Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = magnetic hyperthermia therapy (MHT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3311 KiB  
Article
Pulsed Alternating Fields Magnetic Hyperthermia in Combination with Chemotherapy (5-Fluorouracil) as a Cancer Treatment for Glioblastoma Multiform: An In Vitro Study
by Lilia Souiade, Miguel-Ramon Rodriguez-Garcia, José-Javier Serrano-Olmedo and Milagros Ramos-Gómez
Nanomaterials 2025, 15(7), 556; https://doi.org/10.3390/nano15070556 - 5 Apr 2025
Viewed by 1064
Abstract
Inducing magnetic hyperthermia (MHT) involves locally raising the temperature to 39–45 °C, which increases the susceptibility of tumor cells to therapeutic agents without damaging healthy tissues. Recent studies on trapezoidal pulsed alternating magnetic fields (TP-AMFs) have proven their considerable efficacy in increasing the [...] Read more.
Inducing magnetic hyperthermia (MHT) involves locally raising the temperature to 39–45 °C, which increases the susceptibility of tumor cells to therapeutic agents without damaging healthy tissues. Recent studies on trapezoidal pulsed alternating magnetic fields (TP-AMFs) have proven their considerable efficacy in increasing the temperature of magnetic nanoparticles (MNPs) compared to sinusoidal fields. Thermal therapies have been known to incorporate multiple combinations of therapeutic approaches to optimize the medical procedure for healing cancer patients such as chemotherapy and radiotherapy. The combination of MHT with chemotherapy aims to enhance the therapeutic effects against cancer due to the synergistic interaction in tumor cells. In this study, we aim to exploit the synergistic effects of combining MHT produced by TP-AMFs with a low concentration of 5-Fluorouracil (5-FU) to optimize the therapeutic outcomes in comparison to TP-AMFs MHT alone. Hence, we exposed a glioblastoma cell line (CT2A) incubated with iron oxide nanoparticles at 1 mg/mL to two cycles of MHT employing a trapezoidal-square waveform at 200 kHz and 2 mT for 30 min for each cycle, separated by a 45 min break, both as a single treatment and in combination with 0.1 μg/mL of 5-FU. Our findings demonstrated the efficacy of the synergistic effect between MHT treatment via TP-AMFs and the 5-FU, increasing the cell death to 58.9 ± 2%, compared to 31.4 ± 3% with MHT treatment alone. Cell death was primarily driven by the necrosis pathway (47.3 ± 2%) compared to apoptosis (11.6 ± 2). The addition of 5-FU enhanced the cytotoxic effect of MHT on CT2A cells, increasing the calreticulin (CRT) positive cells to 17 ± 1% compared to 10 ± 1% as produced by MHT treatment alone. Furthermore, this combination suggests that the employed treatment approach can promote immune system activation due to the exposure of CRT in the treated cells. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

21 pages, 4544 KiB  
Article
Injectable Magnetic-Nanozyme Based Thermosensitive Hydrogel for Multimodal DLBCL Therapy
by Min Yan, Jingcui Peng, Haoan Wu, Ming Ma and Yu Zhang
Gels 2025, 11(3), 218; https://doi.org/10.3390/gels11030218 - 20 Mar 2025
Viewed by 717
Abstract
Diffuse large B-cell lymphoma (DLBCL), accounting for 31% of non-Hodgkin lymphomas, remains recalcitrant to conventional therapies due to chemoresistance, metastatic progression, and immunosuppressive microenvironments. We report a novel injectable Fe3O4@DMSA@Pt@PLGA-PEG-PLGA hydrogel system integrating magnetothermal therapy (MHT), chemodynamic therapy (CDT), [...] Read more.
Diffuse large B-cell lymphoma (DLBCL), accounting for 31% of non-Hodgkin lymphomas, remains recalcitrant to conventional therapies due to chemoresistance, metastatic progression, and immunosuppressive microenvironments. We report a novel injectable Fe3O4@DMSA@Pt@PLGA-PEG-PLGA hydrogel system integrating magnetothermal therapy (MHT), chemodynamic therapy (CDT), and immunomodulation. Under alternating magnetic fields (AMF), the system achieves rapid therapeutic hyperthermia (50 °C within 7 min) while activating pH/temperature-dual responsive peroxidase (POD) -like activity in Fe3O4@DMSA@Pt nanoparticles. Catalytic efficiency under tumor-mimetic conditions was significantly higher than Fe3O4@DMSA controls, generating elevated reactive oxygen species (ROS). Flow cytometry revealed 75.9% apoptotic cell death in A20 lymphoma cells at 50 °C, significantly surpassing CDT alone (24.5%). Importantly, this dual mechanism induced immunogenic cell death (ICD) characterized by 4.1-fold CRT externalization, 68% HMGB1 nuclear depletion, and 40.74 nM ATP secretion. This triggered robust dendritic cell maturation (92% CD86+/CD80+ DCs comparable to LPS controls) and T cell activation (16.9% CD25+/CD69+ ratio, 130-fold baseline). Our findings validate the therapeutic potential of magnetothermal-chemodynamic synergy for DLBCL treatment, paving the way for innovative multi-mechanism therapeutic strategies against DLBCL with potential clinical translation prospects. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Figure 1

56 pages, 7459 KiB  
Review
Magnetic Hyperthermia in Glioblastoma Multiforme Treatment
by Veronica Manescu (Paltanea), Iulian Antoniac, Gheorghe Paltanea, Iosif Vasile Nemoianu, Aurel George Mohan, Aurora Antoniac, Julietta V. Rau, Stefan Alexandru Laptoiu, Petruta Mihai, Horia Gavrila, Abdel Rahim Al-Moushaly and Alin Danut Bodog
Int. J. Mol. Sci. 2024, 25(18), 10065; https://doi.org/10.3390/ijms251810065 - 19 Sep 2024
Cited by 8 | Viewed by 3008
Abstract
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 [...] Read more.
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 years as a solution used as a single therapy or combined with others for glioma tumor assessment in preclinical and clinical studies. It is based on magnetic nanoparticles (MNPs) that are injected into the tumor, and, under the effect of an external alternating magnetic field, they produce heat with temperatures higher than 42 °C, which determines cancer cell death. It is well known that iron oxide nanoparticles have received FDA approval for anemia treatment and to be used as contrast substances in the medical imagining domain. Today, energetic, efficient MNPs are developed that are especially dedicated to MHT treatments. In this review, the subject’s importance will be emphasized by specifying the number of patients with cancer worldwide, presenting the main features of GBM, and detailing the physical theory accompanying the MHT treatment. Then, synthesis routes for thermally efficient MNP manufacturing, strategies adopted in practice for increasing MHT heat performance, and significant in vitro and in vivo studies are presented. This review paper also includes combined cancer therapies, the main reasons for using these approaches with MHT, and important clinical studies on human subjects found in the literature. This review ends by describing the most critical challenges associated with MHT and future perspectives. It is concluded that MHT can be successfully and regularly applied as a treatment for GBM if specific improvements are made. Full article
(This article belongs to the Special Issue Implication of Nanoparticles in Cancer Therapy Research, 2nd Edition)
Show Figures

Figure 1

21 pages, 21687 KiB  
Article
In Silico Approach to Model Heat Distribution of Magnetic Hyperthermia in the Tumoral and Healthy Vascular Network Using Tumor-on-a-Chip to Evaluate Effective Therapy
by Juan Matheus Munoz, Giovana Fontanella Pileggi, Mariana Penteado Nucci, Arielly da Hora Alves, Flavia Pedrini, Nicole Mastandrea Ennes do Valle, Javier Bustamante Mamani, Fernando Anselmo de Oliveira, Alexandre Tavares Lopes, Marcelo Nelson Páez Carreño and Lionel Fernel Gamarra
Pharmaceutics 2024, 16(9), 1156; https://doi.org/10.3390/pharmaceutics16091156 - 31 Aug 2024
Cited by 1 | Viewed by 1836
Abstract
Glioblastoma multiforme (GBM) is the most severe form of brain cancer in adults, characterized by its complex vascular network that contributes to resistance to conventional therapies. Thermal therapies, such as magnetic hyperthermia (MHT), emerge as promising alternatives, using heat to selectively target tumor [...] Read more.
Glioblastoma multiforme (GBM) is the most severe form of brain cancer in adults, characterized by its complex vascular network that contributes to resistance to conventional therapies. Thermal therapies, such as magnetic hyperthermia (MHT), emerge as promising alternatives, using heat to selectively target tumor cells while minimizing damage to healthy tissues. The organ-on-a-chip can replicate this complex vascular network of GBM, allowing for detailed investigations of heat dissipation in MHT, while computational simulations refine treatment parameters. In this in silico study, tumor-on-a-chip models were used to optimize MHT therapy by comparing heat dissipation in normal and abnormal vascular networks, considering geometries, flow rates, and concentrations of magnetic nanoparticles (MNPs). In the high vascular complexity model, the maximum velocity was 19 times lower than in the normal vasculature model and 4 times lower than in the low-complexity tumor model, highlighting the influence of vascular complexity on velocity and temperature distribution. The MHT simulation showed greater heat intensity in the central region, with a flow rate of 1 µL/min and 0.5 mg/mL of MNPs being the best conditions to achieve the therapeutic temperature. The complex vasculature model had the lowest heat dissipation, reaching 44.15 °C, compared to 42.01 °C in the low-complexity model and 37.80 °C in the normal model. These results show that greater vascular complexity improves heat retention, making it essential to consider this heterogeneity to optimize MHT treatment. Therefore, for an efficient MHT process, it is necessary to simulate ideal blood flow and MNP conditions to ensure heat retention at the tumor site, considering its irregular vascularization and heat dissipation for effective destruction. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

17 pages, 907 KiB  
Review
Recent Developments in Magnetic Hyperthermia Therapy (MHT) and Magnetic Particle Imaging (MPI) in the Brain Tumor Field: A Scoping Review and Meta-Analysis
by Frederika Rentzeperis, Daniel Rivera, Jack Y. Zhang, Cole Brown, Tirone Young, Benjamin Rodriguez, Alexander Schupper, Gabrielle Price, Jack Gomberg, Tyree Williams, Alexandros Bouras and Constantinos Hadjipanayis
Micromachines 2024, 15(5), 559; https://doi.org/10.3390/mi15050559 - 24 Apr 2024
Cited by 3 | Viewed by 3171
Abstract
Magnetic hyperthermia therapy (MHT) is a promising treatment modality for brain tumors using magnetic nanoparticles (MNPs) locally delivered to the tumor and activated with an external alternating magnetic field (AMF) to generate antitumor effects through localized heating. Magnetic particle imaging (MPI) is an [...] Read more.
Magnetic hyperthermia therapy (MHT) is a promising treatment modality for brain tumors using magnetic nanoparticles (MNPs) locally delivered to the tumor and activated with an external alternating magnetic field (AMF) to generate antitumor effects through localized heating. Magnetic particle imaging (MPI) is an emerging technology offering strong signal-to-noise for nanoparticle localization. A scoping review was performed by systematically querying Pubmed, Scopus, and Embase. In total, 251 articles were returned, 12 included. Articles were analyzed for nanoparticle type used, MHT parameters, and MPI applications. Preliminary results show that MHT is an exciting treatment modality with unique advantages over current heat-based therapies for brain cancer. Effective application relies on the further development of unique magnetic nanoparticle constructs and imaging modalities, such as MPI, that can enable real-time MNP imaging for improved therapeutic outcomes. Full article
(This article belongs to the Special Issue Magnetic Materials and Devices)
Show Figures

Figure 1

17 pages, 2205 KiB  
Review
Magnetic Hyperthermia Therapy for High-Grade Glioma: A State-of-the-Art Review
by Benjamin Rodriguez, Daniel Rivera, Jack Y. Zhang, Cole Brown, Tirone Young, Tyree Williams, Sakibul Huq, Milena Mattioli, Alexandros Bouras and Constantinos G. Hadjpanayis
Pharmaceuticals 2024, 17(3), 300; https://doi.org/10.3390/ph17030300 - 26 Feb 2024
Cited by 14 | Viewed by 7587
Abstract
Magnetic hyperthermia therapy (MHT) is a re-emerging treatment modality for brain tumors where magnetic nanoparticles (MNPs) are locally delivered to the brain and then activated with an external alternating magnetic field (AMF) to generate localized heat at a site of interest. Due to [...] Read more.
Magnetic hyperthermia therapy (MHT) is a re-emerging treatment modality for brain tumors where magnetic nanoparticles (MNPs) are locally delivered to the brain and then activated with an external alternating magnetic field (AMF) to generate localized heat at a site of interest. Due to the recent advancements in technology and theory surrounding the intervention, clinical and pre-clinical trials have demonstrated that MHT may enhance the effectiveness of chemotherapy and radiation therapy (RT) for the treatment of brain tumors. The future clinical success of MHT relies heavily on designing MNPs optimized for both heating and imaging, developing reliable methods for the local delivery of MNPs, and designing AMF systems with integrated magnetic particle imaging (MPI) for use in humans. However, despite the progression of technological development, the clinical progress of MHT has been underwhelming. This review aims to summarize the current state-of-the-art of MHT and offers insight into the current barriers and potential solutions for moving MHT forward. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles (MNPs) in Biomedical Applications)
Show Figures

Figure 1

18 pages, 6400 KiB  
Article
Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines
by Lilia Souiade, Javier Domingo-Diez, Cesar Alcaide, Berta Gámez, Linarejos Gámez, Milagros Ramos and José Javier Serrano Olmedo
Int. J. Mol. Sci. 2023, 24(21), 15933; https://doi.org/10.3390/ijms242115933 - 3 Nov 2023
Cited by 14 | Viewed by 3199
Abstract
Magnetic hyperthermia (MHT) is an oncological therapy that uses magnetic nanoparticles (MNPs) to generate localized heat under a low-frequency alternating magnetic field (AMF). Recently, trapezoidal pulsed alternating magnetic fields (TPAMFs) have proven their efficacy in enhancing the efficiency of heating in MHT as [...] Read more.
Magnetic hyperthermia (MHT) is an oncological therapy that uses magnetic nanoparticles (MNPs) to generate localized heat under a low-frequency alternating magnetic field (AMF). Recently, trapezoidal pulsed alternating magnetic fields (TPAMFs) have proven their efficacy in enhancing the efficiency of heating in MHT as compared to the sinusoidal one. Our study aims to compare the TPAMF waveform’s killing effect against the sinusoidal waveform in B16F10 and CT2A cell lines to determine more efficient waveforms in causing cell death. For that purpose, we used MNPs and different AMF waveforms: trapezoidal (TP), almost-square (TS), triangular (TR), and sinusoidal signal (SN). MNPs at 1 and 4 mg/mL did not affect cell viability during treatment. The exposition of B16F10 and CT2A cells to only AMF showed nonsignificant mortality. Hence, the synergetic effect of the AMF and MNPs causes the observed cell death. Among the explored cases, the nonharmonic signals demonstrated better efficacy than the SN one as an MHT treatment. This study has revealed that the application of TP, TS, or TR waveforms is more efficient and has considerable capability to increase cancer cell death compared to the traditional sinusoidal treatment. Overall, we can conclude that the application of nonharmonic signals enhances MHT treatment efficiency against tumor cells. Full article
(This article belongs to the Special Issue Nanomaterials for Cancer Diagnostics and Therapy)
Show Figures

Figure 1

11 pages, 2918 KiB  
Article
Kinematic Behavior of an Untethered, Small-Scale Hydrogel-Based Soft Robot in Response to Magneto-Thermal Stimuli
by Wenlong Pan, Chongyi Gao, Chen Zhu, Yabing Yang and Lin Xu
Biomimetics 2023, 8(4), 379; https://doi.org/10.3390/biomimetics8040379 - 19 Aug 2023
Cited by 6 | Viewed by 2266
Abstract
Fruit fly larvae, which exist widely in nature, achieve peristaltic motion via the contraction and elongation of their bodies and the asymmetric friction generated by the front and rear parts of their bodies when they are in contact with the ground. Herein, we [...] Read more.
Fruit fly larvae, which exist widely in nature, achieve peristaltic motion via the contraction and elongation of their bodies and the asymmetric friction generated by the front and rear parts of their bodies when they are in contact with the ground. Herein, we report the development of an untethered, magnetic, temperature-sensitive hydrogel-based soft robot that mimics the asymmetric micro-patterns of fruit-fly-larvae gastropods and utilizes cyclic deformation to achieve directional peristaltic locomotion. Due to Néel relaxation losses of nanomagnetic Fe3O4 particles, the hydrogel-based soft robot is capable of converting changes in external alternating magnetic stimuli into contracting and expanding deformation responses which can be remotely controlled via a high-frequency alternating magnetic field (AMF) to realize periodic actuation. Furthermore, the Fe3O4 particles included in the hydrogel-based soft robot cause it to follow a gradient magnetic field in confined liquid environments and can be coupled with AMFs for the targeted release of water-soluble drugs or targeted magnetic hyperthermia therapy (MHT). We believe that such a controlled motion can enable highly targeted drug delivery, as well as vascular disease detection and thrombus removal tasks, without the use of invasive procedures. Full article
(This article belongs to the Special Issue Design, Fabrication and Control of Bioinspired Soft Robots)
Show Figures

Figure 1

19 pages, 3194 KiB  
Article
Paclitaxel-Loaded Lipid-Coated Magnetic Nanoparticles for Dual Chemo-Magnetic Hyperthermia Therapy of Melanoma
by Relton R. Oliveira, Emílio R. Cintra, Ailton A. Sousa-Junior, Larissa C. Moreira, Artur C. G. da Silva, Ana Luiza R. de Souza, Marize C. Valadares, Marcus S. Carrião, Andris F. Bakuzis and Eliana M. Lima
Pharmaceutics 2023, 15(3), 818; https://doi.org/10.3390/pharmaceutics15030818 - 2 Mar 2023
Cited by 27 | Viewed by 3311
Abstract
Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery [...] Read more.
Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery strategies emerge at a regular pace, aiming to overcome these challenges. Stimulus-responsive drug delivery systems might considerably reduce systemic toxicity and side-effects by limiting drug release to the affected area. Herein, we report the development of paclitaxel-loaded lipid-coated manganese ferrite magnetic nanoparticles (PTX-LMNP) as magnetosomes synthetic analogs, envisaging the combined chemo-magnetic hyperthermia treatment of melanoma. PTX-LMNP physicochemical properties were verified, including their shape, size, crystallinity, FTIR spectrum, magnetization profile, and temperature profile under magnetic hyperthermia (MHT). Their diffusion in porcine ear skin (a model for human skin) was investigated after intradermal administration via fluorescence microscopy. Cumulative PTX release kinetics under different temperatures, either preceded or not by MHT, were assessed. Intrinsic cytotoxicity against B16F10 cells was determined via neutral red uptake assay after 48 h of incubation (long-term assay), as well as B16F10 cells viability after 1 h of incubation (short-term assay), followed by MHT. PTX-LMNP-mediated MHT triggers PTX release, allowing its thermal-modulated local delivery to diseased sites, within short timeframes. Moreover, half-maximal PTX inhibitory concentration (IC50) could be significantly reduced relatively to free PTX (142,500×) and Taxol® (340×). Therefore, the dual chemo-MHT therapy mediated by intratumorally injected PTX-LMNP stands out as a promising alternative to efficiently deliver PTX to melanoma cells, consequently reducing systemic side effects commonly associated with conventional chemotherapies. Full article
Show Figures

Figure 1

17 pages, 4708 KiB  
Article
Role of HIKESHI on Hyperthermia for Castration-Resistant Prostate Cancer and Application of a Novel Magnetic Nanoparticle with Carbon Nanohorn for Magnetic Hyperthermia
by Takashi Nagai, Noriyasu Kawai, Masakazu Gonda, Keitaro Iida, Toshiki Etani, Daichi Kobayashi, Taku Naiki, Aya Naiki-Ito, Ryosuke Ando, Sataro Yamaguchi, Yuto Sugahara, Sakyo Ueno, Kaname Tsutsumiuchi, Toyoko Imae and Takahiro Yasui
Pharmaceutics 2023, 15(2), 626; https://doi.org/10.3390/pharmaceutics15020626 - 13 Feb 2023
Cited by 7 | Viewed by 2772
Abstract
The prognosis of castration-resistant prostate cancer (CRPC) is technically scarce; therefore, a novel treatment for CRPC remains warranted. To this end, hyperthermia (HT) was investigated as an alternative therapy. In this study, the analysis focused on the association between CRPC and heat shock [...] Read more.
The prognosis of castration-resistant prostate cancer (CRPC) is technically scarce; therefore, a novel treatment for CRPC remains warranted. To this end, hyperthermia (HT) was investigated as an alternative therapy. In this study, the analysis focused on the association between CRPC and heat shock protein nuclear import factor “hikeshi (HIKESHI)”, a factor of heat tolerance. Silencing the HIKESHI expression of 22Rv1 cells (human CRPC cell line) treated with siRNAs inhibited the translocation of heat shock protein 70 from the cytoplasm to the nucleus under heat shock and enhanced the effect of hyperthermia. Moreover, a novel magnetic nanoparticle was developed via binding carbon nanohorn (CNH) and iron oxide nanoparticle (IONP) with 3-aminopropylsilyl (APS). Tumor-bearing model mice implanted with 22 Rv1 cells were examined to determine the effect of magnetic HT (mHT). We locally injected CNH-APS-IONP into the tumor, which was set under an alternative magnetic field and showed that tumor growth in the treatment group was significantly suppressed compared with other groups. This study suggests that HIKESHI silencing enhances the sensitivity of 22Rv1 cells to HT, and CNH-APTES-IONP deserves consideration for mHT. Full article
(This article belongs to the Special Issue Nanocarriers for Cancer Therapy and Diagnosis, 2nd Edition)
Show Figures

Figure 1

18 pages, 2717 KiB  
Article
Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device
by Anirudh Sharma, Avesh Jangam, Julian Low Yung Shen, Aiman Ahmad, Nageshwar Arepally, Benjamin Rodriguez, Joseph Borrello, Alexandros Bouras, Lawrence Kleinberg, Kai Ding, Constantinos Hadjipanayis, Dara L. Kraitchman, Robert Ivkov and Anilchandra Attaluri
Cancers 2023, 15(2), 327; https://doi.org/10.3390/cancers15020327 - 4 Jan 2023
Cited by 14 | Viewed by 4237
Abstract
We present in vivo validation of an automated magnetic hyperthermia therapy (MHT) device that uses real-time temperature input measured at the target to control tissue heating. MHT is a thermal therapy that uses heat generated by magnetic materials exposed to an alternating magnetic [...] Read more.
We present in vivo validation of an automated magnetic hyperthermia therapy (MHT) device that uses real-time temperature input measured at the target to control tissue heating. MHT is a thermal therapy that uses heat generated by magnetic materials exposed to an alternating magnetic field. For temperature monitoring, we integrated a commercial fiber optic temperature probe containing four gallium arsenide (GaAs) temperature sensors. The controller device used temperature from the sensors as input to manage power to the magnetic field applicator. We developed a robust, multi-objective, proportional-integral-derivative (PID) algorithm to control the target thermal dose by modulating power delivered to the magnetic field applicator. The magnetic field applicator was a 20 cm diameter Maxwell-type induction coil powered by a 120 kW induction heating power supply operating at 160 kHz. Finite element (FE) simulations were performed to determine values of the PID gain factors prior to verification and validation trials. Ex vivo verification and validation were conducted in gel phantoms and sectioned bovine liver, respectively. In vivo validation of the controller was achieved in a canine research subject following infusion of magnetic nanoparticles (MNPs) into the brain. In all cases, performance matched controller design criteria, while also achieving a thermal dose measured as cumulative equivalent minutes at 43 °C (CEM43) 60 ± 5 min within 30 min. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

13 pages, 4232 KiB  
Article
Molarity Effects of Fe and NaOH on Synthesis and Characterisation of Magnetite (Fe3O4) Nanoparticles for Potential Application in Magnetic Hyperthermia Therapy
by Lokesh Srinath Ganapathe, Jamal Kazmi, Mohd Ambri Mohamed and Dilla Duryha Berhanuddin
Magnetochemistry 2022, 8(11), 161; https://doi.org/10.3390/magnetochemistry8110161 - 21 Nov 2022
Cited by 15 | Viewed by 4056
Abstract
In this study, the effect of molarity on the structural, magnetic, and heat dissipation properties of magnetite nanoparticles (MNPs) was investigated to optimise the parameters for potential application in magnetic hyperthermia therapy (MHT). MHT works based on the principle of local temperature rise [...] Read more.
In this study, the effect of molarity on the structural, magnetic, and heat dissipation properties of magnetite nanoparticles (MNPs) was investigated to optimise the parameters for potential application in magnetic hyperthermia therapy (MHT). MHT works based on the principle of local temperature rise at the tumour site by magnetic iron oxide nanoparticles (MIONPs) with the application of an alternating magnetic field. MHT is a safe method for cancer treatment and has minimal or no side effects. Magnetite (Fe3O4) is the best material among MIONPs to be applied in local MHT due to its biocompatibility and high saturation magnetisation value. MNPs were prepared by co-precipitation at varying molarity. Structural characterisation was performed via X-ray powder diffraction (XRD) for crystalline structure analysis and field-emission scanning electron microscopy (FESEM) for morphology and particle size analysis. Measurement of the magnetic properties of the as-synthesised MNPs was carried out using a vibrating sample magnetometer (VSM). Power loss (P) was determined theoretically. The increase in molarity resulted in significant effects on the structural, magnetic, and heat dissipation properties of MNPs. The particle size and saturation magnetisation (Ms) decreased with the gradual addition of base but increased, together with crystallinity, with the gradual addition of iron source. M3 recorded the smallest crystalline size at 3.559 nm. The sample with the highest molarity (M4) displayed the highest heat generation capacity with a p value of up to 0.4056 W/g. High p values at the nano-scale are crucial, especially in local MHT, for effective heat generation, thus proving the importance of molarity as a vital parameter during MNP synthesis. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles: State of the Art and Future Perspectives)
Show Figures

Figure 1

9 pages, 1373 KiB  
Article
Albumin Stabilized Fe@C Core–Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy
by Maria Antonieta Ramírez-Morales, Anastasia E. Goldt, Polina M. Kalachikova, Javier A. Ramirez B., Masashi Suzuki, Alexey N. Zhigach, Asma Ben Salah, Liliya I. Shurygina, Sergey D. Shandakov, Timofei Zatsepin, Dmitry V. Krasnikov, Toru Maekawa, Evgeny N. Nikolaev and Albert G. Nasibulin
Nanomaterials 2022, 12(16), 2869; https://doi.org/10.3390/nano12162869 - 20 Aug 2022
Cited by 5 | Viewed by 3358
Abstract
Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation–condensation flow–levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated [...] Read more.
Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation–condensation flow–levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

19 pages, 2270 KiB  
Review
Current Challenges in Image-Guided Magnetic Hyperthermia Therapy for Liver Cancer
by Anirudh Sharma, Erik Cressman, Anilchandra Attaluri, Dara L. Kraitchman and Robert Ivkov
Nanomaterials 2022, 12(16), 2768; https://doi.org/10.3390/nano12162768 - 12 Aug 2022
Cited by 13 | Viewed by 4099
Abstract
For patients diagnosed with advanced and unresectable hepatocellular carcinoma (HCC), liver transplantation remains the best option to extend life. Challenges with organ supply often preclude liver transplantation, making palliative non-surgical options the default front-line treatments for many patients. Even with imaging guidance, success [...] Read more.
For patients diagnosed with advanced and unresectable hepatocellular carcinoma (HCC), liver transplantation remains the best option to extend life. Challenges with organ supply often preclude liver transplantation, making palliative non-surgical options the default front-line treatments for many patients. Even with imaging guidance, success following treatment remains inconsistent and below expectations, so new approaches are needed. Imaging-guided thermal therapy interventions have emerged as attractive procedures that offer individualized tumor targeting with the potential for the selective targeting of tumor nodules without impairing liver function. Furthermore, imaging-guided thermal therapy with added standard-of-care chemotherapies targeted to the liver tumor can directly reduce the overall dose and limit toxicities commonly seen with systemic administration. Effectiveness of non-ablative thermal therapy (hyperthermia) depends on the achieved thermal dose, defined as time-at-temperature, and leads to molecular dysfunction, cellular disruption, and eventual tissue destruction with vascular collapse. Hyperthermia therapy requires controlled heat transfer to the target either by in situ generation of the energy or its on-target conversion from an external radiative source. Magnetic hyperthermia (MHT) is a nanotechnology-based thermal therapy that exploits energy dissipation (heat) from the forced magnetic hysteresis of a magnetic colloid. MHT with magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs) requires the targeted deposition of MNPs into the tumor, followed by exposure of the region to an AMF. Emerging modalities such as magnetic particle imaging (MPI) offer additional prospects to develop fully integrated (theranostic) systems that are capable of providing diagnostic imaging, treatment planning, therapy execution, and post-treatment follow-up on a single platform. In this review, we focus on recent advances in image-guided MHT applications specific to liver cancer Full article
(This article belongs to the Special Issue Nanomaterials in Biological Systems: Opportunities and Challenges)
Show Figures

Figure 1

30 pages, 2576 KiB  
Review
Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies
by Anilkumar Thaghalli Shivanna, Banendu Sunder Dash and Jyh-Ping Chen
Micromachines 2022, 13(8), 1279; https://doi.org/10.3390/mi13081279 - 8 Aug 2022
Cited by 36 | Viewed by 5285
Abstract
The multi-faceted nature of functionalized magnetic nanoparticles (fMNPs) is well-suited for cancer therapy. These nanocomposites can also provide a multimodal platform for targeted cancer therapy due to their unique magnetic guidance characteristics. When induced by an alternating magnetic field (AMF), fMNPs can convert [...] Read more.
The multi-faceted nature of functionalized magnetic nanoparticles (fMNPs) is well-suited for cancer therapy. These nanocomposites can also provide a multimodal platform for targeted cancer therapy due to their unique magnetic guidance characteristics. When induced by an alternating magnetic field (AMF), fMNPs can convert the magnetostatic energy to heat for magnetic hyperthermia (MHT), as well as for controlled drug release. Furthermore, with the ability to convert near-infrared (NIR) light energy to heat energy, fMNPs have attracted interest for photothermal therapy (PTT). Other than MHT and PTT, fMNPs also have a place in combination cancer therapies, such as chemo-MHT, chemo-PTT, and chemo-PTT–photodynamic therapy, among others, due to their versatile properties. Thus, this review presents multifunctional nanocomposites based on fMNPs for cancer therapies, induced by an AMF or NIR light. We will first discuss the different fMNPs induced with an AMF for cancer MHT and chemo-MHT. Secondly, we will discuss fMNPs irradiated with NIR lasers for cancer PTT and chemo-PTT. Finally, fMNPs used for dual-mode AMF + NIR-laser-induced magneto-photo-hyperthermia (MPHT) will be discussed. Full article
Show Figures

Figure 1

Back to TopTop