Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Instrument
2.2. Synthesis of SPIONs
2.3. Coating SPIONs with Citrate Ligands
2.4. Transmission Electron Microscopy
2.5. Determining Iron Concentration of Citrate-Coated Sample Using UV-Vis
2.6. Characterization of CA-SPIONs with UV-Vis
2.7. Characterization of CA-SPIONs with FT-IR
2.8. Characterization of SPIONs with XRD and XPS
2.9. Testing Sensitivity Under MRS to Neurotransmitters:
2.10. Computational Interpretation of Glutamate-Sensitive CA-SPIONs
3. Results and Discussion
3.1. TEM and Synthesis Scheme
3.2. X-Ray Diffraction and X-Ray Photoelectron Spectroscopy
3.3. UV-Vis and IR
3.4. Glutamate Sensing Through MRS Studies
3.5. MATLAB-Based Computational Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glutamate: What It Is & Function; Cleveland Clinic: Cleveland, OH, USA. Available online: https://my.clevelandclinic.org/health/articles/22839-glutamate (accessed on 6 February 2025).
- Pal, M.M. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front. Hum. Neurosci. 2021, 15, 722323. [Google Scholar] [CrossRef] [PubMed]
- Bukke, V.N.; Archana, M.; Villani, R.; Romano, A.D.; Wawrzyniak, A.; Balawender, K.; Orkisz, S.; Beggiato, S.; Serviddio, G.; Cassano, T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy. Int. J. Mol. Sci. 2020, 21, 7452. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-T.; Yang, K.-C.; Lin, W.-C. Glutamatergic Dysfunction and Glutamatergic Compounds for Major Psychiatric Disorders: Evidence from Clinical Neuroimaging Studies. Front. Psychiatry 2019, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Forum on Neuroscience and Nervous System. Overview of the Glutamatergic System. In Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop Summary; National Academies Press (US): Washington DC, USA, 2011. [Google Scholar]
- Mangia, S.; Giove, F.; DiNuzzo, M. Metabolic Pathways and Activity-Dependent Modulation of Glutamate Concentration in the Human Brain. Neurochem. Res. 2012, 37, 2554–2561. [Google Scholar] [CrossRef]
- Zhou, Y.; Danbolt, N.C. Glutamate as a Neurotransmitter in the Healthy Brain. J. Neural Transm. 2014, 121, 799. [Google Scholar] [CrossRef]
- Ortasoz, A.M.; Ozdemir, E.; Taskıran, A.S.; Ozturk, A. Sinapic Acid Alleviates Glutamate-Induced Excitotoxicity by Inhibiting Neuroinflammation and Endoplasmic Reticulum Stress Pathway in C6 Glioma Cells. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA 2025, 103, 105977. [Google Scholar] [CrossRef]
- Magnetic Resonance Imaging (MRI). National Institute of Biomedical Imaging and Bioengineering. Available online: https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri (accessed on 5 February 2025).
- Kapoor, M.; Heston, T.F.; Kasi, A. PET Scanning. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Al-Naser, Y.A.; Tafti, D. MRI Patient Safety and Care. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- MRI Basics. Available online: https://case.edu/med/neurology/NR/MRI%20Basics.htm (accessed on 6 February 2025).
- McDonald, R.J.; McDonald, J.S.; Kallmes, D.F.; Jentoft, M.E.; Murray, D.L.; Thielen, K.R.; Williamson, E.E.; Eckel, L.J. Intracranial Gadolinium Deposition after Contrast-Enhanced MR Imaging. Radiology 2015, 275, 772–782. [Google Scholar] [CrossRef]
- Kanal, E.; Tweedle, M.F. Residual or Retained Gadolinium: Practical Implications for Radiologists and Our Patients. Radiology 2015, 275, 630–634. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Branch, S. Gadolinium-Based Contrast Agent Toxicity: A Review of Known and Proposed Mechanisms. BioMetals 2016, 29, 365–376. [Google Scholar] [CrossRef]
- Weng, Q.; Hu, X.; Zheng, J.; Xia, F.; Wang, N.; Liao, H.; Liu, Y.; Kim, D.; Liu, J.; Li, F.; et al. Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS Nano 2019, 13, 6801–6812. [Google Scholar] [CrossRef]
- Weinstein, J.R.; Anderson, S. The Aging Kidney: Physiological Changes. Adv. Chronic Kidney Dis. 2010, 17, 302. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; Magnani, M. SPIO Nanoparticles and Magnetic Erythrocytes as Contrast Agents for Biomedical and Diagnostic Applications. J. Magn. Magn. Mater. 2022, 541, 168520. [Google Scholar] [CrossRef]
- Ferreira-Filho, V.C.; Morais, B.; Vieira, B.J.C.; Waerenborgh, J.C.; Carmezim, M.J.; Tóth, C.N.; Même, S.; Lacerda, S.; Jaque, D.; Sousa, C.T.; et al. Influence of SPION Surface Coating on Magnetic Properties and Theranostic Profile. Molecules 2024, 29, 1824. [Google Scholar] [CrossRef] [PubMed]
- Neuwelt, A.; Sidhu, N.; Hu, C.-A.A.; Mlady, G.; Eberhardt, S.C.; Sillerud, L.O. Iron-Based Superparamagnetic Nanoparticle Contrast Agents for MRI of Infection and Inflammation. AJR Am. J. Roentgenol. 2015, 204, W302–W313. [Google Scholar] [CrossRef]
- Rahman, M. Magnetic Resonance Imaging and Iron-Oxide Nanoparticles in the Era of Personalized Medicine. Nanotheranostics 2023, 7, 424. [Google Scholar] [CrossRef] [PubMed]
- Karaagac, O.; Kockar, H. Effect of Synthesis Parameters on the Properties of Superparamagnetic Iron Oxide Nanoparticles. J. Supercond. Nov. Magn. 2012, 25, 2777–2781. [Google Scholar] [CrossRef]
- Ali, Z.; Zhang, Y.; Kaul, M.G.; Truong, B.; Bhanot, D.; Adam, G.; Li, Y.-Y.; Wei, H. Structural Control of Magnetic Nanoparticles for Positive Nuclear Magnetic Resonance Imaging. Nucl. Sci. Tech. 2024, 35, 168. [Google Scholar] [CrossRef]
- Wei, H.; Bruns, O.T.; Kaul, M.G.; Hansen, E.C.; Barch, M.; Wiśniowska, A.; Chen, O.; Chen, Y.; Li, N.; Okada, S.; et al. Exceedingly Small Iron Oxide Nanoparticles as Positive MRI Contrast Agents. Proc. Natl. Acad. Sci. USA 2017, 114, 2325–2330. [Google Scholar] [CrossRef]
- Wei, H.; Wiśniowska, A.; Fan, J.; Harvey, P.; Li, Y.; Wu, V.; Hansen, E.C.; Zhang, J.; Kaul, M.G.; Frey, A.M.; et al. Single-Nanometer Iron Oxide Nanoparticles as Tissue-Permeable MRI Contrast Agents. Proc. Natl. Acad. Sci. USA 2021, 118, e2102340118. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, Y.; Zhu, H.; Rotile, N.J.; Wei, H.; Diyabalanage, H.; Hansen, E.C.; Zhou, I.Y.; Barrett, S.C.; Sojoodi, M.; et al. Fast Detection of Liver Fibrosis with Collagen-Binding Single-Nanometer Iron Oxide Nanoparticles via T1-Weighted MRI. Proc. Natl. Acad. Sci. USA 2023, 120, e2220036120. [Google Scholar] [CrossRef]
- Girardet, T.; Venturini, P.; Martinez, H.; Dupin, J.-C.; Cleymand, F.; Fleutot, S. Spinel Magnetic Iron Oxide Nanoparticles: Properties, Synthesis and Washing Methods. Appl. Sci. 2022, 12, 8127. [Google Scholar] [CrossRef]
- Li, L.; Mak, K.Y.; Leung, C.W.; Chan, K.Y.; Chan, W.K.; Zhong, W.; Pong, P.W.T. Effect of Synthesis Conditions on the Properties of Citric-Acid Coated Iron Oxide Nanoparticles. Microelectron. Eng. 2013, 110, 329–334. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. C 1s Peak of Adventitious Carbon Aligns to the Vacuum Level: Dire Consequences for Material’s Bonding Assignment by Photoelectron Spectroscopy. ChemPhysChem 2017, 18, 1507–1512. [Google Scholar] [CrossRef] [PubMed]
- Assaouka, H.T.; Nsangou, I.N.; Daawe, D.M.; Mevoa, D.O.; Zigla, A.A.; Ndouka, P.N.; Kouotou, P.M. Copper and Iron Co-Doping Effects on the Structure, Optical Energy Band Gap, and Catalytic Behaviour of Co3O4 Nanocrystals towards Low-Temperature Total Oxidation of Toluene. Energy Adv. 2023, 2, 829–842. [Google Scholar] [CrossRef]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- Cai, K.; Nanga, R.P.; Lamprou, L.; Schinstine, C.; Elliott, M.; Hariharan, H.; Reddy, R.; Epperson, C.N. The Impact of Gabapentin Administration on Brain GABA and Glutamate Concentrations: A 7T 1H-MRS Study. Neuropsychopharmacology 2012, 37, 2764. [Google Scholar] [CrossRef]
- Garris, P.A.; Ciolkowski, E.L.; Pastore, P.; Wightman, R.M. Efflux of Dopamine from the Synaptic Cleft in the Nucleus Accumbens of the Rat Brain. J. Neurosci. Off. J. Soc. Neurosci. 1994, 14, 6084–6093. [Google Scholar] [CrossRef]
- Owesson-White, C.A.; Roitman, M.F.; Sombers, L.A.; Belle, A.M.; Keithley, R.B.; Peele, J.L.; Carelli, R.M.; Wightman, R.M. Sources Contributing to the Average Extracellular Concentration of Dopamine in the Nucleus Accumbens. J. Neurochem. 2012, 121, 252. [Google Scholar] [CrossRef]
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 119, 957–1057. [Google Scholar] [CrossRef]
- Rukshin, I.; Mohrenweiser, J.; Yue, P.; Afkhami, S. Modeling Superparamagnetic Particles in Blood Flow for Applications in Magnetic Drug Targeting. Fluids 2017, 2, 29. [Google Scholar] [CrossRef]
- Wang, Y.-X.J. Superparamagnetic Iron Oxide Based MRI Contrast Agents: Current Status of Clinical Application. Quant. Imaging Med. Surg. 2011, 1, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Jasanoff, A. T2 Relaxation Induced by Clusters of Superparamagnetic Nanoparticles: Monte Carlo Simulations. Magn. Reson. Imaging 2008, 26, 994–998. [Google Scholar] [CrossRef] [PubMed]
- Amraee, A.; Khoei, S.; Mahdavi, S.R.; Tohidkia, M.R.; Tarighatnia, A.; Darvish, L.; Hosseini Teshnizi, S.; Aghanejad, A. Ultrasmall Iron Oxide Nanoparticles and Gadolinium-Based Contrast Agents in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Clin. Transl. Imaging 2023, 11, 83–93. [Google Scholar] [CrossRef]
- Bertolucci, E.; Galletti, A.M.R.; Antonetti, C.; Marracci, M.; Tellini, B.; Piccinelli, F.; Visone, C. Chemical and Magnetic Properties Characterization of Magnetic Nanoparticles. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, Italy, 11–14 May 2015; pp. 1492–1496. [Google Scholar] [CrossRef]
- Namikuchi, E.A.; Gaspar, R.D.L.; da Silva, D.S.; Raimundo, I.M.; Mazali, I.O. PEG Size Effect and Its Interaction with Fe3O4 Nanoparticles Synthesized by Solvothermal Method: Morphology and Effect of pH on the Stability. Nano Express 2021, 2, 020022. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, W.; Zhao, Y.; Shen, H.; Lin, H.; Liang, J. Preparation and Characterization of Fe3O4 Particles with Novel Nanosheets Morphology and Magnetochromatic Property by a Modified Solvothermal Method. Sci. Rep. 2015, 5, 9320. [Google Scholar] [CrossRef]
- Amin, M.O.; D’Cruz, B.; Madkour, M.; Al-Hetlani, E. Magnetic Nanocomposite-Based SELDI Probe for Extraction and Detection of Drugs, Amino Acids and Fatty Acids. Microchim. Acta 2019, 186, 503. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, L.; Wei, J.; Hou, Y.; Wei, Y.; Zhou, S.; Jia, Z.; Su, X. Ultra-Efficient and Selective Adsorption of Cationic Dyes by Ti-Doped SiO2 Functionalized Hydrophilic Fe3O4 Nanoparticles with Superior Structural Stability. J. Water Process Eng. 2024, 57, 104729. [Google Scholar] [CrossRef]
- Khandhar, A.P.; Ferguson, R.M.; Arami, H.; Krishnan, K.M. Monodisperse Magnetite Nanoparticle Tracers for in Vivo Magnetic Particle Imaging. Biomaterials 2013, 34, 3837–3845. [Google Scholar] [CrossRef]
- Rajan, A.; Sharma, M.; Sahu, N.K. Assessing Magnetic and Inductive Thermal Properties of Various Surfactants Functionalised Fe3O4 Nanoparticles for Hyperthermia. Sci. Rep. 2020, 10, 15045. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Panagiotou, A.; Mitlianga, P. Thermal Behavior and Infrared Absorbance Bands of Citric Acid. Appl. Sci. 2024, 14, 8406. [Google Scholar] [CrossRef]
- Abdallah, R.M.; Al-Haddad, R.M.S. Optical and Morphology Properties of the Magnetite (Fe3O4) Nanoparticles Prepared by Green Method. J. Phys. Conf. Ser. 2021, 1829, 012022. [Google Scholar] [CrossRef]
- Li, Y.; Han, R.; Yu, X.; Jiang, L.; Luo, X. A Low-Fouling Electrochemical Biosensor Based on Multifunction Branched Peptides with Antifouling, Antibacterial and Recognizing Sequences for Protein Detection in Saliva. Sens. Actuators B Chem. 2024, 405, 135322. [Google Scholar] [CrossRef]
- Dheyab, M.A.; Aziz, A.A.; Jameel, M.S.; Noqta, O.A.; Khaniabadi, P.M.; Mehrdel, B. Simple Rapid Stabilization Method through Citric Acid Modification for Magnetite Nanoparticles. Sci. Rep. 2020, 10, 10793. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Nor, N.; Abdul Razak, K.; Tan, S.C.; Noordin, R. Properties of Surface Functionalized Iron Oxide Nanoparticles (Ferrofluid) Conjugated Antibody for Lateral Flow Immunoassay Application. J. Alloys Compd. 2012, 538, 100–106. [Google Scholar] [CrossRef]
- Mikelashvili, V.; Kekutia, S.; Markhulia, J.; Saneblidze, L.; Maisuradze, N.; Kriechbaum, M.; Almásy, L. Synthesis and Characterization of Citric Acid-Modified Iron Oxide Nanoparticles Prepared with Electrohydraulic Discharge Treatment. Materials 2023, 16, 746. [Google Scholar] [CrossRef]
- Lassenberger, A.; Scheberl, A.; Stadlbauer, A.; Stiglbauer, A.; Helbich, T.; Reimhult, E. Individually Stabilized, Superparamagnetic Nanoparticles with Controlled Shell and Size Leading to Exceptional Stealth Properties and High Relaxivities. ACS Appl. Mater. Interfaces 2017, 9, 3343–3353. [Google Scholar] [CrossRef]
- Dadfar, S.M.; Camozzi, D.; Darguzyte, M.; Roemhild, K.; Varvarà, P.; Metselaar, J.; Banala, S.; Straub, M.; Güvener, N.; Engelmann, U.; et al. Size-Isolation of Superparamagnetic Iron Oxide Nanoparticles Improves MRI, MPI and Hyperthermia Performance. J. Nanobiotechnol. 2020, 18, 22. [Google Scholar] [CrossRef]
- Lapusan, R.; Borlan, R.; Focsan, M. Advancing MRI with Magnetic Nanoparticles: A Comprehensive Review of Translational Research and Clinical Trials. Nanoscale Adv. 2024, 6, 2234–2259. [Google Scholar] [CrossRef]
- Chen, B.; Liu, L.; Yue, R.; Dong, Z.; Lu, C.; Zhang, C.; Guan, G.; Liu, H.; Zhang, Q.; Song, G. Stimuli-Responsive Switchable MRI Nanoprobe for Tumor Theranostics. Nano Today 2023, 51, 101931. [Google Scholar] [CrossRef]
- Zhang, Z.; Wells, C.J.R.; King, A.M.; Bear, J.C.; Davies, G.-L.; Williams, G.R. pH-Responsive Nanocomposite Fibres Allowing MRI Monitoring of Drug Release. J. Mater. Chem. B 2020, 8, 7264–7274. [Google Scholar] [CrossRef]
- Wu, C.; Barkova, D.; Komarova, N.; Offenhäusser, A.; Andrianova, M.; Hu, Z.; Kuznetsov, A.; Mayer, D. Highly Selective and Sensitive Detection of Glutamate by an Electrochemical Aptasensor. Anal. Bioanal. Chem. 2022, 414, 1609–1622. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Jetmore, H.D.; Chen, R.; Shen, M. Enzyme-Modified Pt Nanoelectrodes for Glutamate Detection. Faraday Discuss. 2025, 257, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, B.; Kannan, P.; Maduraiveeran, G.; Alnaser, A.S. Polymer Nanocomposite-Based Biomolecular Sensor for Healthcare Monitoring. Adv. Colloid Interface Sci. 2025, 343, 103557. [Google Scholar] [CrossRef] [PubMed]
- Cember, A.T.J.; Nanga, R.P.R.; Reddy, R. Glutamate-Weighted CEST (gluCEST) Imaging for Mapping Neurometabolism: An Update on the State of the Art and Emerging Findings from in Vivo Applications. NMR Biomed. 2023, 36, e4780. [Google Scholar] [CrossRef]
- Geraldes, C.F.G.C. Rational Design of Magnetic Nanoparticles as T1–T2 Dual-Mode MRI Contrast Agents. Molecules 2024, 29, 1352. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mettee, H.; Asparin, A.; Ali, Z.; He, S.; Li, X.; Hall, J.; Kim, A.; Wu, S.; Hawker, M.J.; Uchida, M.; et al. Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors. Sensors 2025, 25, 4326. https://doi.org/10.3390/s25144326
Mettee H, Asparin A, Ali Z, He S, Li X, Hall J, Kim A, Wu S, Hawker MJ, Uchida M, et al. Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors. Sensors. 2025; 25(14):4326. https://doi.org/10.3390/s25144326
Chicago/Turabian StyleMettee, Hannah, Aaron Asparin, Zulaikha Ali, Shi He, Xianzhi Li, Joshua Hall, Alexis Kim, Shuo Wu, Morgan J. Hawker, Masaki Uchida, and et al. 2025. "Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors" Sensors 25, no. 14: 4326. https://doi.org/10.3390/s25144326
APA StyleMettee, H., Asparin, A., Ali, Z., He, S., Li, X., Hall, J., Kim, A., Wu, S., Hawker, M. J., Uchida, M., & Wei, H. (2025). Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors. Sensors, 25(14), 4326. https://doi.org/10.3390/s25144326