Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,808)

Search Parameters:
Keywords = magnetites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4205 KiB  
Article
Coarse and Fine-Grained Sediment Magnetic Properties from Upstream to Downstream in Jiulong River, Southeastern China and Their Environmental Implications
by Rou Wen, Shengqiang Liang, Mingkun Li, Marcos A. E. Chaparro and Yajuan Yuan
J. Mar. Sci. Eng. 2025, 13(8), 1502; https://doi.org/10.3390/jmse13081502 - 5 Aug 2025
Abstract
Magnetic parameters of river sediments are commonly used as end-members for source tracing in the coasts and shelves. The eastern continental shelf area of China, with multiple sources of input, is a key region for discussing sediment sources. However, magnetic parameters are influenced [...] Read more.
Magnetic parameters of river sediments are commonly used as end-members for source tracing in the coasts and shelves. The eastern continental shelf area of China, with multiple sources of input, is a key region for discussing sediment sources. However, magnetic parameters are influenced by grain size, and the nature of this influence remains unclear. In this study, the Jiulong River was selected as a case to analyze the magnetic parameters and mineral characteristics for both the coarse (>63 μm) and fine-grained (<63 μm) fractions. Results show that the magnetic minerals mainly contain detrital-sourced magnetite and hematite. In the North River, a tributary of the Jiulong River, the content of coarse-grained magnetic minerals increases from upstream to downstream, contrary to fine-grained magnetic minerals, suggesting the influence of hydrodynamic forces. Some samples with abnormally high magnetic susceptibility may result from the combined influence of the parent rock and human activities. In the scatter diagrams of magnetic parameters for provenance tracing, samples of the <63 μm fractions have a more concentrated distribution than that of the >63 μm fractions. Hence, magnetic parameters for the <63 μm fraction are more useful in provenance identification. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

18 pages, 2852 KiB  
Article
Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment
by Claudia Geanina Watz, Ciprian-Valentin Mihali, Camelia Oprean, Lavinia Krauss Maldea, Calin Adrian Tatu, Mirela Nicolov, Ioan-Ovidiu Sîrbu, Cristina A. Dehelean, Vlad Socoliuc and Elena-Alina Moacă
Nanomaterials 2025, 15(15), 1192; https://doi.org/10.3390/nano15151192 - 4 Aug 2025
Abstract
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous [...] Read more.
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous suspension of magnetite (Fe3O4) coated with β-cyclodextrin (Fe3O4@β-CD) as a potential innovative alternative nanosystem for melanoma therapy. The nanosystem exhibited physicochemical characteristics suitable for biological applications, revealing a successful complexation of Fe3O4 NPs with β-CD and an average size of 18.1 ± 2.1 nm. In addition, the in vitro evaluations revealed that the newly developed nanosystem presented high biocompatibility on a human keratinocyte (HaCaT) monolayer and selective antiproliferative activity on amelanotic human melanoma (A375) cells, inducing early apoptosis features when concentrations of 10, 15, and 20 μg/mL were employed for 48 h and 72 h. Collectively, the Fe3O4@β-CD nanosystem reveals promising features for an adjuvant approach in melanoma treatment, mainly due to its β-cyclodextrin coating, thus endorsing a potential co-loading of therapeutic drugs. Furthermore, the intrinsic magnetic core of Fe3O4 NPs supports the magnetically based cancer treatment strategies. Full article
(This article belongs to the Special Issue Synthesis of Functional Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

14 pages, 4870 KiB  
Article
Phase Transformation Principle and Magnetite Grain Growth Law in the Magnetization Sintering Process of Oolitic Hematite Ore
by Hanquan Zhang, Xunrui Liu, Lei Xie, Tiejun Chen, Fan Yang and Bona Deng
Materials 2025, 18(15), 3649; https://doi.org/10.3390/ma18153649 - 3 Aug 2025
Viewed by 159
Abstract
Oolitic hematite ore represents a significant iron resource, but its utilization is challenging due to the complex multi-layered circular structure of hematite ore, which makes it difficult to be reduced. This study systematically investigated the phase transformation principle and magnetite grain growth law [...] Read more.
Oolitic hematite ore represents a significant iron resource, but its utilization is challenging due to the complex multi-layered circular structure of hematite ore, which makes it difficult to be reduced. This study systematically investigated the phase transformation principle and magnetite grain growth law during the magnetization sintering of oolitic hematite ore, aiming to establish optimal conditions for efficient hematite ore to magnetite conversion. The results demonstrated that both elevated temperature and prolonged reduction duration significantly enhanced the reduction efficiency of hematite (Fe2O3) to magnetite. The optimal sintering conditions were determined to be 700 °C for 45 min, under which the magnetite content and Fe/O atomic ratio in the roasted products peaked at approximately 68% and 0.8%, respectively. However, temperatures exceeding 800 °C proved detrimental to magnetite formation, as further reduction to FeXO phases occurred. Notably, appropriate temperature elevation promoted substantial magnetite grain growth. When the sintering temperature increased from 600 °C to 700 °C, both the absolute and relative thickness of the magnetite layer exhibited remarkable enhancement, expanding from 9.52 μm to 76.76 μm and from 5.99% to 50.33%, respectively. Furthermore, comparative analysis revealed that a high sintering temperature for a short time was more effective for magnetite particle growth than a low temperature for a long time in the magnetization process of oolitic hematite ore. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

29 pages, 5040 KiB  
Article
The Investigation of a Biocide-Free Antifouling Coating on Naval Steels Under Both Simulated and Actual Seawater Conditions
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Processes 2025, 13(8), 2448; https://doi.org/10.3390/pr13082448 - 1 Aug 2025
Viewed by 350
Abstract
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective [...] Read more.
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective properties rely on the interaction of conductive polyaniline (PAni) nanorods, magnetite (Fe3O4) nanoparticles, and graphene oxide (GO) sheets modified with titanium dioxide (TiO2) nanoparticles. The PAni/Fe3O4 nanocomposite improves the antifouling layer’s out-of-plane conductivity, whereas GO increases its in-plane conductivity. The anisotropy in the conductivity distribution reduces the electrostatic attraction and limits primary bacterial and pathogen adsorption. TiO2 augments the conductivity of the PAni nanorods, enabling visible light to generate H2O2. The latter decomposes into H2O and O2, rendering the coating environmentally benign. The coating acts as an effective barrier with limited permeability to the steel surface, demonstrating outstanding durability for naval steel over extended periods. Full article
(This article belongs to the Special Issue Metal Material, Coating and Electrochemistry Technology)
Show Figures

Figure 1

20 pages, 3925 KiB  
Article
Anchor Biochar from Potato Peels with Magnetite Nanoparticles for Solar Photocatalytic Treatment of Oily Wastewater Effluent
by Manasik M. Nour, Hossam A. Nabwey and Maha A. Tony
Catalysts 2025, 15(8), 731; https://doi.org/10.3390/catal15080731 - 31 Jul 2025
Viewed by 173
Abstract
The current work is established with the object of modifying the source of Fenton system and substituting iron source as a catalyst with magnetite/potato peels composite material (POT400-M) to be an innovative solar photocatalyst. The structural and morphological characteristics of the material are [...] Read more.
The current work is established with the object of modifying the source of Fenton system and substituting iron source as a catalyst with magnetite/potato peels composite material (POT400-M) to be an innovative solar photocatalyst. The structural and morphological characteristics of the material are assessed through X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique is applied to treat oil spills that pollute seawater. The effectiveness of the operating parameters is studied, and numerical optimization is applied to optimize the most influential parameters on the system, including POT400-M catalyst (47 mg/L) and hydrogen peroxide reagent (372 mg/L) at pH 5.0, to maximize oil removal, reaching 93%. Also, the aqueous solution and wastewater temperature on the oxidation reaction is evaluated and the reaction exhibited an exothermic nature. Kinetic modeling is evaluated, and the reaction is found to follow the second-order kinetic model. Thermodynamic examination of the data exhibits negative enthalpy (ΔH′) values, confirming that the reaction is exothermic, and the system is verified to be able to perform at the minimal activation energy barrier (−51.34 kJ/mol). Full article
Show Figures

Graphical abstract

41 pages, 7932 KiB  
Article
Element Mobility in a Metasomatic System with IOCG Mineralization Metamorphosed at Granulite Facies: The Bondy Gneiss Complex, Grenville Province, Canada
by Olivier Blein and Louise Corriveau
Minerals 2025, 15(8), 803; https://doi.org/10.3390/min15080803 - 30 Jul 2025
Viewed by 155
Abstract
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the [...] Read more.
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the southwestern Grenville Province of Canada which consists of 1.39–1.35 Ga volcanic and plutonic rocks metamorphosed under granulite facies conditions at 1.19 Ga. Iron oxide–apatite and Cu-Ag-Au mineral occurrences occur among gneisses rich in biotite, cordierite, garnet, K-feldspar, orthopyroxene and/or sillimanite-rich gneisses, plagioclase-cordierite-orthopyroxene white gneisses, magnetite-garnet-rich gneisses, garnetites, hyperaluminous sillimanite-pyrite-quartz gneisses, phlogopite-sillimanite gneisses, and tourmalinites. Petrological and geochemical studies indicate that the precursors of these gneisses are altered volcanic and volcaniclastic rocks with attributes of pre-metamorphic Na, Ca-Fe, K-Fe, K, chloritic, argillic, phyllic, advanced argillic and skarn alteration. The nature of these hydrothermal rocks and the ore deposit model that best represents them are further investigated herein through lithogeochemistry. The lithofacies mineralized in Cu (±Au, Ag, Zn) are distinguished by the presence of garnet, magnetite and zircon, and exhibit pronounced enrichment in Fe, Mg, HREE and Zr relative to the least-altered rocks. In discrimination diagrams, the metamorphosed mineral system is demonstrated to exhibit the diagnostic attributes of, and is interpreted as, a metasomatic iron and alkali-calcic (MIAC) mineral system with iron oxide–apatite (IOA) and iron oxide copper–gold (IOCG) mineralization that evolves toward an epithermal cap. This contribution demonstrates that alteration facies diagnostic of MIAC systems and their IOCG and IOA mineralization remain diagnostic even after high-grade metamorphism. Exploration strategies can thus use the lithogeochemical footprint and the distribution and types of alteration facies observed as pathfinders for the facies-specific deposit types of MIAC systems. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

13 pages, 6341 KiB  
Article
Interaction of Ethanolamine with Magnetite Through Molecular Dynamic Simulations
by Nikoleta Ivanova, Vasil Karastoyanov, Iva Betova and Martin Bojinov
Molecules 2025, 30(15), 3197; https://doi.org/10.3390/molecules30153197 - 30 Jul 2025
Viewed by 174
Abstract
Magnetite (Fe3O4) provides a protective corrosion layer in the steam generators of nuclear power plants. The presence of monoethanolamine (MEA) in coolant water has a beneficial effect on corrosion processes. In that context, the adsorption of MEA and ethanol–ammonium [...] Read more.
Magnetite (Fe3O4) provides a protective corrosion layer in the steam generators of nuclear power plants. The presence of monoethanolamine (MEA) in coolant water has a beneficial effect on corrosion processes. In that context, the adsorption of MEA and ethanol–ammonium cation on the {111} surface of magnetite was studied using the molecular dynamics (MD) method. A modified version of the mechanical force field (ClayFF) was used. The systems were simulated at different temperatures (423 K; 453 K; 503 K). Surface coverage data were obtained from adsorption simulations; the root-mean-square deviation (RMSD) of the target molecules were calculated, and their minimum distance to the magnetite surface was traced. The potential and adsorption energies of MEA were calculated as a function of temperature. It has been established that the interaction between MEA and magnetite is due to electrostatic phenomena and the adsorption rate increases with temperature. A comparison was made with existing experimental results and similar MD simulations. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

19 pages, 4569 KiB  
Article
Tailored Magnetic Fe3O4-Based Core–Shell Nanoparticles Coated with TiO2 and SiO2 via Co-Precipitation: Structure–Property Correlation for Medical Imaging Applications
by Elena Emanuela Herbei, Daniela Laura Buruiana, Alina Crina Muresan, Viorica Ghisman, Nicoleta Lucica Bogatu, Vasile Basliu, Claudiu-Ionut Vasile and Lucian Barbu-Tudoran
Diagnostics 2025, 15(15), 1912; https://doi.org/10.3390/diagnostics15151912 - 30 Jul 2025
Viewed by 167
Abstract
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4 [...] Read more.
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4@TiO2 and Fe3O4@SiO2, and to evaluate their potential as tunable contrast agents for diagnostic imaging. Methods: Fe3O4, Fe3O4@TiO2, and Fe3O4@SiO2 nanoparticles were synthesized via co-precipitation at varying temperatures from iron salt precursors. Fourier transform infrared spectroscopy (FTIR) was used to confirm the presence of Fe–O bonds, while X-ray diffraction (XRD) was employed to determine the crystalline phases and estimate average crystallite sizes. Morphological analysis and particle size distribution were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and transmission electron microscopy (TEM). Magnetic properties were investigated using vibrating sample magnetometry (VSM). Results: FTIR spectra exhibited characteristic Fe–O vibrations at 543 cm−1 and 555 cm−1, indicating the formation of magnetite. XRD patterns confirmed a dominant cubic magnetite phase, with the presence of rutile TiO2 and stishovite SiO2 in the coated samples. The average crystallite sizes ranged from 24 to 95 nm. SEM and TEM analyses revealed particle sizes between 5 and 150 nm with well-defined core–shell morphologies. VSM measurements showed saturation magnetization (Ms) values ranging from 40 to 70 emu/g, depending on the synthesis temperature and shell composition. The highest Ms value was obtained for uncoated Fe3O4 synthesized at 94 °C. Conclusions: The synthesized Fe3O4-based core–shell nanomaterials exhibit desirable structural, morphological, and magnetic properties for use as contrast agents. Their tunable magnetic response and nanoscale dimensions make them promising candidates for advanced diagnostic imaging applications. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

17 pages, 6395 KiB  
Article
Fe–P Alloy Production from High-Phosphorus Oolitic Iron Ore via Efficient Pre-Reduction and Smelting Separation
by Mengjie Hu, Deqing Zhu, Jian Pan, Zhengqi Guo, Congcong Yang, Siwei Li and Wen Cao
Minerals 2025, 15(8), 778; https://doi.org/10.3390/min15080778 - 24 Jul 2025
Viewed by 221
Abstract
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or [...] Read more.
Diverging from conventional dephosphorization approaches, this study employs a novel pre-reduction and smelting separation (PR-SS) to efficiently co-recover iron and phosphorus from high-phosphorus oolitic iron ore, directly yielding Fe–P alloy, and the Fe–P alloy shows potential as feedstock for high-phosphorus weathering steel or wear-resistant cast iron, indicating promising application prospects. Using oolitic magnetite concentrate (52.06% Fe, 0.37% P) as feedstock, optimized conditions including pre-reduction at 1050 °C for 2 h with C/Fe mass ratio of 2, followed by smelting separation at 1550 °C for 20 min with 5% coke, produced a metallic phase containing 99.24% Fe and 0.73% P. Iron and phosphorus recoveries reached 99.73% and 99.15%, respectively. EPMA microanalysis confirmed spatial correlation between iron and phosphorus in the metallic phase, with undetectable phosphorus signals in vitreous slag. This evidence suggests preferential phosphorus enrichment through interfacial mass transfer along the pathway of the slag phase to the metal interface and finally the iron matrix, forming homogeneous Fe–P solid solutions. The phosphorus migration mechanism involves sequential stages: apatite lattice decomposition liberates reactive P2O5 under SiO2/Al2O3 influence; slag–iron interfacial co-reduction generates Fe3P intermediates; Fe3P incorporation into the iron matrix establishes stable solid solutions. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

13 pages, 3736 KiB  
Article
Quantum Diamond Microscopy of Individual Vaterite Microspheres Containing Magnetite Nanoparticles
by Mona Jani, Hani Barhum, Janis Alnis, Mohammad Attrash, Tamara Amro, Nir Bar-Gill, Toms Salgals, Pavel Ginzburg and Ilja Fescenko
Nanomaterials 2025, 15(15), 1141; https://doi.org/10.3390/nano15151141 - 23 Jul 2025
Viewed by 424
Abstract
Biocompatible vaterite microspheres, renowned for their porous structure, are promising carriers for magnetic nanoparticles (MNPs) in biomedical applications such as targeted drug delivery and diagnostic imaging. Precise control over the magnetic moment of individual microspheres is crucial for these applications. This study employs [...] Read more.
Biocompatible vaterite microspheres, renowned for their porous structure, are promising carriers for magnetic nanoparticles (MNPs) in biomedical applications such as targeted drug delivery and diagnostic imaging. Precise control over the magnetic moment of individual microspheres is crucial for these applications. This study employs widefield quantum diamond microscopy to map the stray magnetic fields of individual vaterite microspheres (3–10 μm) loaded with Fe3O4 MNPs of varying sizes (5 nm, 10 nm, and 20 nm). By analyzing over 35 microspheres under a 222 mT external magnetizing field, we measured peak-to-peak stray field amplitudes of 41 ± 1 μT for 5 nm and 10 nm superparamagnetic MNPs, reflecting their comparable magnetic response, and 12 ± 1 μT for 20 nm ferrimagnetic MNPs, due to distinct magnetization behavior. Finite-element simulations confirm variations in MNP distribution and magnetization uniformity within the vaterite matrix, with each microsphere encapsulating thousands of MNPs to generate its magnetization. This high-resolution magnetic imaging approach yields critical insights into MNP-loaded vaterite, enabling optimized synthesis and magnetically controlled systems for precision therapies and diagnostics. Full article
Show Figures

Figure 1

20 pages, 3251 KiB  
Article
Effect of H2–CO Ratio on Reduction Disintegration Behavior and Kinetics of Vanadium–Titanium Magnetite Pellets
by Feng Chen, Hao Li, Shuai Wang, Mao Chen, Wenbo Tang, Yufeng Guo, Yuekai Wen and Lingzhi Yang
Metals 2025, 15(8), 823; https://doi.org/10.3390/met15080823 - 23 Jul 2025
Viewed by 242
Abstract
There are many advantages of the smelting of vanadium–titanium magnetite pellets by hydrogen-based shaft furnace pre-reduction and electric arc furnace process, including high reduction efficiency, low carbon dioxide emission and high recovery of titanium and so on. However, vanadium–titanium magnetite pellets are highly [...] Read more.
There are many advantages of the smelting of vanadium–titanium magnetite pellets by hydrogen-based shaft furnace pre-reduction and electric arc furnace process, including high reduction efficiency, low carbon dioxide emission and high recovery of titanium and so on. However, vanadium–titanium magnetite pellets are highly susceptible to severe reduction disintegration when reduced in the gas-based shaft furnaces. H2 and CO are the primary reducing gas components in the gas-based shaft furnace process, which significantly influences the reduction behavior of vanadium–titanium magnetite pellets. In this study, the reduction disintegration behavior and reduction kinetics of vanadium–titanium magnetite under mixed H2–CO atmospheres at low temperatures (450–600 °C) were investigated. The differences in the reduction capacities and rates of H2 and CO on iron oxides and titanium–iron oxides were revealed, along with their impact on the reduction disintegration behavior of the pellets at low temperatures. At lower temperatures, CO exhibited a greater reducing capability for vanadium–titanium magnetite. As the reduction temperature increased, the reduction capacities of both H2 and CO improved; however, the reduction capacity of H2 was more significantly influenced by the temperature. The disparity in the reduction capacities of H2 and CO for vanadium–titanium magnetite pellets caused an inconsistent expansion rate in different regions of the pellet, increasing internal stress, contributing to a more severe reduction disintegration of vanadium–titanium magnetite pellets in the mixed H2–CO atmospheres. Full article
(This article belongs to the Special Issue Innovation in Efficient and Sustainable Blast Furnace Ironmaking)
Show Figures

Figure 1

18 pages, 6380 KiB  
Article
Synthesis and Application of Fe3O4–ZrO2 Magnetic Nanoparticles for Fluoride Adsorption from Water
by Israel Águila-Martínez, José Antonio Pérez-Tavares, Efrén González-Aguiñaga, Pablo Eduardo Cardoso-Avila, Héctor Pérez Ladrón de Guevara and Rita Patakfalvi
Inorganics 2025, 13(7), 248; https://doi.org/10.3390/inorganics13070248 - 19 Jul 2025
Viewed by 600
Abstract
This study presents the synthesis, characterization, and application of magnetic magnetite–zirconium dioxide (Fe3O4–ZrO2) nanoparticles as an efficient nanoadsorbent for fluoride removal from water. The nanoparticles were synthesized using a wet chemical co-precipitation method with Fe/Zr molar ratios [...] Read more.
This study presents the synthesis, characterization, and application of magnetic magnetite–zirconium dioxide (Fe3O4–ZrO2) nanoparticles as an efficient nanoadsorbent for fluoride removal from water. The nanoparticles were synthesized using a wet chemical co-precipitation method with Fe/Zr molar ratios of 1:1, 1:2, and 1:4, and characterized using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). FTIR analysis confirmed the presence of Fe3O4 and ZrO2 functional groups, while XRD showed that increased Zr content led to a dominant amorphous phase. SEM and EDS analyses revealed quasi-spherical and elongated morphologies with uniform elemental distribution, maintaining the designed Fe/Zr ratios. Preliminary adsorption tests identified the Fe/Zr = 1:1 (M1) nanoadsorbent as the most effective due to its high surface homogeneity and optimal fluoride-binding characteristics. Adsorption experiments demonstrated that the material achieved a maximum fluoride adsorption capacity of 70.4 mg/g at pH 3, with the adsorption process best fitting the Temkin isotherm model (R2 = 0.987), suggesting strong adsorbate–adsorbent interactions. pH-dependent studies confirmed that adsorption efficiency decreased at higher pH values due to electrostatic repulsion and competition with hydroxyl ions. Competitive ion experiments revealed that common anions such as nitrate, chloride, and sulfate had negligible effects on fluoride adsorption, whereas bicarbonate, carbonate, and phosphate reduced removal efficiency due to their strong interactions with active adsorption sites. The Fe3O4–ZrO2 nanoadsorbent exhibited excellent magnetic properties, facilitating rapid and efficient separation using an external magnetic field, making it a promising candidate for practical water treatment applications. Full article
Show Figures

Graphical abstract

18 pages, 7598 KiB  
Article
Recovery of Fine Rare Earth Minerals from Simulated Tin Tailings by Carrier Magnetic Separation: Selective Heterogeneous Agglomeration with Coarse Magnetite Particles
by Ilhwan Park, Topan Satria Gumilang, Rinaldi Yudha Pratama, Sanghee Jeon, Carlito Baltazar Tabelin, Theerayut Phengsaart, Muhammad Bilal, Youhei Kawamura and Mayumi Ito
Minerals 2025, 15(7), 757; https://doi.org/10.3390/min15070757 - 19 Jul 2025
Viewed by 331
Abstract
The demand for rare earth elements (REEs) is continuously increasing due to the important roles they play in low-carbon and green energy technologies. Unfortunately, the global REE reserves are limited and concentrated in only a few countries, so the reprocessing of alternative resources [...] Read more.
The demand for rare earth elements (REEs) is continuously increasing due to the important roles they play in low-carbon and green energy technologies. Unfortunately, the global REE reserves are limited and concentrated in only a few countries, so the reprocessing of alternative resources like tailings is of critical importance. This study investigated carrier magnetic separation using coarse magnetite particles as a carrier to recover finely ground monazite from tailings. The monazite and carrier surfaces were modified by sodium oleate (NaOL) to improve the hydrophobic interactions between them. The results of zeta potential and contact angle measurements implied the selective adsorption of NaOL onto the surfaces of the monazite and magnetite particles. Although their hydrophobicity increased, heterogenous agglomeration between them was not substantial. To improve heterogenous agglomeration, emulsified kerosene was utilized as a bridging liquid, resulting in more extensive attachment of fine monazite particles onto the surfaces of carrier particles and a dramatic improvement in monazite recovery by magnetic separation—from 0% (without carrier) to 70% (with carrier). A rougher–scavenger–cleaner carrier magnetic separation can produce REE concentrates with a total rare earth oxide (TREO) recovery of 80% and a grade of 9%, increased from 3.4%, which can be further increased to 23.2% after separating REEs and the carrier. Full article
Show Figures

Figure 1

23 pages, 8957 KiB  
Article
Geometallurgical Cluster Creation in a Niobium Deposit Using Dual-Space Clustering and Hierarchical Indicator Kriging with Trends
by João Felipe C. L. Costa, Fernanda G. F. Niquini, Claudio L. Schneider, Rodrigo M. Alcântara, Luciano N. Capponi and Rafael S. Rodrigues
Minerals 2025, 15(7), 755; https://doi.org/10.3390/min15070755 - 19 Jul 2025
Viewed by 349
Abstract
Alkaline carbonatite complexes are formed by magmatic, hydrothermal, and weathering geological events, which modify the minerals present in the rocks, resulting in ores with varied metallurgical behavior. To better spatially distinguish ores with distinct plant responses, creating a 3D geometallurgical block model was [...] Read more.
Alkaline carbonatite complexes are formed by magmatic, hydrothermal, and weathering geological events, which modify the minerals present in the rocks, resulting in ores with varied metallurgical behavior. To better spatially distinguish ores with distinct plant responses, creating a 3D geometallurgical block model was necessary. To establish the clusters, four different algorithms were tested: K-Means, Hierarchical Agglomerative Clustering, dual-space clustering (DSC), and clustering by autocorrelation statistics. The chosen method was DSC, which can consider the multivariate and spatial aspects of data simultaneously. To better understand each cluster’s mineralogy, an XRD analysis was conducted, shedding light on why each cluster performs differently in the plant: cluster 0 contains high magnetite content, explaining its strong magnetic yield; cluster 3 has low pyrochlore, resulting in reduced flotation yield; cluster 2 shows high pyrochlore and low gangue minerals, leading to the best overall performance; cluster 1 contains significant quartz and monazite, indicating relevance for rare earth elements. A hierarchical indicator kriging workflow incorporating a stochastic partial differential equation (SPDE) trend model was applied to spatially map these domains. This improved the deposit’s circular geometry reproduction and better represented the lithological distribution. The elaborated model allowed the identification of four geometallurgical zones with distinct mineralogical profiles and processing behaviors, leading to a more robust model for operational decision-making. Full article
(This article belongs to the Special Issue Geostatistical Methods and Practices for Specific Ore Deposits)
Show Figures

Figure 1

23 pages, 1658 KiB  
Article
Valorization of a Lanthanum-Modified Natural Feedstock for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations
by Hamed Al-Nadabi, Salah Jellali, Wissem Hamdi, Ahmed Al-Raeesi, Fatma Al-Muqaimi, Afrah Al-Tamimi, Ahmed Al-Sidairi, Ahlam Al-Hanai, Waleed Al-Busaidi, Khalifa Al-Zeidi, Malik Al-Wardy and Mejdi Jeguirim
Materials 2025, 18(14), 3383; https://doi.org/10.3390/ma18143383 - 18 Jul 2025
Viewed by 342
Abstract
This work investigates, for the first time, the application of a modified natural magnetite material with 35% of lanthanum for phosphorus (P) recovery from synthetic and actual wastewater under both static (batch) and dynamic (continuous stirred tank reactor (CSTR)) conditions. The characterization results [...] Read more.
This work investigates, for the first time, the application of a modified natural magnetite material with 35% of lanthanum for phosphorus (P) recovery from synthetic and actual wastewater under both static (batch) and dynamic (continuous stirred tank reactor (CSTR)) conditions. The characterization results showed that the natural feedstock mainly comprises magnetite and kaolinite. Moreover, the lanthanum-modified magnetite (La-MM) exhibited more enhanced textural, structural, and surface chemistry properties than the natural feedstock. In particular, its surface area (82.7 m2 g−1) and total pore volume (0.160 cm3 g−1) were higher by 86.6% and 255.5%, respectively. The La-MM efficiently recovered P in batch mode under diverse experimental settings with an adsorption capacity of 50.7 mg g−1, which is significantly greater than that of various engineered materials. It also maintained high efficiency even when used for the treatment of actual wastewater, with an adsorption capacity of 47.3 mg g−1. In CSTR mode, the amount of P recovered from synthetic solutions and real wastewater decreased to 33.8 and 10.2 mg g−1, respectively, due to the limited contact time. The phosphorus recovery process involves mainly electrostatic attraction over a wide pH interval, complexation, and precipitation as lanthanum phosphates. This investigation indicates that lanthanum-modified natural feedstocks from magnetite deposits can be regarded as promising materials for P recovery from aqueous solutions. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications (2nd Edition))
Show Figures

Figure 1

Back to TopTop