Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,063)

Search Parameters:
Keywords = magnetization relaxation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 620 KiB  
Review
Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review
by Linda Poggiarelli, Caterina Bernetti, Luca Pugliese, Federico Greco, Bruno Beomonte Zobel and Carlo A. Mallio
Clin. Pract. 2025, 15(8), 137; https://doi.org/10.3390/clinpract15080137 - 25 Jul 2025
Viewed by 289
Abstract
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast [...] Read more.
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast agents. Manganese-based contrast agents offer a promising substitute, owing to manganese’s favorable magnetic properties, natural biological role, and strong T1 relaxivity. This review aims to critically assess the structure, mechanisms, applications, and challenges of manganese-based contrast agents in MRI. Methods: This review synthesizes findings from preclinical and clinical studies involving various types of manganese-based contrast agents, including small-molecule chelates, nanoparticles, theranostic platforms, responsive agents, and controlled-release systems. Special attention is given to pharmacokinetics, biodistribution, and safety evaluations. Results: Mn-based agents demonstrate promising imaging capabilities, with some achieving relaxivity values comparable to gadolinium compounds. Targeted uptake mechanisms, such as hepatocyte-specific transport via organic anion-transporting polypeptides, allow for enhanced tissue contrast. However, concerns remain regarding the in vivo release of free Mn2+ ions, which could lead to toxicity. Preliminary toxicity assessments report low cytotoxicity, but further comprehensive long-term safety studies should be carried out. Conclusions: Manganese-based contrast agents present a potential alternative to gadolinium-based MRI agents pending further validation. Despite promising imaging performance and biocompatibility, further investigation into stability and safety is essential. Additional research is needed to facilitate the clinical translation of these agents. Full article
Show Figures

Figure 1

24 pages, 4603 KiB  
Article
Magnetic Resonance Imaging Evaluation of Photodynamic Therapy with Indocyanine Green in Atherosclerosis Plaques Before and After Gadovist Administration
by Piotr Wańczura, Wiktoria Mytych, Dorota Bartusik-Aebisher, Dawid Leksa, Adrian Truszkiewicz and David Aebisher
Int. J. Transl. Med. 2025, 5(3), 32; https://doi.org/10.3390/ijtm5030032 - 25 Jul 2025
Viewed by 305
Abstract
Background: Singlet oxygen (1O2) generation in biological samples remains a significant challenge. Studying the mechanism of 1O2 action during photodynamic therapy (PDT) in atherosclerotic plaques in vitro represents an innovative cardiological approach. Atherosclerosis, a chronic and progressive [...] Read more.
Background: Singlet oxygen (1O2) generation in biological samples remains a significant challenge. Studying the mechanism of 1O2 action during photodynamic therapy (PDT) in atherosclerotic plaques in vitro represents an innovative cardiological approach. Atherosclerosis, a chronic and progressive disease, is characterized by plaque buildup inside arterial walls. Objectives: This study focused on the use of spin–lattice (T1) and spin–spin (T2) relaxation times measured by Magnetic Resonance Imaging (MRI) before and after the administration of indocyanine green-mediated PDT (ICG-PDT). Methods: To enhance visualization of morphological changes in atherosclerotic plaques, the clinically approved MRI contrast agent Gadovist was utilized. A total of 12 atherosclerotic plaque samples were collected from six patients undergoing endarterectomy. The generation of 1O2 in these plaques was assessed using quantitative MRI measurements and microscopic imaging, which visualized structural changes induced by PDT. Results: This research explores the potential of T1 and T2 relaxation times as indicators of PDT efficacy, while Gadovist helped provide evidence of 1O2 diffusion within the samples. Conclusions: Considering advancements in modern treatment, PDT may offer a novel approach for targeting atherosclerosis. Full article
Show Figures

Figure 1

29 pages, 4982 KiB  
Article
Comprehensive Investigation of Polymorphic Stability and Phase Transformation Kinetics in Tegoprazan
by Joo Ho Lee, Ki Hyun Kim, Se Ah Ryu, Jason Kim, Kiwon Jung, Ki Sung Kang and Tokutaro Yamaguchi
Pharmaceutics 2025, 17(7), 928; https://doi.org/10.3390/pharmaceutics17070928 - 18 Jul 2025
Viewed by 444
Abstract
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of [...] Read more.
Background/Objectives: Tegoprazan (TPZ) is a potassium-competitive acid blocker (P-CAB) used to treat conditions such as gastroesophageal reflux disease, peptic ulcer, and Helicobacter pylori infection. It exists in three solid forms: amorphous, Polymorph A, and Polymorph B. This study investigates the molecular basis of polymorph selection, focusing on conformational bias and solvent-mediated phase transformations (SMPTs). Methods: The conformational energy landscapes of two TPZ tautomers were constructed using relaxed torsion scans with the OPLS4 force field and validated by nuclear Overhauser effect (NOE)-based nuclear magnetic resonance (NMR). Hydrogen-bonded dimers were analyzed using DFT-D. Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), solubility, and slurry tests were conducted using methanol, acetone, and water. Kinetic profiles were modeled with the Kolmogorov–Johnson–Mehl–Avrami (KJMA) equation. Results: Polymorph A was thermodynamically stable across all analyses. Both amorphous TPZ and Polymorph B converted to A in a solvent-dependent manner. Methanol induced direct A formation, while acetone showed a B → A transition. Crystallization was guided by solution conformers and hydrogen bonding. Conclusions: TPZ polymorph selection is governed by solution-phase conformational preferences, tautomerism, and solvent-mediated hydrogen bonding. DFT-D and NMR analyses showed that protic solvents favor the direct crystallization of stable Polymorph A, while aprotic solvents promote the transient formation of metastable Polymorph B. Elevated temperatures and humidity accelerate polymorphic transitions. This crystal structure prediction (CSP)-independent strategy offers a practical framework for rational polymorph control and the mitigation of disappearing polymorph risks in tautomeric drugs. Full article
(This article belongs to the Special Issue Drug Polymorphism and Dosage Form Design, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 2357 KiB  
Article
Chimeric Element-Regulated MRI Reporter System for Mediation of Glioma Theranostics
by Qian Hu, Jie Huang, Xiangmin Zhang, Haoru Wang, Xiaoying Ni, Huiru Zhu and Jinhua Cai
Cancers 2025, 17(14), 2349; https://doi.org/10.3390/cancers17142349 - 15 Jul 2025
Viewed by 302
Abstract
Background and Purpose: Glioblastoma remains a therapeutic challenge with a poor prognosis despite multimodal treatments. Reporter-based magnetic resonance imaging (MRI) offers a promising approach for tumor visualization, but its efficacy depends on sufficient reporter gene expression. This study aimed to develop a [...] Read more.
Background and Purpose: Glioblastoma remains a therapeutic challenge with a poor prognosis despite multimodal treatments. Reporter-based magnetic resonance imaging (MRI) offers a promising approach for tumor visualization, but its efficacy depends on sufficient reporter gene expression. This study aimed to develop a chimeric element-regulated ferritin heavy chain 1 (FTH1) reporter system to enhance MRI-based glioma detection while enabling targeted therapy via transferrin receptor (TfR)-mediated drug delivery. Methods: Using gene cloning techniques, we constructed a chimeric FTH1 expression system comprising tumor-specific PEG3 promoter (transcriptional control), bFGF-2 5′UTR (translational enhancement), and WPRE (mRNA stabilization). Lentiviral vectors delivered constructs to U251 glioblastoma cells and xenografts. FTH1/TfR expression was validated by Western blot and immunofluorescence. Iron accumulation was assessed via Prussian blue staining and TEM. MRI evaluated T2 signal changes. Transferrin-modified doxorubicin liposomes (Tf-LPD) were characterized for size and drug loading and tested for cellular uptake and cytotoxicity in vitro. In vivo therapeutic efficacy was assessed in nude mouse models through tumor volume measurement, MR imaging, and histopathology. Results: The chimeric system increased FTH1 expression significantly over PEG3-only controls (p < 0.01), with an increase of nearly 1.5-fold compared to the negative and blank groups and approximately a two-fold increase relative to the single promoter group, with corresponding TfR upregulation. Enhanced iron accumulation reduced T2 relaxation times significantly (p < 0.01), improving MR contrast. Tf-LPD (115 nm, 70% encapsulation) showed TfR-dependent uptake, inducing obvious apoptosis in high-TfR cells compared with that in controls. In vivo, Tf-LPD reduced tumor growth markedly in chimeric-system xenografts versus controls, with concurrent MR signal attenuation. Conclusions: The chimeric regulatory strategy overcomes limitations of single-element systems, demonstrating significant potential for integrated glioma theranostics. Its modular design may be adaptable to other reporter genes and malignancies. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

21 pages, 3040 KiB  
Article
Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors
by Hannah Mettee, Aaron Asparin, Zulaikha Ali, Shi He, Xianzhi Li, Joshua Hall, Alexis Kim, Shuo Wu, Morgan J. Hawker, Masaki Uchida and He Wei
Sensors 2025, 25(14), 4326; https://doi.org/10.3390/s25144326 - 10 Jul 2025
Viewed by 513
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system, plays a pivotal role in synaptic signaling, learning, and memory. Abnormal glutamate levels are implicated in various neurological disorders, including epilepsy, Alzheimer’s disease, and ischemic stroke. Despite the utility of magnetic resonance imaging [...] Read more.
Glutamate, the primary excitatory neurotransmitter in the central nervous system, plays a pivotal role in synaptic signaling, learning, and memory. Abnormal glutamate levels are implicated in various neurological disorders, including epilepsy, Alzheimer’s disease, and ischemic stroke. Despite the utility of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in diagnosing such conditions, the development of effective glutamate-sensitive contrast agents remains a challenge. In this study, we present ultrasmall, citric acid-coated superparamagnetic iron oxide nanoparticles (CA-SPIONs) as highly selective and sensitive MRS probes for glutamate detection. These 5 nm magnetite CA-SPIONs exhibit a stable dispersion in physiological buffers and undergo aggregation in the presence of glutamate, significantly enhancing the T2 MRS contrast power. At physiological glutamate levels, the CA-SPIONs yielded a pronounced signal change ratio of nearly 60%, while showing a negligible response to other neurotransmitters such as GABA and dopamine. Computational simulations confirmed the mechanism of glutamate-mediated aggregation and its impact on transversal relaxation rates and relaxivities. The sensitivity and selectivity of CA-SPIONs underscore their potential as eco-friendly, iron-based alternatives for future neurological sensing applications targeting glutamatergic dysfunction. Full article
(This article belongs to the Special Issue Nanomaterial-Based Devices and Biosensors for Diagnostic Applications)
Show Figures

Figure 1

18 pages, 11863 KiB  
Article
Storage and Ripening Monitoring of Pecorino Cheese Through 2D 1H-NMR Relaxation and ANOVA Simultaneous Component Analysis (ASCA): A Comparison with DSC and ATR-FTIR Characterization
by Francesca Di Donato, Francesco Gabriele, Alessandra Biancolillo, Cinzia Casieri, Angelo Antonio D’Archivio and Nicoletta Spreti
Molecules 2025, 30(14), 2916; https://doi.org/10.3390/molecules30142916 - 10 Jul 2025
Viewed by 234
Abstract
In food processing, non-destructive and non-invasive characterization is a powerful tool for monitoring processes and controlling quality. Cheeses consist of a large variety of products whose nutritional and sensory properties depend on the source materials, cheesemaking procedures, and biochemical transformations occurring during maturation [...] Read more.
In food processing, non-destructive and non-invasive characterization is a powerful tool for monitoring processes and controlling quality. Cheeses consist of a large variety of products whose nutritional and sensory properties depend on the source materials, cheesemaking procedures, and biochemical transformations occurring during maturation and storage. In this study, proton magnetic resonance relaxation time correlation maps (2D 1H-NMR T1–T2) are used to investigate the effect of the ripening degree on Pecorino cheese and evaluate its evolution during storage in a refrigerator under vacuum-packaging conditions. NMR relaxometry has allowed for non-invasive monitoring of packaged Pecorino cheese slices, and the results were compared with those obtained with the two widely used techniques, i.e., Differential Scanning Calorimetry (DSC) and Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR). The analysis of variance and simultaneous component analysis (ASCA), separately applied to 2D 1H-NMR T1–T2 correlation maps, DSC, and ATR-FTIR data, suggests that the results obtained with the NMR approach are consistent with those obtained using the two benchmark techniques. In addition, it can distinguish cheeses stored for different durations (storage time) irrespective of their original moisture content (ripening degree), and vice versa, without opening the vacuum-package, which could compromise the integrity of the samples. Full article
Show Figures

Figure 1

14 pages, 1991 KiB  
Article
Chemical Manipulation of the Collective Superspin Dynamics in Heat-Generating Superparamagnetic Fluids: An AC-Susceptibility Study
by Cristian E. Botez and Alex D. Price
Crystals 2025, 15(7), 631; https://doi.org/10.3390/cryst15070631 - 9 Jul 2025
Viewed by 207
Abstract
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major [...] Read more.
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major (~100 K) increase in the superspin blocking temperature of the Co0.2Fe2.8O4-based fluid (CFO) compared to its Fe3O4 counterpart (FO). We ascribe this behavior to the strengthening of the interparticle magnetic dipole interactions upon Co doping, as demonstrated by the relative χ″-peak temperature variation per frequency decade Φ=TT·log(f), which decreases from Φ~0.15 in FO to Φ~0.025 in CFO. In addition, χ″vs. T|f datasets from the CFO fluid reveal two magnetic events at temperatures Tp1 = 240 K and Tp2 = 275 K, both above the fluid’s freezing point (TF = 197 K). We demonstrate that the physical rotation of the nanoparticles within the fluid, the Brown mechanism, is entirely responsible for the collective superspin relaxation observed at Tp1, whereas the Néel mechanism, the superspin flip across an energy barrier within the particle, is dominant at Tp2. We confirm this finding through fits of models that describe the temperature dependence of the relaxation time via the two mechanisms: τB(T)=3η0VHkBTexpEkBTT0 and τNT=τ0expEBkBTT0. The best fits yield γ0=3η0VHkB = 1.5 × 10−8 s·K, E′/kB = 7 03 K, and T0′ = 201 K for the Brown relaxation, and EB/kB = 2818 K and T0 = 143 K for the Néel relaxation. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

31 pages, 3723 KiB  
Review
Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
by Chandra Prakash and Rohit Mahar
Foods 2025, 14(14), 2417; https://doi.org/10.3390/foods14142417 - 9 Jul 2025
Viewed by 617
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR [...] Read more.
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

16 pages, 1229 KiB  
Article
Nonlinear Hydrogen Bond Network in Small Water Clusters: Combining NMR, DFT, FT-IR, and EIS Research
by Ignat Ignatov, Yordan G. Marinov, Paunka Vassileva, Georgi Gluhchev, Ludmila A. Pesotskaya, Ivan P. Jordanov and Mario T. Iliev
Symmetry 2025, 17(7), 1062; https://doi.org/10.3390/sym17071062 - 4 Jul 2025
Cited by 1 | Viewed by 511
Abstract
Water’s unique physicochemical properties arise from its dynamic hydrogen-bonding network, yet the precise molecular threshold at which these cooperative behaviors emerge remains a key question. This study employed nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to investigate the evolution [...] Read more.
Water’s unique physicochemical properties arise from its dynamic hydrogen-bonding network, yet the precise molecular threshold at which these cooperative behaviors emerge remains a key question. This study employed nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to investigate the evolution of hydrogen bonding strength in small water clusters, ranging from dimers to pentamers. The observed exponential increase in NMR chemical shift up to the pentamer reflects growing hydrogen bond cooperativity, identifying the (H2O)5 cluster as a critical structural and energetic threshold. At this size, the network achieves sufficient connectivity to support key bulk-like phenomena such as proton transfer and dielectric relaxation. These conclusions were corroborated by complementary FT-IR and electrochemical impedance spectroscopy (EIS) measurements of bulk water. Our results position the water pentamer as the molecular onset of emergent solvent behavior, effectively bridging the divide between discrete clusters and the macroscopic properties of liquid water. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

16 pages, 11512 KiB  
Article
Itinerant and Correlated Nature of Altermagnetic MnTe Single Crystal Studied by Photoemission and Inverse-Photoemission Spectroscopies
by Kazi Golam Martuza, Yogendra Kumar, Hiroshi Yamaguchi, Shiv Kumar, Masashi Arita, Hitoshi Sato, Shin-ichiro Ideta and Kenya Shimada
Materials 2025, 18(13), 3103; https://doi.org/10.3390/ma18133103 - 1 Jul 2025
Viewed by 382
Abstract
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the [...] Read more.
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the Γ¯ point, which was consistent with the reported ARPES results and our density functional theory (DFT) calculations with the on-site Coulomb interaction U. The observed Mn 3d↑-derived peak at −3.5 eV, however, significantly deviated from the DFT + U calculations. Meanwhile, the Mn 3d↓-derived peak at +3.0 eV observed by inverse-photoemission spectroscopy agreed well with the DFT + U results. Based on simulations of the spectral function employing an w-dependent model self-energy, we found significant relaxation effects in the electron-removal process, while such effects were negligible in the electron-addition process. Our study provides a comprehensive picture of electronic states, forming a solid foundation for understanding the magnetic and transport properties of MnTe. Full article
(This article belongs to the Special Issue Advanced Materials with Strong Electron Correlations)
Show Figures

Figure 1

16 pages, 1430 KiB  
Article
Contributions to Estimating the Water-Holding Capacity in Fresh Pork Hams Using NMR Relaxometry
by Víctor Remiro, María Isabel Cambero, María Dolores Romero-de-Ávila, David Castejón, José Segura and María Encarnación Fernández-Valle
Foods 2025, 14(13), 2329; https://doi.org/10.3390/foods14132329 - 30 Jun 2025
Viewed by 319
Abstract
Determining the technological quality of fresh meat pieces is essential in the meat industry to ensure the production of high-quality products. For this purpose, nuclear magnetic resonance (NMR) is a non-destructive and non-invasive technique that appears as an alternative to traditional methodologies. The [...] Read more.
Determining the technological quality of fresh meat pieces is essential in the meat industry to ensure the production of high-quality products. For this purpose, nuclear magnetic resonance (NMR) is a non-destructive and non-invasive technique that appears as an alternative to traditional methodologies. The objective of this work is to determine the potential of magnetic resonance imaging (MRI) and time-domain (TD-NMR) relaxometry for determining the physicochemical characterization of fresh hams with different industrial destinations (both fresh and cured products, such as dry-cured ham). For this study, the biceps femoris, semimembranosus, and semitendinosus muscles of 20 fresh hind legs from white pigs, classified into four categories according to their fat content, were analyzed. The semitendinosus muscle was selected as a model, and positive and negative correlations were obtained between different physicochemical parameters and the longitudinal (T1) and transverse (T2) relaxation times obtained by MRI and TD-NMR. Regression models using T1 and T2 were also developed to predict the muscle water-holding capacity (WHC) and drip loss, using high, medium, and low magnetic field NMR (R2 > 0.80). Therefore, MRI and TD-NMR could be considered as highly suitable and accurate non-destructive techniques for the WHC determination in the meat industry. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

14 pages, 17044 KiB  
Article
Evolution of Griffiths-like Anomaly in Isostructural Swedenborgite Compounds Ho1−xErxBaCo4O7+δ
by Biplab Pakhuria, Rafikul Ali Saha, Carlo Meneghini, Fabrice Bert, Shruti Kundu and Sugata Ray
Magnetochemistry 2025, 11(7), 55; https://doi.org/10.3390/magnetochemistry11070055 - 30 Jun 2025
Viewed by 357
Abstract
In this study, we investigate the presence of the Griffiths-like anomaly in the geometrically frustrated antiferromagnet HoBaCo4O7+δ and globally its absence in ErBaCo4O7+δ, despite only small differences in the ionic radii, f [...] Read more.
In this study, we investigate the presence of the Griffiths-like anomaly in the geometrically frustrated antiferromagnet HoBaCo4O7+δ and globally its absence in ErBaCo4O7+δ, despite only small differences in the ionic radii, f-electron occupancy, and the corresponding crystal structures of the Ho3+ and Er3+-members. Previous studies have identified the Griffiths phase in the Dy-analog, DyBaCo4O7+δ, suggesting certain inherent features of this class of materials that regularly give rise to such anomalies. To explore the curious disappearance of such an anomalous feature in ErBaCo4O7+δ, we prepared a series of compounds with varying compositions Ho1xErxBaCo4O7+δ (0x1) and systematically studied the evolution of various physical properties as a function of Er-doping. Our experimental studies, including X-ray diffraction (XRD), magnetic, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), heat capacity, and muon spin relaxation spectroscopy (μSR spectroscopy), revealed that while the Griffiths-like anomaly indeed disappears with doping at the macroscopic level, signatures of inhomogeneity are retained in ErBaCo4O7+δ too, at least at the local level. Overall, our results highlight the significant role of ionic radius and local structural distortions in stabilizing the Griffiths phase in this class of systems. Full article
Show Figures

Figure 1

21 pages, 7004 KiB  
Article
Mn-Doped Carbon Dots as Contrast Agents for Magnetic Resonance and Fluorescence Imaging
by Corneliu S. Stan, Adina Coroaba, Natalia Simionescu, Cristina M. Uritu, Dana Bejan, Laura E. Ursu, Andrei-Ioan Dascalu, Florica Doroftei, Marius Dobromir, Cristina Albu and Conchi O. Ania
Int. J. Mol. Sci. 2025, 26(13), 6293; https://doi.org/10.3390/ijms26136293 - 29 Jun 2025
Viewed by 642
Abstract
Carbon nanodots have recently attracted attention as fluorescence imaging probes and magnetic resonance imaging (MRI) contrast agents in diagnostic and therapeutic applications due to their unique optical properties. In this work we report the synthesis of biocompatible Mn (II)-doped carbon nanodots and their [...] Read more.
Carbon nanodots have recently attracted attention as fluorescence imaging probes and magnetic resonance imaging (MRI) contrast agents in diagnostic and therapeutic applications due to their unique optical properties. In this work we report the synthesis of biocompatible Mn (II)-doped carbon nanodots and their performance as fluorescence and MRI contrast agents in in vitro assays. The thermal decomposition of a Diphenylhydantoin–Mn(II) complex assured the incorporation of manganese (II) ions in the carbon dots. The obtained materials display a favorable spin density for MRI applications. The synthesized Mn(II)-CNDs also displayed remarkable photoluminescence, with a bright blue emission and good response in in vitro fluorescence imaging. Cytotoxicity investigations revealed good cell viability on malignant melanoma cell lines in a large concentration range. A cytotoxic effect was observed for MG-63 osteosarcoma and breast adenocarcinoma cell lines. The in vitro MRI assays demonstrated the potentialities of the Mn(II)-CNDs as T2 contrast agents at low dosages, with relaxivity values higher than those of commercial ones. Due to the simplicity of their synthetic pathway and their low cytotoxicity, the prepared Mn(II)-CNDs are potential alternatives to currently used contrast agents based on gadolinium complexes. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

19 pages, 3587 KiB  
Article
Relations Between the Printability Descriptors of Mortar and NMR Relaxometry Data
by Mihai M. Rusu and Ioan Ardelean
Materials 2025, 18(13), 3070; https://doi.org/10.3390/ma18133070 - 27 Jun 2025
Viewed by 299
Abstract
Concrete printing technologies play a key role in the modernization of construction practices. One factor that mitigates their progress is the development of standards and characterization tools for concrete during printing. The aim of this work is to point out correlations between some [...] Read more.
Concrete printing technologies play a key role in the modernization of construction practices. One factor that mitigates their progress is the development of standards and characterization tools for concrete during printing. The aim of this work is to point out correlations between some printability descriptors of mortars and the data obtained from low-field nuclear magnetic resonance (NMR) relaxometry techniques. In this context, the superposed effects of an acrylic-based superplasticizer and calcium nitrate accelerator were investigated. The mortars under study are based on white Portland cement, fine aggregates, and silica fume at fixed ratios. Extrusion tests and visual inspection of the filaments evaluate the extrudability and the printing window. The selected compositions were also investigated via transverse T2 and longitudinal T1 NMR relaxation times. The results indicate that both additives increase the printing window of the mortar, while the accelerator induces a faster increase in specific surface area of capillary pores S/V only after 30–60 min of hydration. Some correlations were found between the printing window and the range where the transverse relaxation rates 1/T2 and the pore surface-to-volume ratios S/V increase linearly. This suggests some promising connections between NMR techniques and the study of structural buildup of cementitious materials. Full article
Show Figures

Figure 1

12 pages, 949 KiB  
Article
Diagnostic Value of T2 Mapping in Sacroiliitis Associated with Spondyloarthropathy
by Mustafa Koyun and Kemal Niyazi Arda
Diagnostics 2025, 15(13), 1634; https://doi.org/10.3390/diagnostics15131634 - 26 Jun 2025
Viewed by 422
Abstract
Background/Objectives: T2 mapping is a quantitative magnetic resonance imaging (MRI) technique that provides information about tissue water content and molecular mobility. This study aimed to evaluate the diagnostic utility of T2 mapping in assessing sacroiliitis associated with spondyloarthropathy (SpA). Methods: A prospective study [...] Read more.
Background/Objectives: T2 mapping is a quantitative magnetic resonance imaging (MRI) technique that provides information about tissue water content and molecular mobility. This study aimed to evaluate the diagnostic utility of T2 mapping in assessing sacroiliitis associated with spondyloarthropathy (SpA). Methods: A prospective study examined a total of 56 participants, comprising 31 SpA patients (n = 31) and 25 healthy controls (n = 25), who underwent sacroiliac joint MRI between August 2018 and August 2020. T2 mapping images were generated using multi-echo turbo spin echo (TSE) sequence, and quantitative T2 relaxation times were measured from bone and cartilage regions. Statistical analysis employed appropriate parametric and non-parametric tests with significance set at p < 0.05. Results: The mean T2 relaxation time measured from the areas with osteitis of SpA patients (100.23 ± 7.41 ms; 95% CI: 97.51–102.95) was significantly higher than that of the control group in normal bone (69.44 ± 4.37 ms; 95% CI: 67.64–71.24), and this difference was found to be statistically significant (p < 0.001). No significant difference was observed between cartilage T2 relaxation times in SpA patients and controls (p > 0.05). Conclusions: T2 mapping serves as a valuable quantitative imaging biomarker for diagnosing sacroiliitis associated with SpA, particularly by detecting bone marrow edema. The technique shows promise for objective disease assessment, though larger studies are needed to establish standardized reference values for T2 relaxation times in osteitis to enhance diagnostic accuracy and facilitate treatment monitoring. Full article
(This article belongs to the Special Issue Advances in Musculoskeletal Imaging: From Diagnosis to Treatment)
Show Figures

Figure 1

Back to TopTop