Injectable Magnetic-Nanozyme Based Thermosensitive Hydrogel for Multimodal DLBCL Therapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Construction and Characterization of Fe3O4@DMSA@Pt@PLGA-PEG-PLGA
2.2. Performance Validation of Fe3O4@DMSA@Pt@PLGA-PEG-PLGA
2.3. Magnetic Hyperthermia–Chemodynamic Synergistic Therapeutic Effects of Fe3O4@DMSA@Pt@PLGA-PEG-PLGA
2.4. Immunogenic Cell Death and Immune Activation Induced by Magnetothermal-Chemodynamic Synergy
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis and Characterization of Fe3O4@DMSA@Pt Nanoparticles
4.3. Preparation of Composite Magnetic Thermoresponsive Injectable Hydrogels
4.4. POD-like Activity Assay of Fe3O4@DMSA@Pt Nanoparticles
4.5. In Vitro Heating Evaluation of Composite Injectable Hydrogels
4.6. Cell Culture
4.7. Detection of Intracellular ROS in A20 Cells
4.8. Apoptosis Profiling in A20 Cells
4.9. Evaluation of Magnetothermal-Chemodynamic Synergy Therapy
4.10. Immunofluorescence Analysis of Surface CRT and Nuclear HMGB1
4.11. Flow Cytometric Quantification of CRT/HMGB1 Expression
4.12. Detection of Extracellular ATP Release
4.13. Generation and Maturation of Dendritic Cell
4.14. Generation and Activation of T Cell
4.15. Data Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Taylor, J.; Xiao, W.; Abdel-Wahab, O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017, 130, 410–423. [Google Scholar] [CrossRef] [PubMed]
- McCarten, K.M.; Nadel, H.R.; Shulkin, B.L.; Cho, S.Y. Imaging for diagnosis, staging and response assessment of Hodgkin lymphoma and non-Hodgkin lymphoma. Pediatr. Radiol. 2019, 49, 1545–1564. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.P.; Arcila, M.E. Molecular Diagnostics of Non-Hodgkin Lymphoma. Cancer J. 2020, 26, 186–194. [Google Scholar] [CrossRef]
- Sehn, L.H.; Salles, G. Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2021, 384, 842–858. [Google Scholar] [CrossRef]
- Li, S.; Young, K.H.; Medeiros, L.J. Diffuse large B-cell lymphoma. Pathology 2018, 50, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.D.; Ghobadi, A.; Oluwole, O.O.; Logan, A.C.; Boissel, N.; Cassaday, R.D.; Leguay, T.; Bishop, M.R.; Topp, M.S.; Tzachanis, D.; et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: Phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021, 398, 491–502. [Google Scholar] [CrossRef]
- Shah, B.D.; Bishop, M.R.; Oluwole, O.O.; Logan, A.C.; Baer, M.R.; Donnellan, W.B.; O’Dwyer, K.M.; Holmes, H.; Arellano, M.L.; Ghobadi, A.; et al. KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood 2021, 138, 11–22. [Google Scholar] [CrossRef]
- Pytlík, R.; Vacková, B.; Konířová, E.; Trnková, M.; Blahovcová, P.; Pohlreich, D.; Polgárová, K.; Klener, P., Jr.; Benešová, K.; Kopečková, K.; et al. Long-term outcomes of older patients with relapsed/refractory NHL referred to ASCT. Bone Marrow Transplant. 2021, 56, 709–712. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Wang, X. Targeting the tumor microenvironment in B-cell lymphoma: Challenges and opportunities. J. Hematol. Oncol. 2021, 14, 125. [Google Scholar] [CrossRef]
- Salles, G.; Duell, J.; Gonzalez Barca, E.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; Andre, M.; et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Q.; Liang, H.; Wang, S.; Pan, J.; Pan, S.; Zhu, B.; Ding, Z.; Zhao, W.; Ni, Y. Association of MDR1 C1236T Polymorphisms and B Cell Non-Hodgkin Lymphoma. J. Cancer 2022, 13, 1768–1772. [Google Scholar] [CrossRef]
- Jain, N.; Mamgain, M.; Chowdhury, S.M.; Jindal, U.; Sharma, I.; Sehgal, L.; Epperla, N. Beyond Bruton’s tyrosine kinase inhibitors in mantle cell lymphoma: Bispecific antibodies, antibody–drug conjugates, CAR T-cells, and novel agents. J. Hematol. Oncol. 2023, 16, 99. [Google Scholar] [CrossRef]
- Wu, H.; Song, L.; Chen, L.; Huang, Y.; Wu, Y.; Zang, F.; An, Y.; Lyu, H.; Ma, M.; Chen, J.; et al. Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy. Nanoscale 2017, 9, 16175–16182. [Google Scholar] [CrossRef]
- Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, B.; Yari, P.; Sanders, S.M.; Wang, H.; Chugh, V.K.; Liang, S.; Mostufa, S.; Xu, K.; Wang, J.-P.; Gómez-Pastora, J.; et al. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. Small 2024, 20, 2304848. [Google Scholar] [CrossRef]
- Basel, M.T.; Balivada, S.; Wang, H.; Shrestha, T.B.; Seo, G.M.; Pyle, M.; Abayaweera, G.; Dani, R.; Koper, O.B.; Tamura, M.; et al. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int. J. Nanomed. 2012, 7, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Shi, P.; Wang, C.; Sun, Y.; Gao, C. Recent updates in nanoscale delivery systems of platinum(IV) antitumor prodrugs. Coord. Chem. Rev. 2024, 508, 215774. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, L.; Chen, H.; Song, H.; Chen, S.; Xiao, H. Enhancing the chemotherapeutic efficacy of platinum prodrug nanoparticles and inhibiting cancer metastasis by targeting iron homeostasis. Nanoscale Horiz. 2020, 5, 999–1015. [Google Scholar] [CrossRef]
- Meier, P.; Legrand, A.J.; Adam, D.; Silke, J. Immunogenic cell death in cancer: Targeting necroptosis to induce antitumour immunity. Nat. Rev. Cancer 2024, 24, 299–315. [Google Scholar] [CrossRef]
- Aaes, T.L.; Vandenabeele, P. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death Differ. 2021, 28, 843–860. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pan, Z.; Li, Q.; Huang, Q.; Shi, L.; Liu, Y. Rational design of ICD-inducing nanoparticles for cancer immunotherapy. Sci. Adv. 2024, 10, eadk0716. [Google Scholar] [CrossRef]
- Zhuang, F.; Xiang, H.; Huang, B.; Chen, Y. Ultrasound-Triggered Cascade Amplification of Nanotherapy. Adv. Mater. 2023, 35, 2303158. [Google Scholar] [CrossRef]
- Wang, H.; Yang, F.; Li, Y.; Zhang, S.; Shang, J.; Hou, X.; Tong, Y.; Zhou, K.; Shu, X.; Sun, B.; et al. Cell Membrane–Liposome Hybrid Platform for Ultrasound-Activated Immune-Sonodynamic Therapy for Triple-Negative Breast Cancer. ACS Appl. Nano Mater. 2023, 6, 16453–16464. [Google Scholar] [CrossRef]
- Wang, M.; He, M.; Zhang, M.; Xue, S.; Xu, T.; Zhao, Y.; Li, D.; Zhi, F.; Ding, D. Controllable hypoxia-activated chemotherapy as a dual enhancer for synergistic cancer photodynamic immunotherapy. Biomaterials 2023, 301, 122257. [Google Scholar] [CrossRef]
- Juang, J.H.; Chen, C.L.; Kao, C.W.; Chen, C.Y.; Shen, C.R.; Wang, J.J.; Tsai, Z.T.; Chu, I.M. The Image-Histology Correlation of Subcutaneous mPEG-poly(Ala) Hydrogel-Embedded MIN6 Cell Grafts in Nude Mice. Polymers 2023, 15, 2584. [Google Scholar] [CrossRef]
- Heine, S.; Aguilar-Pimentel, A.; Russkamp, D.; Alessandrini, F.; Gailus-Durner, V.; Fuchs, H.; Ollert, M.; Bredehorst, R.; Ohnmacht, C.; Zissler, U.M.; et al. Thermosensitive PLGA-PEG-PLGA Hydrogel as Depot Matrix for Allergen-Specific Immunotherapy. Pharmaceutics 2022, 14, 1527. [Google Scholar] [CrossRef]
- Chen, R.; Chen, X.; Zhou, Y.; Lin, T.; Leng, Y.; Huang, X.; Xiong, Y. “Three-in-One” Multifunctional Nanohybrids with Colorimetric Magnetic Catalytic Activities to Enhance Immunochromatographic Diagnosis. ACS Nano 2022, 16, 3351–3361. [Google Scholar] [CrossRef]
- Shi, H.; Luo, Y.; Zhang, S.; Zhao, M.; Liu, C.; Pei, Q.; Wang, H.; Dai, Q.; Xie, Z.; Xu, B.; et al. Dual-responsive nanogels with high drug loading for enhanced tumor targeting and treatment. Chin. Chem. Lett. 2024, 110775. [Google Scholar] [CrossRef]
- Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhu, J.; Xiong, W.; Feng, J.; Yang, J.; Lu, X.; Lu, Y.; Zhang, Q.; Yi, P.; Feng, Y.; et al. Tumor-Generated Reactive Oxygen Species Storm for High-Performance Ferroptosis Therapy. ACS Nano 2023, 17, 11492–11506. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Sun, X.; Zhang, X.; Wu, J.; Shi, X.; Sun, J.; Luo, C.; He, Z.; Zhang, S. Emerging Chemodynamic Nanotherapeutics for Cancer Treatment. Adv. Healthc. Mater. 2024, 13, 2400809. [Google Scholar] [CrossRef]
- Jeong, B.; Bae, Y.H.; Kim, S.W. Thermoreversible Gelation of PEG−PLGA−PEG Triblock Copolymer Aqueous Solutions. Macromolecules 1999, 32, 7064–7069. [Google Scholar] [CrossRef]
- Tanodekaew, S.; Godward, J.; Heatley, F.; Booth, C. Gelation of aqueous solutions of diblock copolymers of ethylene oxide and D,L-lactide. Macromol. Chem. Phys. 2003, 198, 3385–3395. [Google Scholar] [CrossRef]
- Jeong, B.; Windisch, C.F.; Park, M.J.; Sohn, Y.S.; Gutowska, A.; Char, K. Phase Transition of the PLGA-g-PEG Copolymer Aqueous Solutions. J. Phys. Chem. B 2003, 107, 10032–10039. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Shi, J.; Chen, Z.; Wang, Y.; Gu, S.; Fu, Y.; Huang, J.; Ding, J.; Yu, L. An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis. Biomaterials 2023, 298, 122139. [Google Scholar] [CrossRef]
- Cui, S.; Yu, L.; Ding, J. Semi-bald Micelles and Corresponding Percolated Micelle Networks of Thermogels. Macromolecules 2018, 51, 6405–6420. [Google Scholar] [CrossRef]
- Vangijzegem, T.; Lecomte, V.; Ternad, I.; Van Leuven, L.; Muller, R.N.; Stanicki, D.; Laurent, S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023, 15, 236. [Google Scholar] [CrossRef]
- Liu, X.L.; Yang, Y.; Ng, C.T.; Zhao, L.Y.; Zhang, Y.; Bay, B.H.; Fan, H.M.; Ding, J. Magnetic Vortex Nanorings: A New Class of Hyperthermia Agent for Highly Efficient In Vivo Regression of Tumors. Adv. Mater. 2015, 27, 1939–1944. [Google Scholar] [CrossRef]
- Tiwari, S.; Van de Put, M.; Sorée, B.; Hinkle, C.; Vandenberghe, W.G. Reduction of Magnetic Interaction Due to Clustering in Doped Transition-Metal Dichalcogenides: A Case Study of Mn-, V-, and Fe-Doped WSe2. ACS Appl. Mater. Interfaces 2024, 16, 4991–4998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022, 12, 2115–2132. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, L.; Song, L.; Ma, M.; Gu, N.; Zhang, Y. Enhanced Tumor Synergistic Therapy by Injectable Magnetic Hydrogel Mediated Generation of Hyperthermia and Highly Toxic Reactive Oxygen Species. ACS Nano 2019, 13, 14013–14023. [Google Scholar] [CrossRef] [PubMed]
- Land, W.G.; Agostinis, P.; Gasser, S.; Garg, A.D.; Linkermann, A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am. J. Transplant. 2016, 16, 3338–3361. [Google Scholar] [CrossRef]
- Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875. [Google Scholar] [CrossRef]
- Ahmed, A.; Tait, S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020, 14, 2994–3006. [Google Scholar] [CrossRef]
- Yuan, X.; Kang, Y.; Li, R.; Niu, G.; Shi, J.; Yang, Y.; Fan, Y.; Ye, J.; Han, J.; Pei, Z.; et al. Magnetically triggered thermoelectric heterojunctions with an efficient magnetic-thermo-electric energy cascade conversion for synergistic cancer therapy. Nat. Commun. 2025, 16, 2369. [Google Scholar] [CrossRef]
- Bai, S.; Hou, S.; Chen, T.; Ma, X.; Gao, C.; Wu, A. Magnetic nanoparticle-mediated hyperthermia: From heating mechanisms to cancer theranostics. Innov. Mater. 2024, 2, 100051. [Google Scholar] [CrossRef]
- Yan, B.; Liu, C.; Wang, S.; Li, H.; Jiao, J.; Lee, W.S.V.; Zhang, S.; Hou, Y.; Hou, Y.; Ma, X.; et al. Magnetic hyperthermia induces effective and genuine immunogenic tumor cell death with respect to exogenous heating. J. Mater. Chem. B 2022, 10, 5364–5374. [Google Scholar] [CrossRef]
- Troitskaya, O.S.; Novak, D.D.; Richter, V.A.; Koval, O.A. Immunogenic Cell Death in Cancer Therapy. Acta Naturae 2022, 14, 40–53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, M.; Peng, J.; Wu, H.; Ma, M.; Zhang, Y. Injectable Magnetic-Nanozyme Based Thermosensitive Hydrogel for Multimodal DLBCL Therapy. Gels 2025, 11, 218. https://doi.org/10.3390/gels11030218
Yan M, Peng J, Wu H, Ma M, Zhang Y. Injectable Magnetic-Nanozyme Based Thermosensitive Hydrogel for Multimodal DLBCL Therapy. Gels. 2025; 11(3):218. https://doi.org/10.3390/gels11030218
Chicago/Turabian StyleYan, Min, Jingcui Peng, Haoan Wu, Ming Ma, and Yu Zhang. 2025. "Injectable Magnetic-Nanozyme Based Thermosensitive Hydrogel for Multimodal DLBCL Therapy" Gels 11, no. 3: 218. https://doi.org/10.3390/gels11030218
APA StyleYan, M., Peng, J., Wu, H., Ma, M., & Zhang, Y. (2025). Injectable Magnetic-Nanozyme Based Thermosensitive Hydrogel for Multimodal DLBCL Therapy. Gels, 11(3), 218. https://doi.org/10.3390/gels11030218