Storage and Ripening Monitoring of Pecorino Cheese Through 2D 1H-NMR Relaxation and ANOVA Simultaneous Component Analysis (ASCA): A Comparison with DSC and ATR-FTIR Characterization
Abstract
1. Introduction
2. Results and Discussion
2.1. The 2D 1H-NMR Relaxometry
2.2. DSC Analysis
2.3. ATR-FTIR Characterization
2.4. Final Discussion
3. Materials and Methods
3.1. Pecorino Cheese Samples
- -
- Five soft-ripening cheese samples with a high-moisture content (>30%);
- -
- Five medium-ripening cheese samples with a mid-moisture content (22–30%);
- -
- Four hard-ripening cheese samples characterized by a low-moisture content (<22%);
3.2. The 2D 1H-NMR T1–T2
3.3. DSC
3.4. ATR-FTIR
3.5. ASCA
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khattab, A.R.; Guirguis, H.A.; Tawfik, S.M.; Farag, M.A. Cheese Ripening: A Review on Modern Technologies towards Flavor Enhancement, Process Acceleration and Improved Quality Assessment. Trends Food Sci. Technol. 2019, 88, 343–360. [Google Scholar] [CrossRef]
- Hickey, C.D.; Auty, M.A.E.; Wilkinson, M.G.; Sheehan, J.J. The Influence of Cheese Manufacture Parameters on Cheese Microstructure, Microbial Localisation and Their Interactions during Ripening: A Review. Trends Food Sci. Technol. 2015, 41, 135–148. [Google Scholar] [CrossRef]
- Song, Y.Q. A 2D NMR Method to Characterize Granular Structure of Dairy Products. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 324–334. [Google Scholar] [CrossRef]
- McSweeney, P.L.H. Biochemistry of Cheese Ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Chen, Y.; MacNaughtan, W.; Jones, P.; Yang, Q.; Foster, T. The State of Water and Fat During the Maturation of Cheddar Cheese. Food Chem. 2020, 303, 125390. [Google Scholar] [CrossRef] [PubMed]
- Kharbanda, Y.; Mailhiot, S.; Mankinen, O.; Urbańczyk, M.; Telkki, V.-V. Monitoring Cheese Ripening by Single-Sided Nuclear Magnetic Resonance. J. Dairy Sci. 2023, 106, 1586–1595. [Google Scholar] [CrossRef]
- Lamichhane, P.; Kelly, A.L.; Sheehan, J.J. Symposium Review: Structure-Function Relationships in Cheese. J. Dairy Sci. 2018, 101, 2692–2709. [Google Scholar] [CrossRef]
- Chapeau, A.L.; Silva, J.V.C.; Schuck, P.; Thierry, A.; Floury, J. The Influence of Cheese Composition and Microstructure on the Diffusion of Macromolecules: A Study Using Fluorescence Recovery After Photobleaching (FRAP). Food Chem. 2016, 192, 660–667. [Google Scholar] [CrossRef]
- Evers, J.M. The Milkfat Globule Membrane—Methodologies for Measuring Milkfat Globule (Membrane) Damage. Int. Dairy J. 2004, 14, 747–760. [Google Scholar] [CrossRef]
- Lopez, C.; Camier, B.; Gassi, J.-Y. Development of the Milk Fat Microstructure During the Manufacture and Ripening of Emmental Cheese Observed by Confocal Laser Scanning Microscopy. Int. Dairy J. 2007, 17, 235–247. [Google Scholar] [CrossRef]
- Collins, Y.F.; McSweeney, P.L.H.; Wilkinson, M.G. Lipolysis and Free Fatty Acid Catabolism in Cheese: A Review of Current Knowledge. Int. Dairy J. 2003, 13, 841–866. [Google Scholar] [CrossRef]
- Tekin, A.; Hayaloglu, A.A. Understanding the Mechanism of Ripening Biochemistry and Flavour Development in Brine Ripened Cheeses. Int. Dairy J. 2023, 137, 105508. [Google Scholar] [CrossRef]
- Watson, A.T.; Chang, C.T.P. Characterizing Porous Media with NMR Methods. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 343–386. [Google Scholar] [CrossRef]
- Andersen, C.M.; Frøst, M.B.; Viereck, N. Spectroscopic Characterization of Low- and Non-Fat Cream Cheeses. Int. Dairy J. 2010, 20, 32–39. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H. Effect of Emulsifying Salts on the Physicochemical Properties of Processed Cheese Made from Mozzarella. J. Dairy Sci. 2012, 95, 4823–4830. [Google Scholar] [CrossRef] [PubMed]
- Vogt, S.J.; Smith, J.R.; Seymour, J.D.; Carr, A.J.; Golding, M.D.; Codd, S.L. Assessment of the Changes in the Structure and Component Mobility of Mozzarella and Cheddar Cheese During Heating. J. Food Eng. 2015, 150, 35–43. [Google Scholar] [CrossRef]
- Noronha, N.; Duggan, E.; Ziegler, G.R.; O’Riordan, E.D.; O’Sullivan, M. Inclusion of Starch in Imitation Cheese: Its Influence on Water Mobility and Cheese Functionality. Food Hydrocoll. 2008, 22, 1612–1621. [Google Scholar] [CrossRef]
- Song, Y.Q.; Venkataramanan, L.; Hürlimann, M.D.; Flaum, M.; Frulla, P.; Straley, C. T1–T2 Correlation Spectra Obtained Using a Fast Two-Dimensional Laplace Inversion. J. Magn. Reson. 2002, 154, 261–268. [Google Scholar] [CrossRef]
- Hürlimann, M.D.; Burcaw, L.; Song, Y.-Q. Quantitative Characterization of Food Products by Two-Dimensional D–T2 and T1–T2 Distribution Functions in a Static Gradient. J. Colloid Interface Sci. 2006, 297, 303–311. [Google Scholar] [CrossRef]
- Vannini, L.; Patrignani, F.; Iucci, L.; Ndagijimana, M.; Vallicelli, M.; Lanciotti, R.; Guerzoni, M.E. Effect of a Pre-Treatment of Milk with High Pressure Homogenization on Yield as Well as on Microbiological, Lipolytic and Proteolytic Patterns of “Pecorino” Cheese. Int. J. Food Microbiol. 2008, 128, 329–335. [Google Scholar] [CrossRef]
- Cevoli, C.; Cerretani, L.; Gori, A.; Caboni, M.F.; Gallina Toschi, T.; Fabbri, A. Classification of Pecorino Cheeses Using Electronic Nose Combined with Artificial Neural Network and Comparison with GC–MS Analysis of Volatile Compounds. Food Chem. 2011, 129, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Capitani, D.; Sobolev, A.P.; Di Tullio, V.; Mannina, L.; Proietti, N. Portable NMR in Food Analysis. Chem. Biol. Technol. Agric. 2017, 4, 17. [Google Scholar] [CrossRef]
- Mitchell, J.; Gladden, L.F.; Chandrasekera, T.C.; Fordham, E.J. Low-Field Permanent Magnets for Industrial Process and Quality Control. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 76, 1–60. [Google Scholar] [CrossRef] [PubMed]
- Rako, A.; Tudor Kalit, M.; Rako, Z.; Zamberlin, Š.; Kalit, S. Contribution of Salt Content to the Ripening Process of Croatian Hard Sheep Milk Cheese (Brač Cheese). LWT 2022, 162, 113506. [Google Scholar] [CrossRef]
- Hasanzadeh, A.; Raftani Amiri, Z.; Aminifar, M. Changes in the Physicochemical, Microstructural and Rheological Properties of Traditional Kope Cheese during Ripening. Int. J. Dairy Technol. 2018, 71, 347–355. [Google Scholar] [CrossRef]
- Bertolino, M.; Dolci, P.; Giordano, M.; Rolle, L.; Zeppa, G. Evolution of Chemico-Physical Characteristics during Manufacture and Ripening of Castelmagno PDO Cheese in Wintertime. Food Chem. 2011, 129, 1001–1011. [Google Scholar] [CrossRef]
- Heidenreich, S.; Langner, T.; Rohm, H. Heat Capacity of Cheese. J. Therm. Anal. Calorim. 2007, 89, 815–819. [Google Scholar] [CrossRef]
- Pantaleão, I.; Pintado, M.M.E.; Poças, M.F.F. Evaluation of Two Packaging Systems for Regional Cheese. Food Chem. 2007, 102, 481–487. [Google Scholar] [CrossRef]
- Dabour, N.; Kheadr, E.; Benhamou, N.; Fliss, I.; LaPointe, G. Improvement of Texture and Structure of Reduced-Fat Cheddar Cheese by Exopolysaccharide-Producing Lactococci. J. Dairy Sci. 2006, 89, 95–110. [Google Scholar] [CrossRef]
- Romani, S.; Sacchetti, G.; Pittia, P.; Pinnavaia, G.G.; Dalla Rosa, M. Physical, Chemical, Textural and Sensorial Changes of Portioned Parmigiano Reggiano Cheese Packed Under Different Conditions. Food Sci. Technol. Int. 2002, 8, 203–211. [Google Scholar] [CrossRef]
- Chen, X.; Gu, Z.; Peng, Y.; Quek, S.Y. What Happens to Commercial Camembert Cheese under Packaging? Unveiling Biochemical Changes by Untargeted and Targeted Metabolomic Approaches. Food Chem. 2022, 383, 132437. [Google Scholar] [CrossRef] [PubMed]
- Domingues Galli, B.; Trossolo, E.; Carafa, I.; Squara, S.; Caratti, A.; Filannino, P.; Cordero, C.; Gobbetti, M.; Di Cagno, R. Effectiveness of Modified Atmosphere and Vacuum Packaging in Preserving the Volatilome of Stelvio PDO Cheese over Time. Food Chem. 2024, 444, 138544. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, F.; Biancolillo, A.; Foschi, M.; D’Archivio, A.A. Application of SPORT Algorithm on ATR-FTIR Data: A Rapid and Green Tool for the Characterization and Discrimination of Three Typical Italian Pecorino Cheeses. J. Food Compos. Anal. 2022, 114, 104784. [Google Scholar] [CrossRef]
- Mazerolles, G.; Devaux, M.-F.; Duboz, G.; Duployer, M.-H.; Riou, N.M.; Dufour, É. Infrared and Fluorescence Spectroscopy for Monitoring Protein Structure and Interaction Changes during Cheese Ripening. Lait 2001, 81, 509–527. [Google Scholar] [CrossRef]
- Qureshi, D.; Behera, H.; Anis, A.; Kim, D.; Pal, K. Effect of Polyglycerol Polyricinoleate on the Polymorphic Transitions and Physicochemical Properties of Mango Butter. Food Chem. 2020, 323, 126834. [Google Scholar] [CrossRef] [PubMed]
- Martín-del-Campo, S.T.; Picque, D.; Cosío-Ramírez, R.; Corrieu, G. Middle Infrared Spectroscopy Characterization of Ripening Stages of Camembert-Type Cheeses. Int. Dairy J. 2007, 17, 835–845. [Google Scholar] [CrossRef]
- Dewantier, G.R.; Torley, P.J.; Blanch, E.W. Identifying Chemical Differences in Cheddar Cheese Based on Maturity Level and Manufacturer Using Vibrational Spectroscopy and Chemometrics. Molecules 2023, 28, 8051. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.; Pereira, C.G.; Ranquine, T.; Azarias, C.A.; Bell, M.J.V.; de Carvalho dos Anjos, V. Long-Term Ripening Evaluation of Ewes’ Cheeses by Fourier-Transformed Infrared Spectroscopy Under Real Industrial Conditions. J. Spectrosc. 2018, 2018, 1381864. [Google Scholar] [CrossRef]
- Di Donato, F.; Biancolillo, A.; Mazzulli, D.; Rossi, L.; D’Archivio, A.A. HS-SPME/GC–MS Volatile Fraction Determination and Chemometrics for the Discrimination of Typical Italian Pecorino Cheeses. Microchem. J. 2021, 165, 106133. [Google Scholar] [CrossRef]
- Guerzoni, M.E.; Vannini, L.; Chaves Lopez, C.; Lanciotti, R.; Suzzi, G.; Gianotti, A. Effect of High Pressure Homogenization on Microbial and Chemico-Physical Characteristics of Goat Cheeses. J. Dairy Sci. 1999, 82, 851–862. [Google Scholar] [CrossRef]
- Pax, A.P.; Ong, L.; Vongsvivut, J.; Tobin, M.J.; Kentish, S.E.; Gras, S.L. The Characterisation of Mozzarella Cheese Microstructure Using High Resolution Synchrotron Transmission and ATR-FTIR Microspectroscopy. Food Chem. 2019, 291, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Casieri, C.; De Luca, F.; Nodari, L.; Russo, U.; Terenzi, C.; Tudisca, V. Effects of Time and Temperature of Firing on Fe-Rich Ceramics Studied by Mössbauer Spectroscopy and Two-Dimensional 1H-Nuclear Magnetic Resonance Relaxometry. J. Appl. Phys. 2012, 112, 84904. [Google Scholar] [CrossRef]
- Casieri, C.; Senni, L.; Romagnoli, M.; Santamaria, U.; De Luca, F. Determination of Moisture Fraction in Wood by Mobile NMR Device. J. Magn. Reson. 2004, 171, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.J.; Hoefsloot, H.C.J.; van der Greef, J.; Timmerman, M.E.; Westerhuis, J.A.; Smilde, A.K. ASCA: Analysis of Multivariate Data Obtained from an Experimental Design. J. Chemom. 2005, 19, 469–481. [Google Scholar] [CrossRef]
- Vis, D.J.; Westerhuis, J.A.; Smilde, A.K.; van der Greef, J. Statistical Validation of Megavariate Effects in ASCA. BMC Bioinform. 2007, 8, 322. [Google Scholar] [CrossRef]
- Zwanenburg, G.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Jansen, J.J.; Smilde, A.K. ANOVA–Principal Component Analysis and ANOVA–Simultaneous Component Analysis: A Comparison. J. Chemom. 2011, 25, 561–567. [Google Scholar] [CrossRef]
Cooling | Heating | |||||
---|---|---|---|---|---|---|
Integral (mJ) | Onset T (°C) | Integral (mJ) | Onset T (°C) | |||
hm-0y | 1509 | −13.4 | −1534 | −8.8 | ||
mm-0y | 603 | −21.0 | −641 | −22.4 | ||
lm-0y | 224 | −34.1 | −165 | −64 | −28.9 | −38.1 |
hm-2y | 838 | −12.5 | −845 −227 | −13.0 −32.2 | ||
mm-2y | 174 | −29.3 | ||||
lm-2y | − | − | −10 | −8 | −30.8 | −8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donato, F.D.; Gabriele, F.; Biancolillo, A.; Casieri, C.; D’Archivio, A.A.; Spreti, N. Storage and Ripening Monitoring of Pecorino Cheese Through 2D 1H-NMR Relaxation and ANOVA Simultaneous Component Analysis (ASCA): A Comparison with DSC and ATR-FTIR Characterization. Molecules 2025, 30, 2916. https://doi.org/10.3390/molecules30142916
Donato FD, Gabriele F, Biancolillo A, Casieri C, D’Archivio AA, Spreti N. Storage and Ripening Monitoring of Pecorino Cheese Through 2D 1H-NMR Relaxation and ANOVA Simultaneous Component Analysis (ASCA): A Comparison with DSC and ATR-FTIR Characterization. Molecules. 2025; 30(14):2916. https://doi.org/10.3390/molecules30142916
Chicago/Turabian StyleDonato, Francesca Di, Francesco Gabriele, Alessandra Biancolillo, Cinzia Casieri, Angelo Antonio D’Archivio, and Nicoletta Spreti. 2025. "Storage and Ripening Monitoring of Pecorino Cheese Through 2D 1H-NMR Relaxation and ANOVA Simultaneous Component Analysis (ASCA): A Comparison with DSC and ATR-FTIR Characterization" Molecules 30, no. 14: 2916. https://doi.org/10.3390/molecules30142916
APA StyleDonato, F. D., Gabriele, F., Biancolillo, A., Casieri, C., D’Archivio, A. A., & Spreti, N. (2025). Storage and Ripening Monitoring of Pecorino Cheese Through 2D 1H-NMR Relaxation and ANOVA Simultaneous Component Analysis (ASCA): A Comparison with DSC and ATR-FTIR Characterization. Molecules, 30(14), 2916. https://doi.org/10.3390/molecules30142916