, A.J.; Ballard, H.L.; Bonney, R.; Brown, H.; Cook-Patton, S.C.; Evans, D.M.; French, R.A.; Parrish, J.K.; Phillips, T.B.; et al. Citizen Science Can Improve Conservation Science, Natural Resource Management, and Environmental Protection. Biol. Conserv. 2017, 208, 15–28. [Google Scholar] [CrossRef]
- Cohn, J.P. Citizen Science: Can Volunteers Do Real Research? BioScience 2008, 58, 192–197. [Google Scholar] [CrossRef]
- Silvertown, J. A New Dawn for Citizen Science. Trends Ecol. Evol. 2009, 24, 467–471. [Google Scholar] [CrossRef]
- Kosmala, M.; Wiggins, A.; Swanson, A.; Simmons, B. Assessing Data Quality in Citizen Science. Front. Ecol. Environ. 2016, 14, 551–560. [Google Scholar] [CrossRef]
- Thiel, M.; Penna-Díaz, M.A.; Luna-Jorquera, G.; Salas, S.; Sellanes, J.; Stotz, W. Citizen Scientists and Marine Research: Volunteer Participants, Their Contributions, and Projection for the Future. In Oceanography and Marine Biology; Hughes, R.N., Hughes, D.J., Smith, I.P., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 257–314. ISBN 978-0-429-16139-1. [Google Scholar]
- Eastman, L.B.; Núñez, P.; Crettier, B.; Thiel, M. Identification of Self-Reported User Behavior, Education Level, and Preferences to Reduce Littering on Beaches—A Survey from the SE Pacific. Ocean Coast. Manag. 2013, 78, 18–24. [Google Scholar] [CrossRef]
- Gelcich, S.; Buckley, P.; Pinnegar, J.K.; Chilvers, J.; Lorenzoni, I.; Terry, G.; Guerrero, M.; Castilla, J.C.; Valdebenito, A.; Duarte, C.M. Public Awareness, Concerns, and Priorities about Anthropogenic Impacts on Marine Environments. Proc. Natl. Acad. Sci. USA 2014, 111, 15042–15047. [Google Scholar] [CrossRef]
- Hartley, B.L.; Thompson, R.C.; Pahl, S. Marine Litter Education Boosts Children’s Understanding and Self-Reported Actions. Mar. Pollut. Bull. 2015, 90, 209–217. [Google Scholar] [CrossRef]
- Bravo, M.; De Los Ángeles Gallardo, M.; Luna-Jorquera, G.; Núñez, P.; Vásquez, N.; Thiel, M. Anthropogenic Debris on Beaches in the SE Pacific (Chile): Results from a National Survey Supported by Volunteers. Mar. Pollut. Bull. 2009, 58, 1718–1726. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Carson, H.S. The Incidence of Plastic Ingestion by Fishes: From the Prey’s Perspective. Mar. Pollut. Bull. 2013, 74, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Claessens, M.; Meester, S.D.; Landuyt, L.V.; Clerck, K.D.; Janssen, C.R. Occurrence and Distribution of Microplastics in Marine Sediments along the Belgian Coast. Mar. Pollut. Bull. 2011, 62, 2199–2204. [Google Scholar] [CrossRef]
- Gago, J.; Lahuerta, F.; Antelo, P. Characteristics (Abundance, Type and Origin) of Beach Litter on the Galician Coast (NW Spain) from 2001 to 2010. Sci. Mar. 2014, 78, 125–134. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Thiel, M. Distribution and Abundance of Small Plastic Debris on Beaches in the SE Pacific (Chile): A Study Supported by a Citizen Science Project. Mar. Environ. Res. 2013, 87–88, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Alvisi, F.; Baldrighi, E.; Merlino, S.; Locritani, M.; Panfili, M.; Colella, S.; Bronco, S.; Cicogna, F.; Coiai, S.; King, E.H. Walking on the Sea Traces: Developing a Platform to Bring Ocean Literacy and Citizen Science at Home. Mediterr. Mar. Sci. 2022, 23, 389–404. [Google Scholar] [CrossRef]
- Kawabe, L.A.; Ghilardi-Lopes, N.P.; Turra, A.; Wyles, K.J. Citizen Science in Marine Litter Research: A Review. Mar. Pollut. Bull. 2022, 182, 114011. [Google Scholar] [CrossRef]
- Catarino, A.I.; Mahu, E.; Severin, M.I.; Akpetou, L.K.; Annasawmy, P.; Asuquo, F.E.; Beckman, F.; Benomar, M.; Jaya-Ram, A.; Malouli, M.; et al. Addressing Data Gaps in Marine Litter Distribution: Citizen Science Observation of Plastics in Coastal Ecosystems by High-School Students. Front. Mar. Sci. 2023, 10, 1126895. [Google Scholar] [CrossRef]
- Van Der Velde, T.; Milton, D.A.; Lawson, T.J.; Wilcox, C.; Lansdell, M.; Davis, G.; Perkins, G.; Hardesty, B.D. Comparison of Marine Debris Data Collected by Researchers and Citizen Scientists: Is Citizen Science Data Worth the Effort? Biol. Conserv. 2017, 208, 127–138. [Google Scholar] [CrossRef]
- Locritani, M.; Merlino, S.; Abbate, M. Assessing the Citizen Science Approach as Tool to Increase Awareness on the Marine Litter Problem. Mar. Pollut. Bull. 2019, 140, 320–329. [Google Scholar] [CrossRef]
- Bertacchi, A. Dune Habitats of the Migliarino–San Rossore–Massaciuccoli Regional Park (Tuscany–Italy). J. Maps 2017, 13, 322–331. [Google Scholar] [CrossRef]
- Bini, M.; Casarosa, N.; Luppichini, M. Exploring the Relationship between River Discharge and Coastal Erosion: An Integrated Approach Applied to the Pisa Coastal Plain (Italy). Remote Sens. 2021, 13, 226. [Google Scholar] [CrossRef]
- Merlino, S.; Locritani, M.; Farina, S.; Sorbini, C.; Battaglini, S.; Dellacasa, M.; Scaglia, P.; Marchi, D.; Bonaccorsi, E. Plastic and Us: Looking at the Marine Litter Problem from inside the Rubbish. An Unusual Temporary Exhibition at the Natural History Museum of the University of Pisa. Mediterr. Mar. Sci. 2022, 23, 338–356. [Google Scholar] [CrossRef]
- Arcangeli, A.; Crosti, R.; Dodaro, G.; Manghi, G.; Santini, E.; Silvestri, C.; Squitteri, F. Quaderni ISPRA-Ricerca Marina. 19/2024, Roma. 2024; p. 75. Available online: https://www.isprambiente.gov.it/files2024/pubblicazioni/quaderni/quaderno-ispra-ricerca-marina-19-2024.pdf (accessed on 1 May 2025).
- Merlino, S.; Locritani, M.; Mioni, E.; Vignali, L. Towards a Greater Integration of Marine Science into School Curricula: Shortening the Distance between Students and Ocean Challenges. J. Ocean Technol. 2019, 14, 43–56. [Google Scholar]
Time | N. Area | N. Operator | N. Items |
---|---|---|---|
T2 | 8 | 24 | 4178 |
T4 | 6 | 18 | 3350 |
T6 | 8 | 15 | 4913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlino, S.; Paterni, M.; Massetti, L.; Cocchi, L.; Locritani, M. A Citizen Science Approach to Supporting Environmental Sustainability and Marine Litter Monitoring: A Case Study of USV Mapping of the Distribution of Anthropogenic Debris on Italian Sandy Beaches. Sustainability 2025, 17, 5048. https://doi.org/10.3390/su17115048
Merlino S, Paterni M, Massetti L, Cocchi L, Locritani M. A Citizen Science Approach to Supporting Environmental Sustainability and Marine Litter Monitoring: A Case Study of USV Mapping of the Distribution of Anthropogenic Debris on Italian Sandy Beaches. Sustainability. 2025; 17(11):5048. https://doi.org/10.3390/su17115048
Chicago/Turabian StyleMerlino, Silvia, Marco Paterni, Luciano Massetti, Luca Cocchi, and Marina Locritani. 2025. "A Citizen Science Approach to Supporting Environmental Sustainability and Marine Litter Monitoring: A Case Study of USV Mapping of the Distribution of Anthropogenic Debris on Italian Sandy Beaches" Sustainability 17, no. 11: 5048. https://doi.org/10.3390/su17115048
APA StyleMerlino, S., Paterni, M., Massetti, L., Cocchi, L., & Locritani, M. (2025). A Citizen Science Approach to Supporting Environmental Sustainability and Marine Litter Monitoring: A Case Study of USV Mapping of the Distribution of Anthropogenic Debris on Italian Sandy Beaches. Sustainability, 17(11), 5048. https://doi.org/10.3390/su17115048